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Abstract: In response to increasingly stringent requirements for the sustainability and environmental
friendliness of the rubber industry, the application and development of bio-based elastomers
have received extensive attention. In this work, we prepared a new type of bio-based elastomer
poly(dibutyl itaconate-butadiene) copolymer (PDBIB) nanocomposite using carbon black and
non-petroleum-based silica with a coupling agent. Using dynamic thermodynamic analysis
(DMTA) and scanning electron microscope (SEM), we studied the effects of feed ratio on dynamic
mechanical properties, micro morphology, and filler dispersion of PDBIB composites. Among them,
silica-reinforced PDBIB60 (weight ratio of dibutyl itaconate to butadiene 40/60) and carbon
black-reinforced PDBIB70 (weight ratio of dibutyl itaconate to butadiene 30/70) both showed excellent
performance, such as tensile strength higher than 18 MPa and an elongation break higher than
400%. Compared with the widely used ESBR, the results showed that PDBIB had better rolling
resistance and heat generation than ESBR. In addition, considering the development of green tires,
we compared it with the solution polymerized styrene–butadiene rubber with better comprehensive
performance, and analyzed the advantages of PDBIB and the areas to be improved. In summary,
PDBIB prepared from bio-based monomers had superior performance and is of great significance for
achieving sustainable development, providing a direction for the development of high-performance
green tire and holding great potential to replace petroleum-derived elastomers.

Keywords: bio-based elastomer; nanocomposites; carbon black; silica; styrene–butadiene rubber

1. Introduction

Due to its unique high elasticity and large deformation capacity, rubber materials have become
irreplaceable in many fields, such as the tire industry [1–3], sealing industry [4], as well as the
damping and shock absorption industry [5–7]. The annual consumption of rubber worldwide exceeds
20 million tons. Thus far, the world has formed a relatively large-scale production of general synthetic
rubber [8–10] such as styrene–butadiene rubber, nitrile rubber, neoprene rubber, butadiene rubber,
ethylene–propylene rubber, butyl rubber, isoprene rubber, styrene block copolymer thermoplastic
elastomers, and special rubber [11,12] represented by polyurethane, fluorine rubber, and silicone
rubber. Furthermore, the research and production application systems of all kinds of synthetic rubbers
are well developed. At present, synthetic rubber still uses fossil resources such as petroleum as raw
materials, which may be sufficient to meet current application needs, but it is not a long-term solution.
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Its huge consumption makes the environment and resources greatly threatened, especially in the
automotive industry application (tires, hoses, etc.). In future development, it is urgent to develop new
high-performance synthetic rubbers that use sustainable resources as raw materials [13,14].

Using renewable resources to prepare a new generation of bio-based elastomer materials is
an innovative idea to keep sustainable development of the synthetic rubber industry. At present,
two routes are mainly involved. One is to prepare isoprene [15,16], butadiene, and other monomers
through biological fermentation processes, and then prepare bio-based isoprene rubbers and other
bio-based materials. For example, the Goodyear company has successfully prepared bio-based isoprene
rubber, and the LANXESS company has prepared bio-based butyl rubber and ethylene–propylene
rubber. The other route is to use bio-based chemicals [13,17] such as propylene glycol, succinic acid,
and itaconic acid. Bio-based elastomers are prepared via condensation polymerization [18] or emulsion
polymerization [19,20].

Pure synthetic rubber cannot meet engineering applications in terms of mechanical properties and
wear resistance, so it needs to be reinforced with nano-fillers. With the development of nanotechnology,
a variety of nanoparticles have been developed to be combined with rubber, which not only strengthens
the basic mechanical properties of rubber, but also gives the material many functionalities. The widely
used nano-fillers mainly include carbon black [21], silica [22], layered silicate [23,24], graphene [25–27],
and carbon nanotube [28,29]. Nano-fillers have a significant strengthening effect on rubber materials,
which is mainly reflected in the improvement of modulus, tensile strength, and wear resistance.
More than 92% of carbon black production in the world was used in rubber manufacturing, especially
tire production, such as inner linings, sidewall carcasses, tread, air springs, belts, conveyor wheels,
and some vibration isolation devices. At present, the global production of carbon black is about
8.1 million metric tons, ranking among the top 50 industrial chemical manufacturers in the world.
However, CB causes pollution because of its origin from petroleum. Silica is a non-petroleum based filler
with good prospects. For tires, silica can also reduce the rolling resistance of rubber without sacrificing
the wet skid resistance of rubber, that is, it can improve fuel efficiency and reduce greenhouse gas
emissions under the premise of ensuring the safe driving of cars. Therefore, silica has great application
prospects in “green tire” manufacturing [30]. Due to the surface characteristics of silica, it has a poor
affinity with the rubber matrix and is easy to form aggregates, so the key to preparing silica composites
is to solve the problem of mixing silica and rubber and dispersion in the rubber matrix. The current
methods mainly include in-situ modification technology [31,32], rubber matrix modification [33,34],
and wet compounding technology [35]. The continuous development of these technologies has led to
the rapid expansion of the silica-filled application. Therefore, the research on the these two types of
universal nano-fillers nanocomposites of bio-based elastomers is meaningful for the development of
nanofillers and bio-based elastomers.

Bio-based itaconate elastomer (PDBIB) [14,36] involved in this article belongs to the second
route. It is a new type of bio-based synthetic rubber prepared based on bulk bio-based chemicals,
itaconic acid, n-butanol, and a small amount of diene. At present, the annual output of itaconic
acid in China has reached 50,000 tons, and the price is 1662 Dollars/ton. Compared with traditional
petrochemical-based chemicals, the cost is no longer a disadvantage. In addition, the static and
dynamic mechanical properties of bio-based itaconate elastomers can be flexibly adjusted by adjusting
the side groups [37], the copolymerization ratio [36], and the functionalization in the chain [23,38,39].
Moreover, the properties are becoming more perfect. Different from traditional petroleum-based
engineering rubber, the molecular structure of bio-based elastomers designed in this paper includes
weakly polar long-chain ester groups and flexible butadiene segments, which are quite different from
traditional NR (natural rubber), SBR (styrene–butadiene rubber), and NBR (nitrile rubber), so the
research about performance and interface interaction of silica-filled PDBIB and carbon black-filled
PDBIB are meaningful. Meanwhile, a comparatively comprehensive comparison of the properties of
bio-based elastomers nanocomposites and traditional bulk ESBR and SSBR nanocomposites are of
great value for the true application of bio-based elastomers.
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2. Experimental Section

2.1. Materials

Dibutyl itaconate (purity of 96%) was purchased from Sigma-Aldrich Company (Burlington,
MA, USA). All of the other chemicals and solvents used in the polymerization, including butadiene
(purity of 94%), rosin soap, phosphoric acid, potassium hydroxide, ethylene diamine tetraacetic acid
(EDTA), sodium dinaphthyllmethanedisulfonate (TAMOL), ferric ethylene diamine tetraacetic acid
salt (Fe-EDTA), sodium hydrosulfite (SHS), sodium hydroxymethanesulfinate (SFS), p-menthane
hydroperoxide (PMH), hydroxylamine (HA), and ethanol, were kindly provided by Jilin Petroleum
Company and used as received. Emlusion-polymerized styrene–butadiene rubber (ESBR 1502) was
bought from Tianjin Changli Rubber Trade Co., Ltd. (Tianjin, China) and solution-polymerized
styrene–butadiene rubber (SSBR2466) was provided by the TSRC Corporation. The precipitated silica
(Ultrasil VN3) with a BET specific surface area of 175 m2/g was bought from Degussa Chemical. All of
the rubber additives were industrial grade and commercially available. Deionized water was used for
all polymerization runs.

2.2. Synthesis of Poly(dibutyl itaconate-co-butadiene) (PDBIB)

As summarized in Table 1, all of the chemicals except SHS and PMH, were added in the sealed
reaction bottle, and the mixture in the bottle was pre-emulsified at 25 ◦C for 4 h to form a stable and
homogeneous latex. Later, the SHS solution was injected into the reaction bottle to eliminate the
residual oxygen in the pre-emulsion, followed by the PMH solution. The polymerization was allowed
to proceed for 8 h at 5 ◦C, followed by adding hydroxylamine solution to terminate the polymerization,
and the PDBIB latex was obtained. The PDBIB gum was obtained by coagulating the latex with ethanol
and drying the product in a vacuum oven at 40 ◦C until a constant weight was obtained.

Table 1. Recipe for redox-initiated emulsion polymerization of PDBIB.

Ingredients (Concentration) Amount (g)

Dibutyl itaconate [a] Various
Butadiene [a] Various

Deionized water 190.00
Disproportionated potassium rosinate 1.50

Sodium soap 1.50
Phosphoric acid 0.23

Potassium hydroxide 0.40
EDTA 0.03

TAMOL 0.14
SHS 0.04

Fe-EDTA 0.02
SFS 0.04

PMH 0.06
[a] The total dosage of the monomers was fixed at 100.00 g, as shown in Table 1.

2.3. Preparation of the PDBIB/Silica and ESBR/Silica Nanocomposites

The compounding formulation for PDBIB/silica is shown in Table 2. First, silica with a coupling
agent was mixed with neat PDBIB in a HAAKE Rheomix 600 OS internal mixer for 10 min at room
temperature. Second, the mixture obtained was rotated in the internal mixer for 5 min at 150 ◦C to
facilitate further reaction between PDBIB and silica, and it was then taken out and cooled down to room
temperature. Third, the other additives were mixed with the PDBIB/silica. Finally, the PDBIB/silica
compound was cured under 15 MPa at 150 ◦C for an optimum curing time as determined by a rotor-less
rheometer. The ESBR/silica compound was also compounded and vulcanized in the same manner.
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Table 2. Recipe of PDBIB/silica and ESBR/silica nanocomposites.

Ingredients. Loading (phr) [a]

PDBIB/ESBR 70.0
BR9000 30.0

Silica (VN3) 60.0
Si69 6.0

Zinc oxide 5.0
Stearic acid 2.0

Antioxidant 4020 [b] 1.0
Antioxidant RD [c] 1.0

Wax 1.0
Accelerator CZ [d] 1.0
Accelerator NS [e] 1.2

Sulfur 1.5
[a] phr is the abbreviation for weight parts per 100 parts rubber by weight. [b] N-Isopropyl-N’-phenyl-p-phenylene
diamine. [c] Poly(1,2-dihydro-2,2,4-trimethyl-quinoline). [d] N-cyclohexylbenzothiazole-2-sulphenamide.
[e] N-tert-butylbenzothiazole-2-sulphenamide.

2.4. Preparation of the PDBIB/CB and ESBR/CB Nanocomposites

The PDBIB and additives were mixed by a 15.24 cm two-roll mill according to the formulation
provided in Table 3. The compound was cured in an XLB-D 350_350 hot press (Huzhou East Machinery,
Huzhou, China) under a pressure of 15 MPa at 150 ◦C for its optimum cure time. ESBR/CB compound
was also compounded and vulcanized in the same manner.

Table 3. Formulation for the PDBIB/CB and ESBR/CB nanocomposites.

Ingredient Loading (phr)

PDBIB/ESBR 100
Carbon black 60
Zinc Oxide 3
Stearic acid 2

TDAE 10
Antioxidant 4020 1

Accelerator DM [a] 1.2
Accelerator D [b] 0.6

Sulfur 1.5
[a] 2,2′-dibenzothiazoledisulfde. [b] 1,3-Diphenylguanidine.

2.5. Measurements and Characterization

The average molecular weight of PDBIB and ESBR was measured using gel permeation
chromatography (GPC) on a Waters Breeze instrument equipped with three water columns (Steerage HT3
HT5 HT6E) using tetrahydrofuran as the solvent (1.0 mL/min) and a Waters 2410 refractive index
detector, and polystyrene standards were used for calibration. The FTIR spectra of PDBIB and ESBR
were collected on a Tensor 27 spectrometer (Bruker Optic GmbH, Ettlingen, Germany) with the
attenuated total reflection (ATR) technique at 4 cm−1 resolution with 32 scans under air atmosphere.
1H NMR measurements of PDBIB and ESBR were conducted with a Bruker AV400 spectrometer
(Bruker, Bremen, Germany) with CDCl3 as the solvent. The test frequency was 400 MHz and scanned
16 times. Differential scanning calorimetry (DSC) measurements were performed on a Mettler-Toledo
DSC instrument under nitrogen. A sample of 5 mg was heated to 373 K (100 ◦C) and kept isothermal
for 5 min to remove any previous thermal history. Then it was cooled to 173 K (−100 ◦C) and reheated
to 373 K (100 ◦C) at 10 K/min. The surface morphology of the PDBIB and ESBR nanocomposites
were observed in Hitachi S-4800 scanning electron microscope. The samples were prepared by
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fracturing the composites in liquid nitrogen and were then sputter coated with gold. The dynamic
rheological properties of the PDBIB, ESBR, and SSBR nanocomposites were analyzed using an RPA2000
(Alpha Technologies Co., Hudson, Ohio, USA) at 333 K (60 ◦C). The strain amplitude was varied from
0.1% to 100% at the test frequency of 1 Hz. The dynamic mechanical properties were determined
on a VA 3000 dynamic mechanical thermal analyzer (01 dB-Metravib Co., Rhone Alpes, France) in
the tension mode at a fixed frequency of 10 Hz (the most common frequency used to investigate the
dynamic mechanical properties in rubber industry, especially in tire industry) and a strain amplitude
of 0.3%. The scanned temperature ranged from 193K (−80 ◦C) to 373 K (100 ◦C), and the heating rate
was of 3 K/min. Tensile tests of the PDBIB, ESBR, and SSBR nanocomposites were conducted according
to ASTM D412 (dumbbell-shaped) on a LRX Plus tensile tester made by Lloyd Instruments, Ltd.,
West Sussex, UK. The interval between vulcanization and testing was 24 h. The test tensile rate was
500 mm/min. The number of samples in the same group was five.

3. Results and Discussion

3.1. Synthesis and Characterization of PDBIB

A series of bio-based elastomers PDBIB with Bd(butadiene) contents of 50 wt.% to 80 wt.%
were prepared using the redox-initiated polymerization carried out under mild conditions.
The polymerization equation is illustrated in Scheme 1. The redox-initiated polymerization can
obtain high molecular weight polymers as it can decrease the possibility of chain transfer and
chain termination. As shown in Table 4, with a variety of Bd(butadiene) content, the number-average
molecular weights (Mn) and polydispersity index(PDI) ranged from 33.8× 104 g/mol to 45.0 × 104 g/mol
and ranged from 2.97 to 3.79, respectively. We compared it with ESBR and found that the molecular
weight of PDBIB was higher than ESBR. The yields of the polymerization were above 65%.
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Scheme 1. Polymerization reaction of PDBIB.

Table 4. Molecular weight and yield of PDBIB and ESBR.

Sample Mn (104) Mw (104) Polydispersity Index Yield (%)

PDBIB50 45.0 170.5 3.79 67
PDBIB60 40.0 133.9 3.36 70
PDBIB70 38.3 129.6 3.38 68
PDBIB80 33.8 100.2 2.97 65

ESBR 11.5 44.0 3.83 ——

3.2. Structure Characteristic Comparison of Raw PDBIB and ESBR

Figure 1 displays the FTIR spectra of raw PDBIB polymers with different butadiene contents and
ESBR. The absorption peaks at 3017, 2915, and 2840 cm−1 were attributed to the stretching vibrations
of -CH3, -CH2, and -CH groups in the ESBR, respectively. The peak position of PDBIB here slightly
shifted. The absorption at 1640 cm−1 belonged to the C=C stretching vibration of the butadiene unit.
The difference in the spectra was the absorption at 1728 cm−1 and 1175 cm−1, which corresponded to
the C=O and C-O-C stretching vibration of the DBI (dibutyl itaconate) unit. As the monomer ratio
changed (i.e., butadiene gradually increased), we clearly saw that the peak intensities of 1728 cm−1

and 1175 cm−1 gradually decreased, while the corresponding peak positions of butadiene, such as
1640 cm−1 and 969 cm−1, gradually increased.
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Figure 1. FTIR spectra of PDBIB with different butadiene contents and ESBR.

The structural difference of PDBIB and ESBR were further confirmed via 1H NMR. The spectra
and the detailed assignments of each peak to the molecular structure comparison are shown in Figure 2.
The proton shifts of butadiene in their copolymers are similar. The obvious peaks of dibutyl itaconate
at 0.94 ppm corresponded to the methyl protons (6) of the side groups and the signals at 4.03 ppm was
from the methylene protons (3) of the side groups. Moreover, 7.0–7.3 ppm are attributed to the proton
of the benzene ring.
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The elastomeric properties of materials are influenced by the glass transition temperature (Tg),
which is generally below room temperature for elastomers. Neither of the five curves show any
crystallization peak, indicating that the PDBIB and ESBR were all amorphous copolymers, as shown in
Figure 3. The Tg values of PDBIB with increased butadiene and ESBR were −57.9, −63.9, −66.2, −70.2,
and −53.9 ◦C, respectively. The reason is that the Tg of styrene homopolymer is much higher than
the dibutyl itaconate homopolymer. Simultaneously, it can be found that PDBIB with high butadiene
content has better low temperature resistance than ESBR.
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3.3. Curing Characteristics of PDBIB and ESBR Compounds

As vulcanization is a critical step for elastomeric products, the effect of filler (silica-VN3 and carbon
black-N330) on the curing characteristics was studied. As the modulus of the elastomer increased
dramatically during curing, it was used to evaluate the curing process. The curing characteristics
of PDBIB and ESBR compounds are shown in Figure 4. As there were many hydroxyl groups on
the silica surfaces, polar organic molecules such as accelerator molecules were prone to be adsorbed
on them. Therefore, compared with PDBIB/CB or ESBR/CB compounds, PDBIB/silica or ESBR/silica
compounds required a longer curing time. In the silica system, PDBIB/silica had a longer scorch time
and curing time than ESBR/silica because the polar groups in PDBIB also had an adsorption effect on
the accelerator. However, this phenomenon did not appear in the carbon black system.

Processes 2020, 8, x FOR PEER REVIEW 7 of 18 

 

and −53.9 °C, respectively. The reason is that the Tg of styrene homopolymer is much higher than the 
dibutyl itaconate homopolymer. Simultaneously, it can be found that PDBIB with high butadiene 
content has better low temperature resistance than ESBR. 

 

Figure 3. DSC thermograms of the synthesized PDBIB and ESBR. 

3.3. Curing Characteristics of PDBIB and ESBR Compounds 

As vulcanization is a critical step for elastomeric products, the effect of filler (silica-VN3 and 
carbon black-N330) on the curing characteristics was studied. As the modulus of the elastomer 
increased dramatically during curing, it was used to evaluate the curing process. The curing 
characteristics of PDBIB and ESBR compounds are shown in Figure 4. As there were many hydroxyl 
groups on the silica surfaces, polar organic molecules such as accelerator molecules were prone to be 
adsorbed on them. Therefore, compared with PDBIB/CB or ESBR/CB compounds, PDBIB/silica or 
ESBR/silica compounds required a longer curing time. In the silica system, PDBIB/silica had a longer 
scorch time and curing time than ESBR/silica because the polar groups in PDBIB also had an 
adsorption effect on the accelerator. However, this phenomenon did not appear in the carbon black 
system. 

The vulcanization characteristics of PDBIB and ESBR compound are shown in Tables 5 and 6. 
The torque difference became larger, which was caused by the increase in butadiene content. The 
results indicated the higher degree of crosslinking. 

  
(a) (b) 

Figure 4. Torque of PDBIB and ESBR compounds as a function of curing time (a) PDBIB/silica and 
ESBR/silica; (b) PDBIB/CB and ESBR/CB. 
Figure 4. Torque of PDBIB and ESBR compounds as a function of curing time (a) PDBIB/silica and
ESBR/silica; (b) PDBIB/CB and ESBR/CB.

The vulcanization characteristics of PDBIB and ESBR compound are shown in Tables 5 and 6.
The torque difference became larger, which was caused by the increase in butadiene content. The results
indicated the higher degree of crosslinking.
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Table 5. Curing for the PDBIB/silica and ESBR/silica compound rubber.

Sample t10/min t90/min MH-ML (dN·m)

PDBIB50/silica 7:03 20:39 26.3
PDBIB60/silica 6:27 21:36 38.6
PDBIB70/silica 7:20 21:02 41.8
PDBIB80/silica 6:43 23:35 45.7

ESBR/silica 7:05 24:19 27.6

Table 6. Curing for the PDBIB/CB and ESBR/CB compound rubber.

Sample t10/min t90/min MH-ML (dN·m)

PDBIB50/CB 2:47 7:31 21.9
PDBIB60/CB 2:49 9:51 26.2
PDBIB70/CB 2:37 11:15 30.6
PDBIB80/CB 2:29 14:12 35.3

ESBR/CB 3:11 9:45 28.7

3.4. Mechanical Properties of PDBIB and ESBR Nanocomposites

Mechanical properties of PDBIB and ESBR nanocomposites are displayed in Figure 5 and
summarized in Table 7. In Figure 5a, mechanical properties of PDBIB with various butadiene contents
were excellent and comparable to that of ESBR nanocomposites, such as the tensile strength and
elongation at break of the PDBIB/silica nanocomposites, all of which exceeded 19 MPa and 450%,
respectively. The PDBIB70/silica nanocomposite exhibited the best mechanical properties with a tensile
strength of 25.3 MPa and an elongation at break of 536%. The tensile stress at 300% strain and the
permanent set are also shown in Table 7. In Figure 5b, since the ester group imparts the polarity of
PDBIB, the compatibility with non-polar filler carbon black was not good. The content of ester group
was high and carbon was difficult as a reinforcing role, resulting in limited tensile strength. When the
introduced butadiene content was higher than 60%, the tensile strength was above 18 MPa, and the
elongation at break was above 350%. Compared with ESBR/CB, the tensile strength was not as good as
that, but the stress at 300% was obviously higher. In summary, the mechanical properties of PDBIB/silica
and PDBIB/CB nanocomposites all could meet most requirements of engineering applications.
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Table 7. Mechanical performance of the PDBIB and ESBR nanocomposites.

Sample Tensile
Strength (MPa)

Stress at
100% (MPa)

Stress at
300% (MPa)

Elongation
at Break (%)

Permanent
Set (%)

Shore A
Hardness

PDBIB50/silica 19.6 ± 0.4 2.2 ± 0.1 9.4 ± 0.3 527 ± 35 12 66.1
PDBIB60/silica 22.0 ± 0.6 2.2 ± 0.1 9.4 ± 0.4 537 ± 23 10 66.8
PDBIB70/silica 25.3 ± 0.5 2.6 ± 0.1 10.5 ± 0.6 536 ± 13 8 68.1
PDBIB80/silica 24.2 ± 0.4 2.6 ± 0.1 10.6 ± 0.3 498 ± 23 6 69.5
ESBR/silica 24.3 ± 0.1 2.1 ± 0.1 8.5 ± 0.5 584 ± 16 14 65.2

PDBIB50/CB 13.8 ± 0.8 1.7 ± 0.1 8.6 ± 0.6 424 ± 29 16 57.2
PDBIB60/CB 16.5 ± 0.4 1.8 ± 0.1 10.4 ± 0.3 414 ± 25 6 60.6
PDBIB70/CB 18.5 ± 0.2 2.0 ± 0.1 11.4 ± 0.4 416 ± 7 4 60.9
PDBIB80/CB 18.9 ± 0.8 2.3 ± 0.1 13.5 ± 0.3 372 ± 45 2 62.1

ESBR/CB 21.2 ± 0.5 2.1 ± 0.1 9.4 ± 0.5 508 ± 22 8 64.1

3.5. Filler–Filler and Filler–Polymer Interactions in PDBIB and ESBR Compounds

In order to analyze the different tensile strength responses of the abovementioned PDBIB/silica
and PDBIB/CB with the same filling amount, the filler dispersion and its interaction with PDBIB were
analyzed by combining RPA and SEM. As a supplementary note in previous research, it was found
that there was a hydrogen bond between itaconate elastomer and silica [19] as Figure 6, which had a
positive effect on the dispersion of silica, but there was no such force between ESBR and silica.
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Figure 6. Schematic diagram of the hydrogen bonding interaction between itaconate elastomer
and silica.

The rubber process analyzer (RPA) allows for the investigation of the strength of a filler–filler
network and filler–polymer interactions in a filled elastomeric compound in a wide range of shear
strain amplitudes. Figure 7 shows the RPA curves of PDBIB/silica (a) and PDBIB/CB (b) compounds.
The storage modulus decreased nonlinearly with increasing applied dynamic strain, which is referred
to as the Payne effect [40,41]. As the butadiene moieties of the PDBIB/silica and PDBIB/CB compounds
increased, the initial modulus increased, which was caused by the formation of filler–filler interactions.
In the Figure 7a, we found that the initial storage modulus of PDBIB was lower than that of ESBR, and the
downward trend was gentler. The reasons were as follows: Compared with the benzene ring in the
molecular chain structure of ESBR, PDBIB contains polar ester groups. Hydrogen bonding interactions
could be formed between silanols on the silica surfaces and ester groups of the macromolecule chains
according to our previous studies [42]. The interaction of PDBIB and silica could prevent silica from
aggregating to a filler network, resulting in a homogenous dispersion of silica. Meanwhile, the number
of ester groups per unit volume decreased with increasing butadiene content in the PDBIB elastomer,
which led to the increased initial storage modulus. Therefore, the interaction of PDBIB and silica became
weakened, which implied an increased probability for the formation of silica network, resulting in
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an increase in the Payne effect and inhomogeneous dispersion of silica. In the Figure 7b, in addition
to PDBIB50m which had a more obvious Payne effect, the initial storage modulus and change trend
of PDBIB and ESBR were relatively close. Compared with the benzene ring, the ester group has no
obvious advantage in the dispersion of carbon black, and even the high content of ester group will
affect the dispersion of carbon black. Moreover, the G′ of the PDBIB filled with carbon black was
higher than that of them filled with silica.
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The strain amplitude dependence of tan δ in the PDBIB and ESBR compounds are shown in
Figure 8. Destruction of the strong filler–filler network increased filler–filler friction, and weak
interfacial interaction increases filler–rubber friction, which resulted in high tan δ at high strain.
From Figure 8a, the ester groups of PDBIB helped weaken the filler–filler network and improved
the interfacial interaction. Therefore, the tan δ values of PDBIBs/silica were all lower than that of
ESBR/silica. The results show that PDBIB elastomers possessed a great potential for future green tire
tread applications. In the Figure 8b, it can also be seen that the tan δ values of PDBIBs/CB are lower
than that of ESBR/CB, especially PDBIB70 and PDBIB80.
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3.6. Dispersion State of Silica and Carbon Black in the PDBIB and ESBR Nanocomposites

To further compare PDBIB and ESBR nanocomposites, SEM was used to investigate the state of
dispersion of fillers (silica or carbon black) in the PDBIB and ESBR nanocomposites. The dark and
light parts of the SEM images of Figure 9 represent the PDBIB or ESBR matrix and fillers particles,
respectively. The state of dispersion of fillers depended strongly on the filler–polymer interactions.
As discussed above, the hydrogen bonding interaction could be formed between silanols and ester
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groups of PDBIB60/silica nanocomposites, resulting in more homogenous dispersion of silica compared
with ESBR/silica, as shown in Figure 9a,b. Figure 9c,d showed that the dispersion of carbon black in
the PDBIB70/CB is more homogenous than that of ESBR/CB.
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3.7. Dynamic Mechanical Properties of PDBIB and ESBR Nanocomposites

Dynamic viscoelastic properties were investigated for PDBIB/silica and PDBIB/CB nanocomposites
since a majority of engineering elastomers are used under dynamic loading. The value of tan δ at
60 ◦C was used as a criterion for the rolling resistance, while that at 0 ◦C was used as a criterion
for the wet grip resistance [34]. An ideal material for production of high-performance tires should
have a low tan δ value at 60 ◦C and a high tan δ value at 0 ◦C. Figure 10 shows the temperature
dependence of the tan δ values of the PDBIB/silica and ESBR/silica nanocomposites, and Table 8
gathers most relevant data. From PDBIB50/silica to PDBIB80/silica, the rolling resistance (60 ◦C tan δ)
of PDBIBs/silica decreased, the wet skid resistance (0◦ C tan δ) also decreased. The tan δ value of
PDBIB80/silica nanocomposites was the lowest, indicating that it had excellent low rolling resistance
and energy saving characteristics. However, considering the safety, we have taken into account the
wet resistance, so we chose PDBIB60/silica, which it had a lower tan δ value at 60 ◦C and a comparable
tan δ values at 0 ◦C. Compared with ESBR/silica, the dynamic mechanical properties of PDBIB60/silica
was more excellent. This is related to the macromolecule structure of PDBIB and ESBR that (1) stronger
interfacial interaction between polar ester group and interface; (2) better dispersion of silica.
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Table 8. Dynamic mechanical thermal analysis of PDBIB/silica and ESBR/silica nanocomposites.

Sample Tg (◦C)
tan δ

0 ◦C 60 ◦C Max

PDBIB50/silica −39.2 0.230 0.131 0.680
PDBIB60/silica −43.3 0.189 0.105 0.685
PDBIB70/silica −49.3 0.165 0.097 0.669
PDBIB80/silica −56.4 0.146 0.088 0.637

ESBR/silica −48.1 0.147 0.100 0.633

From Figure 11, the Tg of the PDBIB/CB nanocomposites decreased with increasing butadiene
content in the PDBIB, resulting in a decrease in tan δ at both 60 ◦C and 0 ◦C for the PDBIB/CB
nanocomposite. From Table 9, the tan δ value of PDBIB80/CB nanocomposite was the lowest at 60 ◦C,
indicating the lowest rolling resistance compared to the other PDBIB/CB nanocomposites. Based on
the mechanical properties, the wet grip resistance, and the rolling resistance, PDBIB70/CB had the best
balanced properties (compared with ESBR/CB, it had a comparable tan δ values at 0 ◦C and a lower
tan δ value at 60 ◦C). This emerged as a potential elastomer to produce high-performance materials
instead of ESBR in tire application.
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Table 9. Dynamic mechanical thermal analysis of PDBIB/silica nanocomposites.

Sample Tg (◦C)
tan δ

0 ◦C 60 ◦C Max

PDBIB50/CB −36.5 0.284 0.231 0.652
PDBIB60/CB −41.1 0.243 0.190 0.648
PDBIB70/CB −45.5 0.211 0.155 0.661
PDBIB80/CB −50.7 0.184 0.125 0.717

ESBR/CB −34.4 0.211 0.206 0.571

3.8. Heat Build-Up Test and Abrasion Resistance of PDBIB and ESBR Nanocomposites

In tire applications, apart from dynamic mechanical properties, the heat build-up test and abrasion
resistance are key indicators, and are commonly used to characterize tire performance. In Figure 12a,
the heat build-up are arranged from high to low in the following order: ESBR/silica, PDBIB50/silica,
PDBIB80/silica, PDBIB60/silica, and PDBIB70/silica. The result aligns with tan δ measured by RPA,
except for PDBIB80/silica (Figure 7a). In Figure 12b, we observed that the heat build-up of PDBIB/CB
decreased with increasing butadiene content in the PDBIB. Moreover, the heat build-up of all PDBIBs/CB
were lower than ESBR/CB.
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In Figure 13a, as the butadiene moieties increased, the volume loss of abrasion of PDBIB/silica
nanocomposites decreased. Among them, abrasion resistance of PDBIB80/silica was excellent and
closest to ESBR/silica. In Figure 13b, abrasion resistance of PDBIB70/CB and PDBIB80/CB were better
than ESBR/CB. Therefore, bio-based elastomers PDBIB had a great potential for future engineering
applications, such as car and truck tires.
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3.9. Performance of PDBIB/Silica Nanocomposite Compared with SSBR/Silica Nanocomposite

As mentioned above, PDBIB has a great potential in the tire field, and SSBR is an ideal material for
the production of green tires in the modern tire industry. Here, PDBIB60 and SSBR2466 were used to
prepare silica-nanocomposites used by the same method described in Section 2.3. Their dynamic and
static mechanical properties are shown in Figure 14a,b. The tensile strength and elongation at break of the
PDBIB60/silica nanocomposites were higher than the SSBR2466/silica nanocomposites, while its moduli
was lower than the SSBR2466/silica nanocomposites. Although the PDBIB60/silica nanocomposites
exhibited lower moduli than SSBR2466/silica nanocomposites, they showed mechanical properties that
satisfactorily met basic tire requirements. Dynamic properties of PDBIB60/silica and SSBR2466/silica
nanocomposites, especially loss tangent (tan δ) values at 60 ◦C and at 0 ◦C, were investigated.
The tan δ value of the PDBIB60/silica nanocomposite at 60 ◦C was comparable to the SSBR2466/silica
nanocomposite, but it was lower at 0 ◦C. This is an urgent problem for PDBIB, and we will improve
it through functional modification and other means in the future. From Figure 14c,d, we can see
that the initial storage modulus of PDBIB60/silica was obviously lower than the SSBR2466/silica,
indicating better silica dispersion in PDBIB. Usually, the tan δ value at 7% strain is closely related to the
tire rolling resistance [34]. The result showed that the tan δ values at 7% strain in the PDBIB60/silica
nanocomposites was a little bit higher than the SSBR2466/silica. Overall, compared with SSBR, the static
mechanical properties and filler dispersion of PDBIB are better, but dynamic mechanical properties
still need to be improved.
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4. Conclusions

Bio-based cross-linkable poly(dibutyl itaconate-co-butadiene) (PDBIB) elastomers nanocomposites
were prepared using silica (VN3) and carbon black (N330). Mechanical properties of PDBIB with
different butadiene contents were excellent. The tensile strength and elongation at break of the
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PDBIB/silica nanocomposites exceeded 19 MPa and 450%, as did those of the PDBIB70/CB and
PDBIB80/CB nanocomposites, exceeding above 18 MPa and 350%. Compared with ESBR, due to
the difference of macromolecule structure, polar ester groups in PDBIB could prevent silica from
aggregating to a filler network, resulting in a homogenous dispersion of silica. However, the ester
group had no obvious advantage in the dispersion of carbon black, and even the high content of ester
group could worsen the dispersion of carbon black. In silica-filled and carbon black-filled system,
PDBIB60/silica and PDBIB70/CB had the best balanced properties. Moreover, their comprehensive
performance were significantly better than the ESBR/filler nanocomposite. Compared with the SSBR,
mechanical properties and filler dispersion of PDBIB are better, and dynamic mechanical properties
still had space for improvement. On the basis of our results, PDBIBs showed great potential to be a
strong and useful supplement for commercial elastomers in engineering applications, especially in the
tire industry.
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