
Diversity of Plant Virus Movement Proteins: What Do They Have in
Common?

Authors: 

Yuri L. Dorokhov, Ekaterina V. Sheshukova, Tatiana E. Byalik, Tatiana V. Komarova

Date Submitted: 2021-06-21

Keywords: self-movement, MP/vRNA complex, cell-to-cell movement, intercellular transport, plasmodesmata, tobacco mosaic virus,
movement protein (MP)

Abstract: 

The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic
virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-
stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the
plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and
analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction
of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why,
despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we
consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their
movement function. We discuss different aspects of the participation of MP and MP/vRNA complexes in intra- and intercellular
transport. In addition, we summarize the essential MP properties for their functioning as “conditioners”, creating a favorable
environment for viral reproduction.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2021.0549
Citation (this specific file, latest version): LAPSE:2021.0549-1
Citation (this specific file, this version): LAPSE:2021.0549-1v1

DOI of Published Version:  https://doi.org/10.3390/pr8121547

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



processes

Review

Diversity of Plant Virus Movement Proteins: What Do
They Have in Common?

Yuri L. Dorokhov 1,2,* , Ekaterina V. Sheshukova 1, Tatiana E. Byalik 3 and
Tatiana V. Komarova 1,2

1 Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia;
ekaterina.sheshukova@gmail.com (E.V.S.); t.komarova@belozersky.msu.ru (T.V.K.)

2 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University,
119991 Moscow, Russia

3 Department of Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
bialik@bk.ru

* Correspondence: dorokhov@belozersky.msu.ru

Received: 11 November 2020; Accepted: 24 November 2020; Published: 26 November 2020 ����������
�������

Abstract: The modern view of the mechanism of intercellular movement of viruses is based
largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP).
The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded
RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic
RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability,
have been used as a reference in the search and analysis of candidate proteins from other plant
viruses. Nevertheless, although almost four decades have passed since the introduction of the term
“movement protein” into scientific circulation, the mechanism underlying its function remains unclear.
It is unclear why, despite the absence of homology, different MPs are able to functionally replace each
other in trans-complementation tests. Here, we consider the complexity and contradictions of the
approaches for assessment of the ability of plant viral proteins to perform their movement function.
We discuss different aspects of the participation of MP and MP/vRNA complexes in intra- and
intercellular transport. In addition, we summarize the essential MP properties for their functioning
as “conditioners”, creating a favorable environment for viral reproduction.

Keywords: movement protein (MP); tobacco mosaic virus; plasmodesmata; intercellular transport;
cell-to-cell movement; MP/vRNA complex; self-movement

1. Introduction

Plasmodesmata (Pd) are channels that provide cell-to-cell flux as they pierce the cell walls and
connect the cytoplasm of neighboring cells. Plant pathogens such as viruses exploit the pre-existing
systems and mechanisms of intra- and intercellular trafficking of susceptible plants. To invade the
distal parts of the plant, viruses follow the pathway of photoassimilate translocation. However,
to reach the vascular system, the virus has to spread between cells, overcoming the restricted natural
permeability of Pd for macromolecules. According to the function, the first described protein facilitating
viral intercellular spread was designated viral “transport protein” [1] or “translocation protein” [2].
However, subsequently, another term became more common, namely, “movement protein” (MP) [1,3],
which allows some ambiguity regarding the mechanism underlying its function. Studies performed
in the last four decades have resulted in the discovery of several types of viral MP-encoding genetic
arrangements. The transport function could be performed by one MP or shared between two or more
proteins. However, in all cases, these proteins have the same purpose - facilitation of intercellular virus
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spread by exploiting host plant pathways of intracellular trafficking and secretion and affecting the
system of Pd permeability regulation and control [4]. Viral MPs are divided into two types: (a) MPs
that increase the Pd size exclusion limit (SEL) without modifying the Pd structure and (b) MPs that
interact with the components of Pd and modify the Pd channel with multi-subunit tubular structures
consisting of tightly packed MP molecules such that intercellular viral transfer is mediated by these
MP-formed “tubules”.

Notably, the concept underlying the function of MPs was formulated based on studies of tobacco
mosaic virus (TMV). During decades of research on the TMV 30-kDa MP, the following features of this
viral protein were revealed [4–9]. TMV MP (a) binds in vitro to viral single-stranded RNA/DNA in a
sequence-independent manner; (b) participates in the formation of a stable viral ribonucleoprotein
(vRNP) complex that moves through Pd; (c) is targeted to Pd and docks there via the Pd localization
signal; (d) increases the Pd SEL by interacting with the host factors and Pd-associated proteins; and (e)
moves independently of the viral RNA into the neighboring cells, creating favorable conditions for viral
infection (serving as a cell “conditioner”) [10], including the spread of RNA silencing to produce a wave
of small RNA-mediated gene expression changes ahead of infection to increase host susceptibility [11].

Thus, studies on TMV MP have resulted in the identification of the main properties of MP,
which could serve as a guide for the identification of other viral proteins facilitating the intercellular
spread of viral genetic material. Nevertheless, it appears that not all proteins designated as MPs
possess the full set of capabilities identified for TMV 30-kDa MP.

We aimed to identify the common features characteristic of plant virus MPs, consider the
complications and contradictions in the approaches for MP identification and define the term
“movement protein”. We assessed the applicability of different methods that are usually applied for
the study of potential MPs.

2. Brief Description of Methods for Evaluation of the Transport Function of Viral Proteins

2.1. Use of Transmission Electron Microscopy

The use of traditional transmission electron microscopy (TEM) to study structural features of
symplastic transport in plants began long before the discovery and emergence of the concept of
“movement proteins”. The use of TEM made it possible to acquire high-resolution electron microscopic
data on the structure of Pd, which led to the creation of the first model of a primary plasmodesma [12]
and the determination of its hydrodynamic radius [13]. Development of this technique later allowed
electron tomography to be used to obtain unprecedented insights into the 3D ultrastructure of
Pd [14]. However, TEM made it possible to detect TMV MP in Pd of transgenic tobacco, for the first
time [15]. Findings demonstrated that secondary Pd are a specific site where this protein localizes [16].
Subsequently, immunolabeling fluorescence and electron microscopy showed that viral replicative
complexes (VRC) containing proteins involved in TMV genome replication [17,18] and large amounts
of MP [19] are localized at the orifice of Pd. TEM also permitted the detection of potato virus X (PVX)
coat protein (CP) [20], potato leaf roll virus (PLRV) MP17 [21], and other MPs of plant viruses in the Pd
cavity. TEM analysis is highly tedious since small and rare structures, including Pd, must be searched
for. Therefore, an approach using a correlative light and electron microscopy (CLEM) technique that
combines fluorescent imaging and TEM has been developed for analyzing cells infected with a virus [22].
By combining both microscopy platforms in analysis of the same sample, remarkable results can be
achieved, as occurred for GFP-tagged Pd-located protein 5 (PDLP5), for instance [23]. Another example
is the localization of remorin interacting physically with the PVX TGB1 protein, which was detected
not only in plant plasma membrane domains but also in the Pd cavity [24]. Moreover, TEM enabled
impressive results to be achieved in the study of MP and the intercellular transport of tubule-forming
viruses such as cowpea mosaic virus (CPMV), for which viral RNA is transported from the cell to
cell in the form of virions [4,25]. This method of intercellular movement of viral RNA was also
typical for representatives of Bromoviridae, such as Alfalfa mosaic virus (AMV) and Brome mosaic virus
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(BMV). TEM in combination with immunogold labeling revealed long tubular structures containing
both MP and virus particles at the surface of infected protoplasts, indicating the functioning of the
tubule-guided mechanism [26]. The use of TEM in combination with double-immunogold assays also
enabled the discovery that similar to AMV, Prune dwarf virus (PDV), another member of the genus
Ilarvirus that also belongs to the Bromoviridae family, moves in the form of virions from cell to cell via
MP-generated tubular structures [27]. Interestingly, the authors performed computer-run 3D modeling
and found structural resemblance between PDV and AMV MPs. Of course, as a tool for studying
viral transport proteins, TEM has significant limitations [22,28]. For TEM, material of interest, such as
plant leaf tissue, must be prepared to withstand observation under an electron beam in a vacuum.
Therefore, it is necessary to chemically cross-link proteins to lock them in place. Subsequent treatments
include dehydration in solvent to enable penetration of water-immiscible resins, polymerization of
resins, ultrathin sectioning, and staining with electron-dense heavy metals. This process not only is
labor intensive but also can distort cellular structures, such as Pd [29]. Regarding the topic under
consideration, another drawback of TEM is more important. In particular, this approach hardly allows
for observation of minor modifications of intercellular transport at the early stages of infection; thus,
only late events and the most vivid structural changes in Pd are registered, such as characteristic
occurrences for tubule-forming viruses, for example [30]. Therefore, study of the functioning of MPs
should include the other methods described below.

2.2. Complementation and Reverse Genetics Experiments

During the study of the TMV MP transport function, a set of particular methods and approaches
was developed and established. Furthermore, these methods were used in the study of other viruses.
Among these techniques is the trans-complementation test, based on the phenomenon in which a
viral protein synthesized in trans (often from a transgene integrated into the plant genome) can
maintain or intensify the infection of the “dependent” virus that is temporarily or constantly defective
in movement. Studies of the functions of genes encoding MPs have also led to the development of
several trans-complementation techniques [31,32] (Tables 1 and 2). At the first stages of the study of
TMV transport function, two temperature-sensitive (ts) mutants, namely, the Ni 2519 mutant of TMV
A14 strain and Ls1 mutant of tomato strain TMV L, play an important role. These mutant variants
can spread in plants at a low permissive (22–25 ◦C) temperature but not at a high non-permissive
(32–33 ◦C) temperature. Ni2519 mutant, studied by Harald H Jockusch [33], was obtained after TMV
A14 treatment with nitrous acid, resulting in the mutation leading to the substitution of arginine144
with glycine in the 30-kDa protein [34,35]. Ls1 is a temperature-sensitive mutant due to a single amino
acid substitution in MP: proline154 for serine [2,36,37].

The first experimental setup for the trans-complementation was transgenic tobacco expressing
gene encoding the TMV U1 30-kDa protein, which demonstrated the efficient intercellular transport
of TMV Ls1 mutant at nonpermissive temperatures [3]. The second setup was the use of infectious
cDNA copies of TMV [38,39], through which the phenotype of the Ls1 mutant was reproduced using
nucleotide substitutions. The third approach involves simultaneous delivery into cells of the studied
viral MP gene with the movement-defective viral genome during joint bombardment [40,41]. The fourth
approach is the use of transient expression methods by which a movement-defective infectious plant
virus (for example, TMV or PVX) and an investigated putative viral movement protein gene are
introduced during joint agroinfection [42].

For an adequate interpretation of the results of complementation, the following aspects should
be kept in mind. (a) The complementation can occur between unrelated viruses demonstrating the
nonspecificity of viral transport systems [31,43]. This means that a trans-complementation approach
could be used for RNA-containing viruses belonging to different taxonomic groups and having
significant differences in genome structure. (b) The use of complementation methods revealed a close
relationship between cell-to-cell movement and host range of plant viruses [1,31], i.e., for plant species
to be a host for a particular virus, the indispensable feature is to maintain the ability of that virus spread
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within plant and to be “compatible” with viral transport protein(s). (c) It is necessary to take into
account and differentiate the phenomena of complementation of nonfunctional MP and synergism [32]
mediated by other viral proteins, such as viral silencing suppressors, e.g., PVX TGB1 protein [43] and
PVX Hc-Pro [44].

When assessing modern methods of candidate MP evaluation, it should be noted that, in addition to
Arabidopsis thaliana, Nicotiana benthamiana is widely used as a model plant (Tables 1 and 2). Widespread
in the field of host-pathogen research, this plant has become so popular because it is susceptible to a
variety of pathogens, including a wide range of plant viruses [45]. However, the results obtained should
be analyzed with some caution, as the characteristics of the candidate MPs obtained on N. benthamiana
are not always reproducible when using other plants. For example, PVX TGB1 protein induces
Pd gating and moves between cells in several host species, whereas its CP is able to move only in
N. benthamiana leaves [46].
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Table 1. Movement proteins (MPs) of the “30K” superfamily: involvement in plasmodesmata (Pd) permeability control.

Viral Genome Selected Viruses SSEG

MP Properties and Experimental Approach Used
to Study Its Ability to Increase Pd Permeability

References

MW Bind. Model/Tested
Plants Identified/Confirmed Tub. Mov.

RNA positive
sense

Tobacco mosaic
virus (TMV)

(genus
Tobamovirus)

126 kDa 30 kDa Yes
Nicotiana

tabacum (Nt)

Trans-complementation test:
complementation of TMV ts-mutant Ls1

in MP transgenic tobacco NR Yes
[3]

Microinjection: increased movement of
F-dextran in MP transgenic tobacco plants [47]

Microinjection E. coli-synthesized MP
increased Pd SEL to permit passage of

20-kDa dextrans
[48]

Nicotiana
clevelandii (Nc)

Microinjection: E. coli-synthesized MP
specifically mediated its own movement

(demonstrated self-movement ability)
between trichome cells as well as GUS:MP

90-kDa fusion protein

[49]

Nt, Nc, Nicotiana
benthamiana

(Nb)

Particle bombardment: cell-to-cell
self-movement of TMV MP:GFP or

MP:2xGFP encoded by
35S-promoter-based constructs

[50–53]

Red clover necrotic
mosaic virus

(RCNMV) (genus
Dianthovirus)

p27 and p88
replicase

proteins and 35
kDa MP

35 kDa Yes

Nb, Vigna
unguiculata

Microinjection: E. coli-synthesized
RCNMV 35 kDa MP increased Pd SEL to

permit passage of F-dextran. E.
coli-synthesized and FITC-labeled 35 kDa

MP moved into neighboring cell
(self-movement)

NR Yes
[54]

Nb

Trans-complementation test:
complementation of cell-to-cell movement
of TMV with defective MP (TMV-MPfs) in

the transgenic plant expressing the
RCNMV 35 kDa MP gene

[55,56]

Particle bombardment: RCNMV 35 kDa
MP increased the SEL of Pd [57]
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Table 1. Cont.

Viral Genome Selected Viruses SSEG

MP Properties and Experimental Approach Used
to Study Its Ability to Increase Pd Permeability

References

MW Bind. Model/Tested
Plants Identified/Confirmed Tub. Mov.

Cucumber mosaic
virus (CMV)

(genus
Cucumovirus)

CMV 2b 30 kDa (3a) Yes Nt

Trans-complementation test: increased
movement of microinjected F-dextran (10

kDa) in trichome cells of 3a MP
transgenic tobacco NR Yes

[58]

Microinjection: E. coli-synthesized and
FITC-labeled 3a MP moved into

neighboring cell (self-movement).
Unlabeled 3a MP increased Pd SEL to

permit passage of F-dextran

[59]

Particle bombardment: cell-to-cell
self-movement of 3a MP:GFP or 3a

MP:GUS encoded by 35S-promoter-based
constructs.

[60]

Alfalfa mosaic virus
(AMV) (genus
Alfamovirus)

NR 32 kDa
(3a) Yes Nt, Nb

Microinjection: increased movement of
F-dextran in 3a transgenic tobacco plants.
Genetic analysis indicated that 3a gene of
AMV is functionally interchangeable with

different MPs assigned to the 30K
superfamily

Yes NR [61–63]

Brome mosaic virus
(BMV) (genus

Bromovirus)
NR 32 kDa

(3a) Yes Nt, Nb
Agroinfection: cell-to-cell self-movement
of BMV MP:GFP encoded by 35S-based

constructs
Yes NR [26,64]

Cowpea mosaic
virus (CPMV)

(genus Comovirus)
Small CP 48 kDa Yes V. unguiculata,

Nb Tubule-guided virus transport Yes NR [65–67]

Tobacco rattle virus
(TRV) (genus

Tobravirus)

16 kDa,
29 kDa MP 29 kDa Yes Nc, Nt, Nb

Microinjection: TRV-mediated increased
movement of F-dextran in trichome cells.
Trans-complementation test: TMV MP can

substitute for TRV 29 kDa MP

NR Yes(?) [68–70]

Potato leaf roll
virus (PLRV)

(genus
Polerovirus)

17 kDa
(MP17) Yes Nt

Microinjection: increased movement of
F-dextran in MP17 and MP17:GFP

transgenic tobacco plants
NR NR [71]

Tomato bushy stunt
virus (TBSV)

(genus
Tombusvirus)

P19 22 kDa Yes Nt, Nb
PVX-expressed 22 kDa MP complemented

TBSV cell-to-cell movement defective
mutants

NR NR [72]
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Table 1. Cont.

Viral Genome Selected Viruses SSEG

MP Properties and Experimental Approach Used
to Study Its Ability to Increase Pd Permeability

References

MW Bind. Model/Tested
Plants Identified/Confirmed Tub. Mov.

RNA negative
sense

Tomato spotted wilt
virus (TSWV)

(genus
Orthotospovirus)

NSs 30 kDa
(NSm) Yes Arabidopsis

thaliana

Cell-to-cell self-movement of NSm:GFP
encoded by 35S-promoter-based

constructs after particle bombardment
NR Yes [73]

Rice yellow stunt
virus (RYSV)

(genus
Nucleorhabdovirus)

P6 30 kDa
(P3) Yes Nb

Trans-complementation test: P3
complemented the movement of

MP-defective mutants of TMV and PVX
NR NR [42]

Citrus psorosis
virus (CPsV) and
Mirafiori lettuce
big-vein virus

(MiLBVV) (genus
Ophioviridae)

NR 30 kDa Yes Nb

Agroinjection: cell-to-cell self-movement
of CPsV MP:mRFP or MiLBVV MP:mRFP

encoded by 35S-promoter-based
constructs

NR Yes [74]

Raspberry leaf
blotch virus (genus

Emaravirus)
NR 30 kDa

(P4) NR Nb
Trans-complementation test: P4 MP

complemented the movement of
MP-defective mutant of PVX

NR NR [75]

DNA
Cauliflower mosaic

virus (CaMV)
(genus

Caulimovirus)

P6 40 kDa
(P1) Yes A. thaliana

CaMV P1 MP is responsible for the
formation of tubules through which

CaMV virions move
Particle bombardment: P1 MP forms

tubules and does not pass from cell to cell
by self-movement

Yes NR [76,77]

Bean dwarf mosaic
virus (BDMV)

(genus
Begomovirus)

TrAP 33 kDa
(BC1) Yes Phaseolus

vulgaris, Nt

Microinjection: E. coli-synthesized BC1
MP increased Pd SEL to permit passage of

F-dextran
NR NR [78]

Abutilon mosaic
virus (AbMV)

(genus
Begomovirus)

AC2 33 kDa
(BC1) Yes Allium cepa, Nb,

Nt

Particle bombardment: AbMV
BC1encoded by 35S-promoter-based

constructs was only detected in single
cells and never in neighboring cells

NR NR [79,80]

SSEG, silencing suppressor-encoding gene; MW, molecular weight; Bind., RNA/DNA binding in vitro; Tub., tubule-forming, Mov., self-movement; NR, not reported.
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Table 2. MPs encoded by two or more genes: the role in intercellular viral spread.

Plant Virus
MP Groups

Selected
Viruses

Phl. SSEG
MP Properties and Experimental Approach Used
for Study of Its Involvement in Viral Trafficking References

MP comp. Bind. Model/Tested
Plants Identified/Confirmed Tub. Mov.

Double gene
block (DGB)

Hibiscus green
spot virus

(HGSV) (genus
Higrevirus)

NR NR BMB1 and
BMB2 Yes (BMB1) Nb

The trans-complementation of cell-to-cell
movement of transport-deficient potato virus X

(PVX) in leaves agroinfected with BMB1 and
BMB2. BMB2 directed transport of BMB1 to Pd

and neighboring cells (self-movement).
BMB2 increases the Pd SEL in a GFP diffusion test

NR Yes [81,82]

Melon necrotic
spot virus

(MNSV) (genus
Carmovirus)

NR CP p7A and p7B Yes (p7A) Cucumis melo
cotyledons

The trans-complementation of p7A- or
p7B-deficient GFP-encoding MNSV-∆CP

infectious copy by transient expression of p7A or
p7B, respectively, resulted in formation of

fluorescent cell clusters

NR NR [83]

Turnip crinkle
virus (TCV)

(genus
Carmovirus)

NR CP p8 and p9 Yes (p8) A. thaliana
The trans-complementation of movement

defective TCV mutants in transgenic
A. thaliana plants

NR NR [84]

Pelargonium
flower break

virus (PFBV)
(genus

Carmovirus)

NR CP p7 and p12 Yes (p12)

Chenopodium
quinoa leaves

and
protoplasts

Site-directed mutagenesis using the PFBV
infectious clone NR NR [85]

Triple gene
block (TGB)

Potato virus X
(genus

Potexvirus)
NR TGB1 TGB1, TGB2,

TGB3
Yes (TGB1)

Nt, Nb Microinjection: E.coli-synthesized 25 kDa TGB1
increased Pd SEL to permit passage of F-dextrans NR

Yes
[86,87]

Nt, Nc,
Nb,

Lycopersicon
esculentum

The trans-complementation of cell-to-cell
movement of TGB1-defective GUS-encoding PVX

with TGB1 fused to GFP after joint particle
bombardment

Cell-to-cell self-movement of PVX TGB1 fused to
GFP encoded by 35S-promoter-based constructs

after particle bombardment.

NR [46,88]

Nt

The particle bombardment: the GFP:TGB1 fusion
protein moved from cell to cell in tobacco without

presence of other PVX-encoded proteins
(self-movement)

NR [89]
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Table 2. Cont.

Plant Virus
MP Groups

Selected
Viruses

Phl. SSEG
MP Properties and Experimental Approach Used
for Study of Its Involvement in Viral Trafficking References

MP comp. Bind. Model/Tested
Plants Identified/Confirmed Tub. Mov.

Barley stripe
mosaic virus

(genus
Hordeivirus)

NR γb TGB1, TGB2,
TGB3 Yes (TGB1)

Nb,
Chenopodium
amaranticolor

Usage of infectious cDNA copies showed (a)
functions required for systemic invasion of plants
and (b) TGB1 interaction with nucleolar protein
fibrillarin is required for cell-to-cell movement

of BSMV
Trans-complementation: TMV MP was able to

functionally substitute for the BSMV
TGB-coded MPs.

NR NR [90–92]

Multiple-gene
blocks

Genus
Potyvirus:

Potato virus Y,
Bean common

mosaic necrosis
virus (BCMNV),
Lettuce mosaic
virus (LMV),
Turnip mosaic
virus (TuMV)

NR HC-Pro
CP, HC-Pro,

VPg,
P3N-PIPO

Yes (HC-Pro)
Nb, Lactuca

sativa

Microinjected E. coli-synthesized and
FITC-labeled CP of BCMNV or LMV and HC-Pro

moved into neighboring cell (self-movement).
Microinjected CP of BCMNV or LMV and HC-Pro
increased Pd SEL to permit passage of F-dextrans

NR
Yes

[93]

A. thaliana
Cell-to-cell self-movement of TuMV

P3N-PIPO:GFP encoded by 35S-promoter-based
constructs after particle bombardment

NR [94]

Beet yellows
virus (BYV)

(genus
Closterovirus)

Yes p21
p6, Hsp70 h,

p64, CPm
and CP

NR Nb, Claytonia
perfoliata

Genetic analysis indicated that the BYV
cell-to-cell movement requires the presence of p6,

Hsp70 h, p64, CPm and CP
NR NR [95–97]

Citrus tristeza
virus (CTV)

(genus
Closterovirus)

Yes CP, p23
p20

p33, p6,
HSP70 h,

p61, CPm,
CP

NR Nb,Citrus
macrophylla

Genetic analysis indicated that the CTV
cell-to-cell movement requires p33, p6, HSP70 h,

p61, CPm and CP
NR NR [98–100]

Phl., phloem-limited; SSEG, silencing suppressor-encoding gene; comp., composition; Bind., RNA binding in vitro; Tub., tubule-forming, Mov., self-movement; NR, not reported.
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2.3. Assessment of MP Ability to Increase Pd Permeability

Pd permeability is determined by the size of molecules that can move through it and is estimated
by a criterion termed SEL [101]. The SEL value was determined using microinjection of fluorescent
probes into plant cells, and it was shown that relatively small molecules (<1 kDa) freely diffuse through
the Pd of cells of an intact leaf. Moreover, it is generally accepted that the hydrodynamic Stokes radius,
rather than molecular weight, is the key factor in the passage of small molecules through Pd [13]. Thus,
evaluating the intercellular movement of GFP, which has a Stokes radius of 2.82 nm, the coefficient
of epidermal cell Pd conductivity was calculated, which strongly depends on leaf developmental
state (sink/source) and the effect of abiotic factors such as temperature (16/25◦C) and illumination
(light/dark) [102]. It is indisputable that the most important function of viral MPs is their ability to
increase the Pd SEL [101]. This property was first identified in TMV MPs when transgenic plants
expressing the 30-kD MP of TMV were studied [47]. The Pd of the leaves of these transgenic plants
exhibited the ability to permit transfer of microinjected dextrans of up to 10 kDa in size, which was
significantly larger than the size limit for the control leaves (<1 kDa). These experiments used a
pressure injection system, exploiting air pressure as a physical force to deliver the probe into the
target cell. Although it is believed that sudden changes in pressure are less harmful to plant cells than
changes caused by iontophoresis [103,104], surprisingly, TMV MP could mediate the movement of
coinjected fluorescent dextrans within minutes to not only neighboring cells but also cells farther away
from the primary injected cell [48].

Subsequently, the particle bombardment method was developed and applied: the primary
inoculated so-called “0” cell [102] received not the bacterially synthesized “candidate” MP (as during
the microinjection procedure) but the plasmid encoding MP:GFP translational fusions [51]. The fusion
of TMV MP with GFP did not significantly affect the functional activity of the MP (see below).
This method enabled identification of a “0” biolistically transformed cell surrounded by cells with
decreasing GFP fluorescence. The detected gradient of GFP fluorescence was interpreted as evidence
of MP (as MP:GFP) transport from “0” cells to neighboring cells. This phenomenon seems to be based
on the ability of MPs to move to neighboring healthy cells in the absence of replicating viral RNA, i.e.,
as a self-movement phenomenon [10], characteristic not only for TMV MP but for MPs of other viruses
as well (Tables 1 and 2).

Genes encoding candidate GFP-fused MPs can also be delivered to the cell by agroinfection [53,105].
Although diluted bacterial suspensions are used for agroinfection, unlike microinjections and particle
bombardment, it is sometimes very difficult to identify the “0” cell. Therefore, during agrobacterial
delivery of plasmids, it is necessary to create a genetic construct containing, in addition to the expression
cassette encoding a putative MP, another transcribed unit—a promoter and a terminator flanking a
fluorescent protein gene for marking the “0” cell, as was carried out for example using mRFP as a
marker [81].

2.4. Use of Viral Vectors Encoding MP Tagged with GFP

Viral vectors encoding MP tagged with GFP now play an important role in understanding the
participation of MPs in the intracellular and intercellular trafficking of viral RNA. This approach
opened up new insights regarding the intracellular distribution of MPs and their association with
host components [106–111]. Thus, fluorescence microscopy of protoplasts and leaf cells infected
with TMV that encodes the MP:GFP fusion protein confirmed the fact that the MP:GFP is capable of
being targeted to plasmodesmata and punctate sites near the plasma membrane [112,113]. Moreover,
MP:GFP supported the infectivity of the viral copy and caused the expansion of necrosis on the
leaves of the indicator plant, characteristic of wild-type TMV [114]. However, the presence of the GFP
sequence fused to MP of an infectious TMV copy dramatically reduces the level of protein synthesis.
Thus, a significantly smaller amount of MP:GFP was synthesized from the viral vector in both tobacco
leaf cells and protoplasts compared with unmodified MP [19].
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The decrease in the synthesis of MP:GFP directed by the infectious copy of the TMV is explained
by the peculiarity of the functioning of the TMV subgenomic promoters; specifically, their “strength”
decrease when the distance between the subgenomic promoter and the 3’-end of the TMV genomic
RNA increases [115–117]. However, decreased MP:GFP synthesis did not significantly affect the
development of infection at fluorescent infection sites on N. tabacum and N. benthamiana leaves [19,118].
This fact is in good agreement with the data of Arce-Johnson et al. [119], obtained in studies of
transgenic plants accumulating different amounts of MP. It was found that the amount of MP required
for local spread of TMV is much less than the amount of MP produced during TMV infection.

3. Diversity and Heterogeneity of Viral MPs: General Characteristics and Classification

Viral MPs can be divided into several groups [4,9,25,120,121]. The largest group (Table 1) is the
so-called ‘30K’ superfamily, represented by a single gene product, as was first shown for TMV 30-kDa
MP [120]. In other viruses, the transport function is performed by more than one protein (Table 2) and
is distributed between two (encoded by double gene block, DGB) [81,122], three (encoded by triple
gene block, TGB) [123–126] or many proteins (multiple MPs) [100,127–129].

MPs can be classified into two types according to their ability to interact with Pd [4]. The first
and largest group is represented by MPs that increase the Pd SEL without affecting the Pd structure,
as shown, for example, for TMV when, as is generally accepted, vRNPs spread from cell to cell [130,131].
Another small group is represented by MPs (Table 1), such as those from CPMV and cauliflower mosaic
virus (CaMV), which are capable of self-interacting and forming tubular structures that replace the
desmotubule, thus restructuring Pd in a drastic manner. With the aid of tubular structures, intercellular
transport of the encapsidated virus occurs [132,133]. For some viruses transported as virions, the MPs,
in addition to forming tubular structures, can apparently perform other functions. For example, tomato
spotted wilt virus (TSWV) NSm MP is able to move independently of other viral components from
a “0” cell to neighboring healthy cells of a model plant such as A. thaliana [73]. It is also known that
MPs of tubule-forming CPMV are capable of transporting vRNPs in the AMV model system [30],
which indicates the likelihood of intercellular transport in tubule-forming viruses using both vRNPs
and virions [4].

4. MP Provides Intracellular Trafficking of Viral RNA to Plasmodesmata

Early studies of the synthesis of MP TMV strain OM in protoplasts showed that both MP and its
mRNA could be registered as early as 2 h after inoculation of protoplasts, and after 7 h, their synthesis
ceases [36]. Subsequently, the transient synthesis of MP TMV strain U1 was confirmed, and it was
shown that MP was detected in protoplasts 4–6 h after protoplast inoculation. In the following hours,
MP accumulated in the cells. Its amount reached a maximum by 13–16 h and then decreased [19].
Protoplast studies also confirmed the earlier conclusion that TMV MP is not involved in TMV RNA
replication [2] but influences localization and intracellular trafficking of viral RNA (vRNA) and
VRC [111,134]. Subsequently, the involvement of elements of the cytoskeleton and components of the
endoplasmic reticulum (ER) in the intracellular trafficking of MP:GFP from the sites of synthesis in the
cytoplasm to Pd was shown [134,135]. Thus, at the early stage of infection in BY-2 protoplasts, vRNA is
colocalized with MP in perinuclear ER, and at a later stage, it becomes associated with vRNA-containing
hair-like protrusions on the surface of the protoplasts. For the topic under consideration, it is important
that the vRNA produced from the mutant infectious copy of TMV lacking functional MP was distributed
not in the same manner as wild-type vRNA. Cells infected with TMV cDNA lacking the MP gene
did not exhibit the fluorescent vRNA-containing protrusions of the cellular surface that occurred in
cells infected with wild-type vRNA [134]. Thus, MP was not required for association of vRNA with
perinuclear ER but was indispensable for the formation of the large irregular bodies and hair-like
vRNA-containing protrusions [111,134]. Thus, already in early studies, it became apparent that MP
mediates intracellular vRNA trafficking from the site of its synthesis to the Pd. The detection of TMV
MP in VRC apparently reflects its ability to bind vRNA, as it is produced in the vicinity, as well as the
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commonality of the location of vRNA replication and translation. This ability to co-localize with VRC
is characteristic not only for TMV MP but also for MPs of other plant viruses [4,8,136].

However, the presence of MP in the VRC is not a prerequisite for its movement and localization in
Pd. Experiments with trans-complementation [8,31,32] (Tables 1 and 2), indicate that the function of
MP is to mobilize and trigger cellular mechanisms of symplastic intercellular trafficking. Apparently,
ER membranes contribute to mechanisms of adduction MPs and replicated viral genomes in close
proximity despite even trans-complementation conditions. It is known that the TMV MP introduced
into the cell is located on the cytosolic face of the ER membrane [137], interacts with microtubules [131]
and, thereby, provides accelerated intercellular movement of the replicating virus, as observed
by Kawakami et al. [18] in MP-transgenic tobacco. The quantitative assessment of the rate of VRC
intercellular movement showed that after viral exit from the first infected cells, the rate of spread sharply
increases, which indicates the conditioning of neighboring cells, a process in which both replicase
and MP can participate. When considering the possible mechanism of MP-mediated intracellular
trafficking of VRC to Pd, known studies confirm the diffusion model, in which a complex including
ER-associated MP, vRNA, and other cellular and viral components diffuse along the ER membrane
within the Pd [138]. It can be assumed that the driving force underlying this process is the concentration
gradient between an infected cell and adjacent noninfected cells, as suggested by considering the
transport of photosynthetic sugar [139–141].

5. Are MP/vRNA Complexes Responsible for the Cell-to-Cell Transport of Viruses?

The discovery of the ability of TMV MP to nonspecifically bind in vitro to single-stranded RNA
and DNA [142], confirmed by electron microscopy [143] and atomic force microscopy [144], led to
the hypothesis of the involvement of the vRNA/30-kDa MP complex in intercellular transport [6,142].
Subsequently, in addition to TMV MP, the ability to nonspecifically bind RNA in vitro was shown for
MPs of many viruses [6] (Tables 1 and 2). Possessing this ability, TMV MP can form an RNP complex
in a cell with its own template; since the MP is translated in the vicinity of the viral RNA, it is likely
that the MP will be part of the viral movement complex. Indeed, the presence of the MP/vRNA RNP
complex in a TMV-infected cell was confirmed by a technique combining the visualization of MPs
fused with a fluorescent tag with MS2-based RNA labeling technology [145]. Although the sensitivity
of MS2-technology was not high and only a small number of RNA-containing MP particles could
be detected, the authors were able to show that transiently expressed TMV MP accumulated in Pd
and mediated the transport of its own mRNA to the Pd pore. Recently, the technique of in planta
mRNA tagging was improved based on the ability of the sequence-specific binding of the bacterial
transcriptional antiterminator BglG [146]. The authors were able to show that transiently expressed MP
mRNA is specifically associated with MP and transported between cells. Moreover, in this experimental
system, MP mRNA could move between cells when not bound to MP [146].

To explain the results obtained, researchers have hypothesized that viral RNA is capable of
moving to a neighboring cell, even in the absence of the bound MP, using the cellular mechanism of
RNA transport, i.e., “MP may piggyback a ride on a normal RNA transport mechanism” [145]. Indeed,
recent studies have indicated the presence in plant transposable RNAs of specific nucleotide sequences
recognized by RNA-binding proteins that guide the RNAs to a neighboring cell [147]. Thus, it has been
established that cellular RNA with a tRNA-like structure is capable of intercellular transport [148].
It should be borne in mind that TMV RNA, as well as RNAs of many other plant viruses, has a
tRNA-like structure [149]. It is possible that, in addition to participating in viral replication, tRNA-like
structures are also involved in the intercellular transport of viral RNA.

When evaluating the MS2 and BglG technologies and the ability of these methods to reflect
probable events in a TMV-infected cell, it should be considered that in addition to the MP, the 126-kDa
replicase is also involved in cell-to-cell movement [150–153]. It is known that the TMV RNA [134],
as well as the RNA of other RNA-containing plant viruses [136], released from the virion immediately
binds to the ER to form VRC. VRCs are trafficked to Pd and are believed to move through Pd to spread
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infection [18,136]. Moreover, it was found that only progeny viral RNA is available for the formation
of movement complexes [154]. All of these results demonstrate that the Pd-mediated cell-to-cell spread
is linked to replication. Therefore, the formation of a vRNP as a complex consisting only of MP and
viral RNA is not sufficient for movement [8]. As we discussed above the MP/vRNA complex, in close
interaction with the VRC via lateral diffusion along the ER membrane [138], moves into adjacent
cells [8,131,155].

Moreover, the point of view that MP/vRNA complexes are the only structures responsible for
the intercellular transport of viruses is questionable for the following additional reasons. MP mutant
lacking amino acids 3, 4 and 5 (MP∆3-5) in transgenic plants was not functional and was unable
to move to Pd; therefore, the intercellular movement of a fluorescently labeled dextran of 9.4-kDa
molecules was blocked [156]. Deletion of amino acids 9 to 11 (TAD 1 mutant) also prevented the
localization of MP in the Pd, although it retained its ability to bind to microtubules [157,158]. Regarding
the topic under discussion, it is important to note that these deletion mutations were located in the
MP N-terminal 50-amino-acid region designated as the plasmodesmal localization signal (PLS) and
responsible for interaction with Pd [159–162]. These small deletions in the N-terminal region of MP
were outside of its RNA-binding domains [143] and, therefore, did not affect the potential ability to
bind both its own and cellular mRNA. Thus, the potential ability to form MP/vRNA complexes does
not guarantee MP functionality.

6. Cell Conditioning: Is It a Universal Feature of All Plant Virus MPs?

The study of the properties of TMV MP revealed its ability to move into neighboring cells
(self-movement) independently of other viral components [51–53]. MP self-movement is the basis
for the mechanism of cell conditioning [10] or cell “predisposing” [18] that results in creating a
favorable environment for the accelerated intercellular movement of genomic vRNA in the leading
edge of the viral infection focus [118]. We believe that the cell conditioning occurs as follows: first,
early synthesis of MP is likely mediated by an internal ribosome entry site (IRESMP,75) that allows
translation of the MP gene directly from genomic RNA even before the synthesis of subgenomic
RNA [117,163–166]. Moreover, direct experiments to restore movement function using the KK6 TMV
mutant [167] containing IRESCR

MP,75, confirmed the possibility of early synthesis of MP from the
genomic TMV RNA [168]. Second, the MP has the ability to interact with cellular factors, performing
the function of a positive regulator of Pd, ensuring MP movement into the neighboring cell [169].
Third, TMV MP is believed to function as a viral enhancer of RNA silencing (VER) by stimulating the
spread of RNA silencing between cells [11,170]. This conclusion deserves a separate comment and was
made based on experiments using a sophisticated system for testing the intercellular transport of the
silencing signal in the GFP-transgenic N. benthamiana 16c line [171]. The essence of the system is that
10 days after the introduction of additional ectopic gene encoding GFP into the leaf by agroinfiltration,
GFP mRNA-specific silencing occurs, in which 21 nt siRNAs move outside the ectopic GFP gene
introduction locus for a distance of 13 cells on average (± 2 cells) [171]. To assess whether TMV MP may
influence the spread of the silencing signal, the gene encoding TMV MP or its different non-functional
mutants was introduced into the system [157,172,173]. Surprisingly, both MP and its deletion mutants
(MP∆3-5, aaD49-51 and MPP81S) mediated movement of 21-nt siRNAs through Pd [170]. Thus, it is
undeniable that TMV MP and its tested mutants are involved in the spread of the silencing signal;
however, apparently, they do this through a cellular mediator, interaction with which is not affected
by mutations.

Finally, the ability of the MP to increase Pd SEL is transient and limited only by the leading edge
of infection. Phosphorylation, as a posttranslational modification of TMV MP, leads to MP inactivation
and thereby ends the period of permitted intercellular virus transport [174,175]. Thus, the transient
cell conditioning function of TMV MP may include the mobilization of cellular mechanisms that open
the Pd and the stimulation of RNA silencing movement between cells.
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To what extent are the cell conditioning properties of TMV MP extended to MPs of other viruses
(Tables 1 and 2)? If we exclude phloem-limited and tubule-forming viruses in which MP-formed
tubular structures drastically modifying Pd, the MPs of the “30K” superfamily have characteristic
features largely similar to those of TMV MP (Table 1). Among plant RNA viruses encoding more
than one MP, there are very few examples of MPs with confirmed self-movement ability (Table 2).
This property has been identified only for potyviruses, potexviruses and higreviruses. We believe that
this is most likely due to either insufficient research on this feature in viruses or the lack of adequate
model plant systems, as observed for phloem-limited viruses [128].

7. Conclusions

1. Genetic methods, including trans-complementation and techniques for Pd SEL assessment,
allow identification of genes encoding proteins that are involved in the intercellular transport
of plant viruses. It remains unclear how viruses belonging to different taxonomic groups and
having significant differences in genome structure and host range can complement each other in
the manifestation of the movement function.

2. Analysis of the properties of MPs of various viruses has been carried out in model plants,
among which N. benthamiana has recently become the leading model due to its susceptibility to
many viruses, although the use of this plant as a host could yield misleading results that are not
reproducible when using the natural host of the virus.

3. TMV 30-kDa MP for a long time remained a standard in the search for candidate MPs; however,
the characteristic properties of TMV MPs are rarely found in their entirety for other viral MPs.

4. The obvious ambiguity of the term “movement protein” will remain until we decipher the
mechanisms of mobilization and exploitation by the virus of cellular factors that control
intracellular and intercellular transport of macromolecules.
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