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Abstract: We use a system biology approach to translate the interaction of Bacillus Calmette-Gurin
(BCG) + interleukin 2 (IL-2) for the treatment of bladder cancer into a mathematical model. The main
goal of this research is to predict the outcome of BCG + IL-2 treatment combinations. We examined
whether the delay effect caused by the proliferation of tumor antigen-specific effector cells after
the immune system destroys BCG-infected urothelium cells after BCG and IL-2 immunotherapy
influences success in bladder cancer treatment. To do this, we introduce a system of differential
equations where the variables are the main participants in the immune response after BCG
installations to fight cancer: the number of tumor cells, BCG cells, immune cells, and cytokines
involved in the tumor-immune response. The relevant parameters describing the dynamics of the
system are taken from a variety of biological, clinical literature and estimated using the mathematical
models. We examine the local stability analysis of non-negative equilibrium states of the model.
In theory, treatment could improve system stability, and we analyze the stability of all equilibria
using the method of Lyapunov functionals construction and the method of linear matrix inequalities
(LMIs). Our results prove that the period for the proliferation of tumor antigen-specific effector
cells does not influence to the success of the non-responsive patients after an intensified combined
BCG + IL-2 treatment.

Keywords: cancer modeling; combined treatment model; discrete time delay; stability conditions;
Lyapunov functionals; linear matrix inequalities (LMIs)

1. Introduction

Bladder cancer (BC) is the fourth most common cancer in males [1] and the 11th most common
cancer in women [2]. The global prevalence of BC is estimated at more than one million and is steadily
increasing [1]. The risks of BC appear to vary across world regions, correlating with smoking and
occupational exposures to carcinogens [3].

The long-term nature of BC is similar to that of many chronic diseases and often requires invasive
and careful long-term follow-up, and in some cases, adjuvant treatment. This translates into high
patient costs, making BC one of the most expensive cancers to treat. The preferred treatment for BC
depends on its grade at diagnosis. Transurethral resection (TURBT) is the standard primary treatment
for BC low-grade (stages Ta, T1 and carcinoma in situ), where cancer growth occurs superficially on
the inner surface of the bladder in the form of a polyp but does not extend to the muscle. After TURBT,
in malignant case, the treatment is either chemotherapy or immunotherapy for eradication of any
residual cancer cells. Chemotherapeutic agents such as mitomycin C, doxorubicin, and epirubicin
have long been used as intravesical therapies for BC [3,4].
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Immunotherapy, BCG, a live attenuated strain of Mycobacterium bovis, has been shown to reduce
both recurrence and progression of BC, and therefore represents an important tool in the treatment
of BC [5]. BCG was first introduced as an intravesical therapy for BC in 1976 year by Morales and
associates [6]. However, despite BCG favorable effects, a significant proportion of patients do not
respond to BCG or tolerate treatment. Therefore, research has been pursued and efforts made to
improve BCG therapy. During the past decades, cytokine-based therapies have been developed [7].
To date, multiple cytokines, such as IFN-α, IL-2 and IL-12 [8,9], have been evaluated, alone, or in
combination with BCG for the treatment of BC.

This research is based on the model of BC immunotherapy [10], focusing on the clinical use of
BCG and IL-2. During this treatment, the malignant cells are attacked by the patient’s own immune
system rather than through external chemical or surgical intervention. BCG is introduced into the
bladder where it adheres to the damaged regions of the bladder wall. The cascade of immune response
induced by intravesical BCG + IL-2 instillation consists of 2 phases:

I. BCG infects tumor cells, and stimulates the patient’s immune response, which mainly targets
BCG infected tumor cells and may potentially eliminate the remaining tumor. At the same time,
BCG infection stimulates the antigen (Ag)-presenting cells (APCs) to produce cytotoxic T-lymphocytes
(CTL) associated with bacteria Ag. This causes the presentation of bacterial Ag on the tumor surface,
which attracts APCs that ingest these cells.

II. Once a tumor cell has been ingested, tumor Ag’s are presented by the APCs. Due to
the aforementioned inflammatory environment, created by the bacterial infection, APCs cause
the effector cells (the most CTL cells) to either mature and capture tumor cells according to their
tumor-associated-antigen (TAA) [11].

In other words, two CTL populations can destroy tumor cells—either via the TAA mechanism
(uninfected tumor cells) or via bacteria-associated Ag (infected tumor cells). The addition of IL-2
is expected to create an inflammatory environment that stimulates the maturation of either CTL
population [12]. During the second phase of the immune response, there is a delay in the entry of CTL
cells into the bladder, because the CTL maturation cells process can take until 7 days. The modeling
of biological systems with delays is based on differential equations with delay (Delay Differential
Equations—DDE), where the derivative of an unknown function depends on the past states of the
system [13,14].

The purpose of the current research is to analyze the stability of BCG model in DDE. Stability of
equilibria is analyzed using the classical Lyapunov-Krasovskii functionals method together with the
Kolmanovskii-Shaikhet general method of Lyapunov functionals construction [15,16] and the method
of linear matrix inequalities (LMIs) [17–20]. The considered BCG-model is described by a system of
nonlinear differential equations with delays. A stability investigation of systems of this type can be
reduced to stability investigation of the linear part of a nonlinear system. The obtained sufficient
conditions for asymptotic stability of the zero solution of an auxiliary linear system, at the same time,
are sufficient conditions for the local stability of the corresponding equilibrium of the initial nonlinear
system. Here standard definitions of stability are used (see, for instance [21]).

2. Description of the Model

The model that we analyze in this work describes interactions between BCG, the immune
system and tumor cells within the bladder during combined BCG + IL-2 treatment (see Figure 1).
BCG induces tumor removal by attaching to the urothelium and causing an inflammatory response
there. The inflamed area attracts innate immune cells, which in turn attract CTLs and natural killer
cells that attack tumor cells [22]. There are key variables interest us in the BCG + IL-2 treatment’s
model: BCG and IL-2, APCs not activate and activated, effector T lymphocytes, tumor cells and tumor
cells infected with BCG, transforming growth factor-beta (TGF-β).
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Figure 1. BCG (denoted by B) invade the APCs (denoted by A) present ed in the urothelium.
Bacterial infection stimulates APCs to produce inflammatory cytokines such as IL-2. At the same time,
bacteria infect residual cancer cells after surgery designated as Tu. As a result of infection, bacterial Ag
appears on the surface of tumor cells, attracting APC (designated as AB). AB engulf tumor infected
cells (Ti) and transfer the tumor agent to APC (denoted by AT). Due to the inflammatory environment
created by the bacterial infection, AB cause CTLs to either mature and track bacterial Ag, denoted as
EB (Pathway A), or mature and invade tumor cells according to their tumor Ag, starting with a delay τ

(it is indicated by a broken line) due to the time it takes to form the CTL population, designated by
EB (Pathway B). Two CTL populations can destroy tumor cells EB and ET ; and IL-2 will stimulate the
maturation of the CTL cell population.

On basis of these key variables we build the equations in the system (1), described rates of change
in concentrations of molecules or cell populations using the following notations:

- BCG bacteria within the bladder as B;
- APCs (dendritic cells (DCs) and macrophages) as A;
- activated/matured APC’s after BCG internalization and processing as AB;
- activated/matured APC’s specific to tumor Ag as AT ;
- effector T lymphocytes consisting mostly of CTLs that react to BCG as EB;
- effector T lymphocytes consisting mostly of CTLs that react to tumor Ags as ET ;
- IL-2 units injected inside the bladder as I2;
- tumor cells infected with BCG as Ti;
- tumor cells not infected by BCG as Tu;
- transforming growth factor-beta (TGF-β) denotes as Fβ.

Mathematical and biological interpretation of every equation from the system (1) are
examined below:
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BCG dynamics:
Ḃ(t) = b− p1 A(t)B(t)− p2B(t)Tu(t)− µBB(t),

where Ḃ(t) is the dynamical rate of BCG level changes with time. It is comprised of a positive term
corresponding to BCG instillations, and of negative terms corresponding to the elimination of BCG by
antigen-presenting cells (APCs) according to the rate coefficient p1, BCG tumor cell infection at a rate
coefficient p2, and bacteria cell death with rate coefficient µB. A quantity b of BCG is instilled into the
bladder via a catheter inserted through the urethra once in a week during 6–8 weeks. In this study,
we have chosen to simplify the problem by assuming that BCG is introduced into the bladder at a
constant rate b.

Dynamics of non-activated APC:

Ȧ(t) = γ− (p1 − η)A(t)B(t)− µA A(t)− θp3EB(t)Ti(t)A(t− τ(t)),

where dynamic of A(t) is governed by two positive terms and three negative terms. The first positive
term describes the normal influx of APCs to the tumor at a constant rate γ. The second positive term
describes the recruitment of APCs due to bacterial infection at a rate coefficient η. The first negative
term describes the activation of APCs by BCG at the rate coefficient p1. The second negative term is
natural cell death at the rate coefficient µA. The last negative term accounts for the two-stage elimination
of tumor cells, according to recent knowledge, first by effector CTL activity upon BCG-infected tumor
cells, which leads to lysis of these cells and flooding of the tumor micro-environment with tumor
antigens. Activation of APC cells with tumor-specific antigens occurs with a delay of τ(t) after the
destruction of infected tumor cells. The localized inflammatory response then attracts APCs, such as
macrophages, which in turn eliminate uninfected tumor cells, according to the rate θp3.

Dynamics of APC activated by BCG:

ȦB(t) = p1 A(t)B(t)− (β + µA1)AB(t),

where dynamic of AB(t) is described by one positive term and two negative terms. The positive term
is proportional to the numbers of non-activated APCs as well as BCG bacteria, with rate coefficient p1.
The first negative term is the migration of the infected, activated APCs to the draining lymphoid
tissues, at a rate of coefficient β1. The second negative term is the death of activated APCs at a rate of
coefficient µA1 .

Dynamics of tumor-Ag-activated APC (TAA-APC):

ȦT(t) = θp3EB(t)Ti(t)A(t− τ(t))− λAT(t− τ(t))Tu(t)

(
I2(t)

I2(t) + gI

)
− (β + µA1)AT(t),

where the dynamic TAA-APC is comprised of one positive term and three negative terms. The positive
term describes the APCs which were activated by tumor antigen after eradication of infected tumor
cells with the same τ(t) delay function. The first negative term represents the tumor-Ag-activated
APCs cells which destroy the uninfected tumor cells, with a rate coefficient λ after τ(t) delay. This term
is multiplied by an IL-2-dependent parameter with a saturation constant gI , to propose that in the
absence of IL-2, AT production ceases, while in the presence of external IL-2, the production term is
close to 1. The second negative term describes the migration of TAA-APC to the draining lymphoid
tissues at a rate of coefficient β1. The third negative term denotes the natural death of TAA-APC at a
rate coefficient µA1 .

Dynamics of effector CTLs that react to BCG infection:

ĖB(t) =
βB AB(t)I2(t)

AB(t) + g
− p3Ti(t)EB(t)− µEEB(t),



Processes 2020, 8, 1564 5 of 17

where dynamic of EB(t) is comprised of their migration rate, determined by their creation in
the lymph node and subsequent migration to the bladder, inactivation rate, and their death rate.
The migration element is proportional to AB and IL-2, with a maximal rate of coefficient βB. This rate
is brought to saturation by large numbers of AB, using a Michaelis-Menten saturation function,
with Michaelis parameter g. The first negative term is inactivation of effector CTLs via their encounter
with infected tumor cells (Ti) at a success rate coefficient p3. The second negative term corresponds to
the BCG-effector CTL (EB) cells’ natural death rate µE.

Dynamics of effector CTLs that react to tumor Ag:

ĖT(t) =
βT AT(t− τ(t))I2(t)

AT(t− τ(t)) + g
− p3Tu(t)ET(t− τ(t))− µEET(t),

where ĖT(t) is the dynamic of effector cells reacting to tumor Ag after delay τ(t) time due to the
eradication of infected tumor cells. It is comprised of their migration rate, inactivation rate, and death
rate. The migration element is proportional to AT and IL-2 with a maximal rate coefficient βT .
This rate is brought to saturation by large numbers of AT using a Michaelis-Menten saturation function,
with Michaelis parameter g. The first negative term describes the inactivation of effector CTLs via their
encounter with uninfected tumor cells (Tu), at success rate coefficient p3. The second negative term
describes the ET natural death rate, with a rate coefficient µE.

IL-2 dynamics:

İ2(t) = (AB(t) + AT(t) + EB(t) + ET(t))
(

q1 −
q2 I2(t)

I2(t) + gI

)
+ i2 − µI2 I2(t),

where IL-2 dynamic is driven by a natural source (with constant rate coefficient q1), an external
source i2, as well as sink and degradation courses. I2 is consumed by APCs and CTLs with q2 rate.
The consumption depends on I2 and is limited in a Michaelis-Menten fashion, with the Michaelis
constant gI . I2 degradates with rate of µI2 .

Infected tumor cells:
Ṫi(t) = p2B(t)Tu(t)− p4EB(t)Ti(t),

where dynamic of Ti(t) depend on two mechanisms: the rate of bacterial infection of uninfected tumor
cells, (Tu), according to rate coefficient p2; and the elimination of infected tumor cells (Ti) by their
interaction with BCG-CTL effector cells (represented by EB), at rate coefficient p4.

Uninfected tumor cells:

Ṫu(t) =rTu(t)

(
1− Tu(t)

K

)
− p2B(t)Tu(t)−

(
λAT(t− τ(t))Tu(t)

+ αET(t− τ(t))Tu(t)
αT,βFβ(t) + eT,β

Fβ(t) + eT,β

)(
I2(t)

I2(t) + gI

)(
gT

Tu(t) + gT

)
,

where dynamic of Tu(t) is comprised of three processes: natural tumor growth, tumor infection by
bacteria and tumor elimination by immune cells. The natural tumor growth is characterized by a
maximal growth rate coefficient, r, which is limited by the maximal tumor cell number, K. The first
negative term, due to bacterial infection, is characterized by a coefficient rate of p2. The second negative
term is attributed both to the capture and elimination of Tu cells by APCs cells, which were activated by
tumor-Ag at rate coefficient λ, and to the activity of TAA-CTL effectors, (ET), which destroy uninfected
tumor cells, (Tu), at a rate coefficient α. Two these processes take place after delay τ(t). The dependence
in the equation of Tu on Fβ is decreasing from 1to aT,β with Michaelis constant eT,β [23]. And then
there is a multiplication of those terms by an I2-dependent Michaelis-Menten term, with Michaelis
parameter gI , to propose that in the absence of I2, Tu cellular death does not occur. Since the tumor
produces a variety of mechanisms in the biological settings that curtail the success of effector cell
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activity, they multiply
I2

I2 + gI
by

gT
Tu + gT

, to denote the inversely proportional reduction in effector

cell activity rate, such that when Tu = 0 the term is equal to 1 and lim
Tu→∞

gT
Tu + gT

= 0. Note that

although this factor can, in principle, nullify the efficacy of CTLs, this is not observed in cases of
interest because Tu ≤ K [24].

Dynamic of a transforming growth factor-beta TGF-β is proportional to the tumor cell population,
Tu, with aβ,T and destroyed at a rate of µβ

Ḟβ(t) = αβ,TTu(t)− µβFβ(t).

The model is as follows:

Ȧ(t) =γ− (p1 − η)A(t)B(t)− µA A(t)− θp3EB(t)Ti(t)A(t− τ(t)),

Ḃ(t) =b− p1 A(t)B(t)− p2B(t)Tu(t)− µBB(t),

ȦB(t) =p1 A(t)B(t)− (β + µA1)AB(t),

ȦT(t) =θp3EB(t)Ti(t)A(t− τ(t))− λAT(t− τ(t))Tu(t)

(
I2(t)

I2(t) + gI

)
− (β + µA1)AT(t),

ĖB(t) =
βB AB(t)I2(t)

AB(t) + g
− p3Ti(t)EB(t)− µEEB(t),

ĖT(t) =
βT AT(t− τ(t))I2(t)

AT(t− τ(t)) + g
− p3Tu(t)ET(t− τ(t))− µEET(t),

İ2(t) =(AB(t) + AT(t) + EB(t) + ET(t))
(

q1 −
q2 I2(t)

I2(t) + gI

)
+ i2 − µI2 I2(t),

Ṫi(t) =p2B(t)Tu(t)− p4EB(t)Ti(t),

Ṫu(t) =rTu(t)

(
1− Tu(t)

K

)
− p2B(t)Tu(t)−

(
λAT(t− τ(t))Tu(t)

+ αET(t− τ(t))Tu(t)
αT,βFβ(t) + eT,β

Fβ(t) + eT,β

)(
I2(t)

I2(t) + gI

)(
gT

Tu(t) + gT

)
,

Ḟβ(t) =αβ,TTu(t)− µβFβ(t).

(1)

Here it is supposed that the delay τ(t) is given by the equality τ(t) = ν0 + ν1e−ν2t, νi ≥ 0, i = 0, 1, 2.
So, the delay is decreasing and τ(0) = ν0 + ν1, τ(∞) = ν0. τ(t) is a time-varying function, representing
the delay in immune response following treatment, and expressing the number of effector cells in the
cancer region. Delay τ(t) means that the system in the current time moment t depends on her state in
the past, i.e., in the time t− τ(t). In particular, the dynamics of non-activated APC in the moment t
depends on A(t− τ(t)) (see the first equation in system (1)), dynamics of tumor-Ag-activated APC
(TAA-APC) depends on A(t− τ(t)) and AT(t− τ(t)) (see the fourth equation in system (1)) and so
on. The delay is measured in reference to the beginning of BCG treatment (t = 0), with a maximum
delay of approximately 10 days.

The influence of BCG tends towards zero over time.
To use the mathematical model (1), it is important to estimate ranges of parameters that are

realistic and consistent with values from the biological and medical literature. In Table 1, we present a
list of all the estimated model parameters and the literature for their estimation. Methods for estimating
most of the parameters used here are described in [24–26].
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Table 1. List of all parameters.

Parameters Physical Interpretation (Units) Estimated Value Reference

µA APC half life [days−1] 0.038 [27]
µA1 Activated APC half life [days−1] 0.138 [28]
µE1 Effector cells mortality rate w/o IL-2 [days−1] 0.19 [23] and calculated
µE2 Effector cells mortality rate with IL-2 [days−1] 0.034 [29]
µB BCG half life [days−1] 0.1 [30]
p1 The rate of BCG binding with APC [cells−1][days−1] 1.25× 10−4 [31] adjusted for liters
p2 Infection rate of tumor cells by BCG [cells−1][days−1] 0.028× 10−6 From model simulation

p3
Rate of E deactivation after binding with infected tumor cells
[cells−1][days−1]

1.03× 10−10 [32]

p4
Rate of destruction of infected tumor cells by effector cells
[cells−1][days−1]

1.1× 10−6 [32]

λ Production rate of TAA-APC [days−1] 10−8 [33]

βB
Recruitment rate of effector cells in response to signals released
by BCG-infected and activated APC [cells−1][days−1][I−1

2 ]
1.45× 108 [34]

βT
Recruitment rate of effector cells in response to signals released
by TAA-infected and activated APC [cells−1][days−1][I−1

2 ]
1.514× 106 [35]

γ Initial APC cell numbers [cells−1][days−1] 4700 [28]
η Rate of recruited additional resting APCs [cells−1][days−1] 2.8× 10−6 [27]
r Tumor growth rate [days−1] 0.0048–0.0085 [36]

b Bio-effective dose of BCG [c.f.u./week] 2.2× 108
From clinical data
provided by Dr. Sarel
Halachmi

β
Migration rate of TAA-APC and bacteria activated APC to the
lymph node [cells−1][days−1]

0.034 [27]

α Efficacy of an effector cell on tumor cell [cells−1][days−1] 3.7× 10−6 [37]

g Michaelis-Menten constant for BCG activated CTLs and for
TAA-CTLs[cells] 1013 From model simulation

gT Michaelis-Menten constant for tumor cells[cells] 5200 [24]
K Maximal tumor cell population [cells] 1011 [38]
q1 Rate of IL-2 production IU [cells−1][days−1] 0.007 [39] and simulations

q2
The proportion of IL-2 used for differentiation of effector cells IU
[cells−1][days−1]

1.2× 10−3 [35]

µI2 Degradation rate [days−1] 11.5 [35,40]

θ
Recruitment rate of Tumor-Ag-activated APC cells in response to
signals released after binding effector cells, that react to BCG
infection, with infected tumor cells [1/cell−1]

0.01 From model simulation

αβ,T The release term per tumor cell [pg/cell−1 ∗ d−1] 1.38× 10−4 [23]

αT,β
Michaelis-Menten saturation dynamics. The dependence on Fβ is
decreasing from 0 to αT,β [none] 0.69 [23]

eT,β Michaelis constant [pg] 10000 [23]
µβ The constant rate, accounts for degradation of Fβ [d−1] 166.32 [23]
gI Michaelis-Menten constant for IL-2 [cells] 10000 From model calculations
i2 Rate of external source [units per treatment] 8× 105–7.7× 106 [9]

3. Equilibria

The concept of equilibrium refers to the theory of dynamical systems, that is, systems developing
in time. Equilibrium means a state of rest in which, in the absence of external influences, the system
can be indefinitely. In our case, the investigated dynamic system is the human organism and different
equilibria means different state of human health. Equilibria of the model (1) are found by setting all
derivatives to zero and solving for B,A,AB,AT ,EB,ET ,I2,Ti,Tu and Fβ (where the asterisk indicates that
the variables are at their steady state values). The system (1) have several fixed points, we only need to
focus on the non-negative equilibria.
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Equilibria of the model (1) are defined by the system of the algebraic equations

(1′) γ = [(p1 − η)B + µA + θp3EBTi]A,
(2′) b = (p1 A + p2Tu + µB)B,
(3′) p1 AB = (β + µA1)AB,

(4′) θp3EBTi A = λATTu

(
I2

I2 + gI

)
+ (β + µA1)AT ,

(5′)
βB AB I2

AB + g
= (p3Ti + µE)EB,

(6′)
βT AT I2

AT + g
= (p3Tu + µE)ET ,

(7′) (AB + AT + EB + ET)

(
q1 −

q2 I2

I2 + gI

)
+ i2 = µI2 I2,

(8′) p2BTu = p4EBTi,

(9′) rTu

(
1− Tu

K

)
= p2BTu + Tu

(
λAT + αET

αT,βFβ + eT,β

Fβ + eT,β

)(
I2

I2 + gI

)(
gT

Tu + gT

)
,

(10′) αβ,TTu = µβFβ,

(2)

that follows from (1) by the assumption that A(t), B(t), AB(t), AT(t), EB(t), ET(t), I2(t), Ti(t), Tu(t), Fβ(t)
are constants.

Note that the solution of the system (2) can be not unique. Let us get some solutions of the
system (2) in two different situations: b > 0 and b = 0.

3.1. Equilibrium with b > 0, i2 ≥ 0

Consider the following way to get a solution of the system (2), i.e., an equilibrium of the system (1)
for the “tumor-free” case:

(1) From (9’) it follows that one of the possible Tu is Tu = 0.
(2) (10’) it follows Fβ = 0 (via Tu = 0).
(3) From (8’) it follows EBTi = 0 (via Tu = 0).
(4) From (4’) it follows AT = 0 (via Tu = 0 and EBTi = 0).
(5) From (6’) it follows ET = 0 (via Tu = 0 and AT = 0).
(6) From (1’), (2’) the system for A, B it follows (via EBTi = 0 and Tu = 0)

(p1 A + µB)B = b,

[(p1 − η)B + µA]A = γ,
(3)

with the solution (see Appendix A.1)

A∗ =

√
a2

1 + 4a0a2 − a1

2a0
, B∗ =

b
p1 A∗ + µB

,

a0 = p1µA, a1 = b(p1 − η) + µAµB − γp1, a2 = γµB.

(7) From (3’) it follows A∗B =
p1

β + µA1

A∗B∗ (via A∗, B∗).

(8) From (5’) it follows that if EB = 0 then I2 = 0 but via (7’) it is impossible. So, from EBTi = 0 it
follows Ti = 0.

(9) From (5’) and (7’) the system for E∗B, I∗2 it follows (via AT = ET = Ti = 0)

βB A∗B I2

A∗B + g
= µEEB, (A∗B + EB)

(
q1 −

q2 I2

I2 + gI

)
+ i2 = µI2 I2, (4)
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with the solution (see Appendix A.2)

I∗2 =

√
c2

1 + 4c0c2 − c1

2c0
, E∗B = νI∗2 ,

c0 = µI2 − ν(q1 − q2), c1 = (µI2 − νq1)gI − i2 − A∗B(q1 − q2),

c2 = (i2 + A∗Bq1)gI , ν =
βB A∗

µE(A∗B + g)
.

As a result we obtain a tumor-free equilibrium

E1 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=(A∗, B∗, A∗B, 0, E∗B, 0, I∗2 , 0, 0, 0).
(5)

3.2. Equilibria with b = 0, i2 ≥ 0

Consider another way to get equilibria of the system (1):

(1) From (2’) it follows B = 0.
(2) From (3’) it follows AB = 0 (via B = 0).
(3) From (5’) it follows EB = 0 (via AB = 0).
(4) From (4’) it follows AT = 0 (via EB = 0).
(5) From (6’) it follows ET = 0 (via AT = 0).

(6) From (1’) it follows A =
γ

µA
(via B = EB = 0).

(7) From (7’) it follows I2 =
i2

µI2

(via AB = AT = EB = ET = 0).

(8) From (9’) it follows Tu = 0 or Tu = K (via B = AT = ET = 0).

(9) From (10’) it follows Fβ = 0 or Fβ =
αβ,T

µβ
K (via Tu = 0 or Tu = K).

(10) From (8’) it follows Ti = C = const (via B = EB = 0).

As a result we obtain two following equilibria:

(1) tumor-free (T∗u = 0)
E2 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=

(
γ

µA
, 0, 0, 0, 0, 0,

i2
µI2

, C, 0, 0
)

,
(6)

(2) not tumor-free (T∗u 6= 0)

E3 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=

(
γ

µA
, 0, 0, 0, 0, 0,

i2
µI2

, C, K,
αβ,T

µβ
K

)
.

(7)

Remark 1. Suppose that EB = ET = 0. Then from the Equations (5’) and (6’) of the system (2) it follows that
AB = AT = 0. From (7’) it follows that I2 = i2/µI2 . From (3’) it follows that AB = 0. From (1’) it follows
that A cannot be zero by γ > 0 and from (2’) it follows that B is zero by b = 0. So, we obtain again the equilibria
E2, E3.

4. Centralization and Linearization

Calculating the Jacobian matrices J1 and J2 of the initial system (1), we obtain (see Appendix A.3)
the linear approximation of this system in the form

ż(t) = Hz(t) + Dz(t− τ(t)), (8)
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where z = {z1, ..., z10}′, H = J1 and D = J2 are the matrices of dimension 10× 10, such that

H =



a11 a12 0 0 a15 0 0 a18 0 0
a21 a22 0 0 0 0 0 0 a29 0
a31 a32 a33 0 0 0 0 0 0 0
0 0 0 a44 a45 0 a47 a48 a49 0
0 0 a53 0 a55 0 a57 a58 0 0
0 0 0 0 0 a66 a67 0 a69 0
0 0 a73 a74 a75 a76 a77 0 0 0
0 a82 0 0 a85 0 0 a88 a89 0
0 a92 0 0 0 0 a97 0 a99 a9,10

0 0 0 0 0 0 0 0 a10,9 a10,10


, D =



d11 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

d41 0 0 d44 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 d64 0 d66 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 d94 0 d96 0 0 0 0
0 0 0 0 0 0 0 0 0 0


, (9)

and the nonzero elements aij and dij of these matrices respectively are

a11 =− [(p1 − η)B∗ + µA], a12 = −(p1 − η)A∗, a15 = −θp3 A∗T∗i , a18 = −θp3 A∗E∗B,

a21 =− p1B∗, a22 = −(p1 A∗ + p2T∗u + µB), a29 = −p2B∗,

a31 =p1B∗, a32 = p1 A∗, a33 = −(β + µA1),

a44 =− (β + µA1), a45 = θp3 A∗T∗i , a47 = −
λgI A∗TT∗u
(I∗2 + gI)2 , a48 = θp3 A∗E∗B, a49 = −

λA∗T I∗2
I∗2 + gI

,

a53 =
βBgI∗2

(A∗B + g)2 , a55 = −(p3T∗i + µE), a57 =
βB A∗B

A∗B + g
, a58 = −p3E∗B,

a66 =− µE, a67 =
βT A∗T

A∗T + g
, a69 = −p3E∗T ,

a73 =a74 = a75 = a76 = q1 −
q2 I∗2

I∗2 + gI
, a77 = −

(
µI2 + q2gI

A∗B + A∗T + E∗B + E∗T
(I∗2 + gI)2

)
,

a82 =p2T∗u , a85 = −p4T∗i , a88 = −p4E∗B, a89 = p2B∗,

a92 =− p2T∗u , a97 = − QT∗u gI
I∗2 + gI

, a99 = −
(

p2B∗ + r
(

2T∗u
K
− 1
)
+

QI∗2 gT

T∗u + gT

)
,

a9,10 =αE∗TT∗u I∗2 R
(1− αT,β)eT,β

(F∗β + eT,β)2 , a10,9 = αβ,T , a10,10 = −µβ,

(10)

and

d11 =− θp3E∗BT∗i , d41 = θp3E∗BT∗i , d44 = −λgT∗u I∗2
I∗2 + gI

,

d64 =
βT gI∗2

(A∗T + g)2 , d66 = −p3T∗u , d94 = −λT∗u I∗2 R, d96 = −αT∗u I∗2 R
αT,βF∗β + eT,β

F∗β + eT,β

(11)

where

Q =

(
λA∗T + αE∗T

αT,βF∗β + eT,β

F∗β + eT,β

)
R, R =

(
1

I∗2 + gI

)(
gT

T∗u + gT

)
. (12)

It is clear that stability of the zero solution of the system (8), (9) is equivalent to a local stability of the
equilibrium of the initial system (1).

5. Stability

The stability of the equilibrium means that small deviations from the equilibrium do not greatly
affect the system and allow it to remain at state of rest. Instability of equilibrium means that the
slightest deviation from equilibrium does not allow the system to return to this state. In this case,
the system can go into one of the other equilibria (if such states there are) or it can be completely
destroyed. In our case, the investigated dynamic system is the human organism. The task of physicians
is to determine the equilibrium favorable for human health and to organize such treatment in which
this equilibrium becomes stable. In [16] stability conditions for the Equation (8) are obtained in the
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form of nonlinear matrix Riccati equations. Via Schur complement (see Appendix A.4) similarly
to [19,20] these conditions can be reformulated in the form of LMIs:

Lemma 1. Put Φ0(P) = H′P + PH. If τ̇(t) ≤ 0 and for some positive definite matrices P and R at least one
of the LMIs [

Φ0(P) + R PD
D′P −R

]
< 0,

[
Φ0(P) + R D′P

PD −R

]
< 0,

[
Φ0(P) + D′RD P

P −R

]
< 0, (13)

holds then the zero solution of the Equation (8) is asymptotically stable.

Corollary 1. If at least one of the LMIs (13) holds then the appropriate equilibrium of the system (1) is locally
asymptotically stable.

Remark 2. For LMIs (13) the matrix H has to be the Hurwitz matrix.

In the following examples, we check the stability of E1-E3 using the standard (from Table 1) and
reduced (up to one third of the usual dose) BCG dose, taking into account Lamm’s [41] experience in
dose reduction to avoid side effects. We distinguished between patients in the examples below using a
clinically relevant range of tumor growth rate r.

Example 1. Let be r = 0.0048, i2 = 5× 106, µE = 0.034 and all other parameters are given in Table 1.
Via the LMIs (13) and MATLAB it is shown that the equilibrium E1 is locally asymptotically stable for
b ∈ B1 = [2.2× 104, 58.9× 108]. In particular, the equilibria

(a) b =2.2× 104,

E1 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=(223.2, 1.72× 105, 2.790× 104, 0, 4.14× 104, 0, 4.348× 105, 0, 0, 0)

and
(b) b =6× 106,

E1 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=(0.6415, 5.995× 107, 2.795× 104, 0, 118.96, 0, 4.348× 105, 0, 0, 0)

are locally asymptotically stable. For b ≤ 2.1× 104 and b ≥ 59× 108 the equilibrium E1 is unstable.

Example 2. Let be again r = 0.0048 but i2 = 0, µE = 0.19 and all other parameters are given in Table 1.
Similarly to Example 1 it is shown that the equilibrium E1 is locally asymptotically stable in the same interval
b ∈ B1 = [2.2× 104, 58.9× 108]. In particular, the equilibria

(a) b =2.2× 104,

E1 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=(223.2, 1.72× 105, 2.790× 104, 0, 0.289, 0, 16.98, 0, 0, 0)

and
(b) b =6× 106,

E1 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=(0.6415, 5.995× 107, 2.795× 104, 0, 8.328× 10−4, 0, 17.01, 0, 0, 0)

are locally asymptotically stable.
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Example 3. Let be r = 0.0085 and all other parameters as in Example 1. In this case, the equilibrium E1 is
locally asymptotically stable for b ∈ B2 = [3.6× 104, 53.9× 108]. In particular, the equilibria

b =3.6× 104,

E1 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=(123.16, 3.12× 105, 2.792× 104, 0, 2.284× 104, 0, 4.348× 105, 0, 0, 0)

and
b =6× 106,

E1 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=(0.6415, 5.995× 107, 2.795× 104, 0, 118.96, 0, 4.348× 105, 0, 0, 0).

are locally asymptotically stable. For b ≤ 3.5× 104 and b ≥ 54× 109 the equilibrium E1 is unstable.

Example 4. Let be again r = 0.0085 but i2 = 0, µE = 0.19 and all other parameters as in Example 3. In this
case the equilibrium E1 is locally asymptotically stable for b ∈ B2 = [3.6× 104, 53.9× 108]. In particular,
the equilibria

b =3.6× 104,

E1 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=(123.16, 3.12× 105, 2.792× 104, 0, 0.1597, 0, 16.99, 0, 0, 0)

and
b =6× 106,

E1 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=(0.6415, 5.995× 107, 2.795× 104, 0, 8.328× 10−4, 0, 17.01, 0, 0, 0)

are locally asymptotically stable.

Remark 3. Note that in the equilibrium E1 we have A∗T = E∗T = T∗i = T∗u = F∗β = 0. From (11) and (12) it
follows that d11 = d14 = d44 = d66 = d94 = d96 = 0. If i2 = 5× 106 then d64 = 0.0658 for both r = 0.0048
and r = 0.0085. If i2 = 0 then d64 = 2.575× 10−6 for r = 0.0085 and d64 = 0 for r = 0.0048. So, each
element of the matrix D or equals zero or close enough to zero. It means that dependence on delay is low enough.

To examine the net effect of IL-2 on tumor dynamics we consider the equilibrium without the
presence of BCG. We use physiologically acceptable doses of 200,000–250,000 IU per instillation
(8× 105 − 7.7× 106 units per treatment) [9,24].

Example 5. By b = 0, i2 = 5× 106, µT = 0.034 and the same values of all other parameters the following two
equilibria are unstable:

E2 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=(123680, 0, 0, 0, 0, 0, 434783, 0, 0, 0),

E3 =(A∗, B∗, A∗B, A∗T , E∗B, E∗T , I∗2 , T∗i , T∗u , F∗β )

=(123680, 0, 0, 0, 0, 0, 434783, 0, 1011, 82973).

(14)

Remark 4. If the matrix H is the Hurwitz matrix then det(H) > 0. For the equilibria E2 and E3 we have
EB = 0. From (10) it follows that a18 = a48 = a58 = a88 = 0, i.e., all elements of the eighth column of the
matrix H are zeros and therefore det(H) = 0. It means that the matrix H is not the Hurwitz matrix and the
equilibrium E2 and E3 are unstable for all values of the parameters.
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6. Discussion and Conclusions

In this work we present the improved model of combined therapy BCG + IL-2 immunotherapy
for BC. There are two outcomes in the presented model analysis: (1) analytical analysis of stationary
system’s points and (2) examining the delay influence to stability of these stationary system’s points.

A detailed description of the results is presented below:
(1). The current manuscript describes the outcome of analytical methods used to derive

the equilibria points and especially the tumor-free equilibrium point, at which cancer cells are
effectively eliminated. The model demonstrates several equilibria which depend on biologically
related parameters and initial conditions.

In our previous works [10,24,42], we provided a local analysis of the stability of the equilibrium
states of the model only in simulation ways, because the model consists of 10 equations, which made
the analytical analysis of stationary points very difficult. Using the general method of Lyapunov
functionals construction [15,16] and the method of linear matrix inequalities (LMIs) [17–20] gives a
possibility for research of the “big” system’s stability.

The biological system (bladder is in our case) in the presence of cancer cells without treatment
is unstable [25]. The clinical importance of steady state stability stems from the uncertainty typically
encountered by the clinician in assessing the exact number of tumor and immune cells present at the
start of treatment. In theory, treatment could improve system stability. The physician will be interested
in the local stable system with great interest. This means that if a tumor can be localized or eradicated,
minor violations of its components will not cancel it.

It is shown that the considered system has three equilibria describing the different states of
the patient. Only in the E1 equilibrium do get cancer cell eradication (Tu = 0), meaning successful
treatment. Stability analysis of the system (1) shows the equilibrium E1 is stable if the BCG dose
is reflected in the condition depend on the growth of cancer cells (as indicated in Examples 1–4).
In equilibrium E1 we obtain a strong immune response because AB = 105 and I2 = 105 that help to
arrive at a tumor-free fixed point. By the basic parameters of BCG, maximum tumor size, tumor growth
rate, and immune response parameters, we found the BCG dose where E1 will be stable (Examples 1–4).
Equilibria E2 and E3 were obtained only for IL-2 therapy. E2 equilibrium do get cancer cell eradication
(Tu = 0), but the system is not stable in the equilibrium E2 (as shown in Example 5 and Remark
4). E3 equilibrium do not get cancer cell eradication (Tu = 1011) and system is not stable in the
equilibrium too. Hence, we found that administering only IL-2 did not result in the elimination of
tumor cells. The same result we received via simulations in the [24].

(2). In this work, for the first time, we consider the real picture of the immune response in
the treatment of BCG + IL-2, taking into account the time of formation of effector cells due to BCG
infection, which leads to a delay in the response to the destruction of cancer cells. We investigate
this influence using the method of Lyapunov functionals and the method of linear matrix inequalities
(LMIs). The delay effect during cancer cell eradication does not influence the stability in the equilibrium
E1. As it is shown in the Remark 3, each element of the matrix D for E1 before the term with delay or
equals zero or close enough to zero. It means that dependence on delay is low enough.

We would like to raise awareness in the community of urological-oncological doctors about the
possibilities of mathematical modeling and receive quantitative data to improve this model. The ability
to plan and predict by calculating a modulated dose of treatment can benefit patients who are unable to
take routine treatment because of its serious side effects, as well as to patients who were previously not
considered treatable. It is necessary to note also that three equilibria that are investigated in this work
are equilibria obtained from the system (2) in an analytical way. So, there is a possibility of continuing
stability investigation of the considered model via getting additional equilibria by numerical methods
and using additional results of stability theory [16]. Thus, it will be an interest of experts in this
direction to the obtained here results and this research will be continued .
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Appendix A

Appendix A.1. Solution of (3)

From the second Equation (3) we have B =
b

p1 A + µB
. Substituting it into the first Equation (3),

we obtain

γ = A
[

b(p1 − η)

p1 A + µB
+ µA

]
,

γp1 A + µBγ = Ab(p1 − η) + p1µA A2 + µAµB A,
a0 A2 + a1 A− a2 = 0, a0 = p1µA,
a1 = b(p1 − η) + µAµB − γp1, a2 = γµB,

A∗ =

√
a2

1 + 4a0a2 − a1

2a0
, B∗ =

b
p1 A∗ + µB

.

Appendix A.2. Solution of (4)

From the first Equation (4) we have EB = νI2, ν =
βB A∗

µE(A∗B + g)
. Substituting EB into the second

Equation (4), we obtain the equation for I2:

(A∗B + νI2)

(
q1 −

q2 I2

I2 + gI

)
= µI2 I2 − i2,

(A∗B + νI2)((q1 − q2)I2 + q1gI) = (µI2 I2 − i2)(I2 + gI),
c0 I2

2 + c1 I2 − c2 = 0, c0 = µI2 − ν(q1 − q2),
c1 = (µI2 − νq1)gI − i2 − A∗B(q1 − q2), c2 = (i2 + A∗Bq1)gI ,

I∗2 =

√
c2

1 + 4c0c2 − c1

2c0
, E∗B = νI∗2 .

Appendix A.3. Centralization and Linearization of a Nonlinear Equation

Consider the nonlinear delay differential equation

dx(t)
dt

= F(x(t), x(t− τ)), (A1)

where x ∈ Rn and the equation F(x, x) = 0 has a solution x∗ that is an equilibrium of the differential
Equation (A1). By virtue of the new variable y(t) = x(t)− x∗ we centralize the Equation (A1) around
the equilibrium x∗

dy(t)
dt

= F(x∗ + y(t), x∗ + y(t− τ)). (A2)

It is clear that stability of the zero solution of the Equation (A2) is equivalent to stability of the
equilibrium x∗ of the Equation (A1).

Let J1 and J2 be Jacobian matrices of the function F(x, x) with respect to the first and to the second
argument respectively. Using Taylor’s expansion in the form

F(x∗ + y(t), x∗ + y(t− τ)) = F(x∗, x∗) + J1(x∗, x∗)y(t) + J2(x∗, x∗)y(t− τ) + o(y),
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where lim|y|→0
|o(y)|
|y| = 0, |y| is the Euclidean norm in Rn, and the equality F(x∗, x∗) = 0, we obtain

the linear approximation

dz(t)
dt

= J1(x∗, x∗)z(t) + J2(x∗, x∗)z(t− τ) (A3)

of the Equation (A2). So, a condition for asymptotic stability of the zero solution of the Equation (A3)
is also a condition for local stability of the equilibrium x∗ of the initial Equation (A1).

Appendix A.4. Schur Complement

Schur complement [43]. The symmetric matrix

[
A B
B′ C

]
is negative definite if and only if C and

A− BC−1B′ are both negative definite.
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