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Abstract: One popular method for optimizing systems, referred to as ANN-PSO, uses an artificial
neural network (ANN) to approximate the system and an optimization method like particle swarm
optimization (PSO) to select inputs. However, with reinforcement learning developments, it is
important to compare ANN-PSO to newer algorithms, like Proximal Policy Optimization (PPO).
To investigate ANN-PSO’s and PPO’s performance and applicability, we compare their methodologies,
apply them on steady-state economic optimization of a chemical process, and compare their results to
a conventional first principles modeling with nonlinear programming (FP-NLP). Our results show that
ANN-PSO and PPO achieve profits nearly as high as FP-NLP, but PPO achieves slightly higher profits
compared to ANN-PSO. We also find PPO has the fastest computational times, 10 and 10,000 times
faster than FP-NLP and ANN-PSO, respectively. However, PPO requires more training data than
ANN-PSO to converge to an optimal policy. This case study suggests PPO has better performance as
it achieves higher profits and faster online computational times. ANN-PSO shows better applicability
with its capability to train on historical operational data and higher training efficiency.

Keywords: particle swarm optimization; artificial neural networks; real-time optimization;
Proximal Policy Optimization; process optimization; reinforcement learning

1. Introduction

1.1. Motivation

Many chemical processes, like coal combustion and bioreactors, are complex, and thus deriving
appropriate models and optimizing outputs is difficult [1–3]. Machine learning has shown success in
optimizing complex systems such as scheduling electricity prices to manage demand and maximize
power grid performance [4–6]. This motivates exploration of other machine learning techniques like
reinforcement learning (RL) on model-free optimization [7].

RL research has seen many breakthroughs in recent years with new algorithms capable of defeating
most humans in difficult games [8–11]. These algorithms are not specifically designed to play games,
but to learn and accomplish general tasks. A real-world example can be seen in OpenAI’s algorithm
which learned how to control a robotic hand to solve a Rubick’s cube under disturbances [12].

1.2. Literature Review

One popular RL algorithm in process systems, ANN-PSO, trains an artificial neural network (ANN)
to model the system and uses a global optimization method, such as particle swarm optimization (PSO),
to select optimal inputs. ANN-PSO is an off-policy algorithm, meaning it can train using data previously
gathered under normal operating conditions. In a real case study, ANN-PSO is shown to be effective in
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minimizing NOx production and high-temperature alarms of a power plant using ANN-PSO to control
68 dampers in a closed-loop operation [2]. This demonstrates that ANN-PSO is effective in learning
and controlling high-dimensional systems. There have been other power plant successes with yield
maximization, efficiency maximization, and multiobjective optimization [13–16]. Bhattacharya et al.
demonstrates that in a real validation test, ANN-PSO increases ε-polylysine production in marine bacteria
by predicting optimal medium composition [17]. Khajeh et al. shows ANN-PSO achieves high extraction
molybdenum extraction from water using silver nanoparticles by determining optimal volumes of the
extractant and complex, pH, and adsorption time [18]. There have been other successes for optimization
in pharmaceuticals, extraction, and HVAC [19–26]. While this shows ANN-PSO is widely used to
optimize process inputs, newer algorithms may offer further improvements.

Actor–critic algorithms are a newer class of RL algorithms which train an actor ANN to select
optimal actions given a set of observations and a critic ANN to estimate the value of the set of
observations. Proximal policy optimization (PPO) is an on-policy stochastic actor–critic algorithm,
on-policy meaning the algorithm must gather the training data, and stochastic meaning the actions
taken are sampled from a distribution. Over a 90-day real case study, Filipe et al. demonstrated
the efficacy of PPO on minimizing power usage and high level alarms of a wastewater treatment
plant [27]. For combined heat and power systems economic dispatch, Zhou et al. found PPO performs
as well as conventional methods, but handles more scenarios without recalculation, has better
time flexibility, and requires less input information [28]. For an integrated electrical and heating
system with wind energy, Zhang demonstrates PPO can optimize under power, demand, and spot
electricity price uncertainties to minimize operational costs [29]. Actor–critic algorithms have also been
used in optimizing costs for power systems, lot scheduling, hybrid vehicles, autonomous vehicles,
brine injection, and drones [30–36].

1.3. Contributions

While process systems RL applications is an active area of research, there are few papers
comparing the algorithms in their applicability and performance in process systems. To investigate
if the widely used ANN-PSO can be replaced by newer actor–critic methods, this paper presents
a novel comparison between two algorithms—ANN-PSO and PPO—by comparing the methods of
the algorithms and evaluating these algorithms on a case study of a stochastic steady-state chemical
optimization problem. To explore both algorithms’ potential to achieve an optimal policy, ANN-PSO
and PPO are also compared to two benchmark control strategies: nonlinear programming on a first
principles model and maximum production. The algorithms’ performance and applicability are
compared based on implementation feasibility, system optimization, training efficiency, and online
computational time. Furthermore, insight into the behavior of these algorithms is explored through
parity plots of the agents’ predicted and actual profits, and sensitivity analysis of the agents’ actions.
Below is a summary of the novel contributions of this work.

1. This work represents a first-of-its-kind comparison study between PPO and other methods for
real-time optimization. Specifically, comparisons are made to maximum production operation
(no optimization), optimization using an ML model (artificial neural network) and particle swarm
optimization (ANN-PSO), and optimization using a first principles model and gradient-based
non-linear programming.

2. Our results demonstrate that PPO increases profitability by 16% compared to no optimization.
It also outperforms ANN-PSO by 0.6% and comes remarkably close to matching the performance
of the FP-NLP method, getting within 99.9% of FP-NLP profits.

3. Though more time must be invested into training the system, PPO reduces online computational
times, resulting in 10 and 10,000 times faster computation compared to FP-NLP and ANN-PSO,
respectively .

4. ANN-PSO has higher training efficiency compared to PPO as ANN-PSO converges with ≈105

training examples while PPO converges to an optimal policy with ≈106 training examples.
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5. Parity plots suggest ANN-PSO’s lower profits are due to PSO exploiting errors in the ANN,
causing ANN-PSO to consistently overpredict profit and select suboptimal actions.

6. Comparing PPO and ANN-PSO, PPO has better performance as shown by its higher profits and
faster computational times. ANN-PSO has better applicability as shown by its higher training
efficiency and capability to train on historical operational data.

The following are the sections and the material they cover. Section 2 introduces the optimization
methods and their theory. Section 3 presents the case study of optimizing steady state operation of a
continuously stirred tank reactor. Section 4 describes how the optimization methods are implemented
and evaluated. Section 5 presents and analyzes the results from the case study. Section 6 summarizes
our findings and suggests future work.

2. Materials and Methods

2.1. Markov Decision Process

An optimization problem is considered where an agent interacts with an environment which
is assumed to be fully observable. This problem can be formulated as a Markov Decision Process
(MDP) where the environment is described by a set of possible states S ∈ Rn, possible actions A ∈ Rm,
a distribution of initial states p(s0), a reward distribution function R(st, at) given state st and action
at, a transitional probability p(st+1|st, at), and a future reward discount factor γ. An episode begins
with the environment sampling an initial state s0 ∈ S with probability p(s0). The agent then selects
action a ∈ A, and receives the reward sampled from the environment rt ∈ R with probability R(s, a).
The environment then samples from st+1 ∈ S with probability p(st+1|st, at). The agent selects another
action and this process continues until the environment terminates. This process is shown in Figure 1.

Figure 1. Markov decision process.

The two algorithms of interest—ANN-PSO and PPO—and a benchmark algorithm operate as the
agent in the MDP process to select actions. All three algorithms are briefly discussed in Sections 2.2–2.4
and are summarized in Figure 2.

2.2. Artificial Neural Network with Particle Swarm Optimization (ANN-PSO)

For ANN-PSO, an artificial neural network is trained to approximate the environment reward
function by mapping states and actions to an expected reward. This is done by minimizing the mean
squared error between predicted and actual reward on collected state–action pair data and is shown
in Figure 2 (ANN-PSO offline preparation section). Once the ANN accurately predicts rewards from
states and actions, particle swarm optimization (PSO) is used on the ANN to find actions that maximize
the expected reward for a given state and is shown in Figure 2 (ANN-PSO online computation section).
ANN-PSO is an off-policy algorithm meaning the algorithm can learn from data collected from other
policies. ANN-PSO’s weaknesses include overfitting to noise in stochastic environments and being
computationally expensive online since PSO performs many iterations to find optimal actions for each
state. Below is a brief explanation of ANN-PSO which uses Mnih et al.’s q-learning formulation to
train the ANN and Kennedy and Eberhart PSO algorithm [37,38] to search for optimal actions.
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Figure 2. Algorithm flow chart for offline preparation and online operation of a steady state system (γ = 0).
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To maximize the reward, a state–action value function, Qπ(s, a), is defined in Equation (1).
This equation states that, given an initial state, the policy’s value of a state–action pair is the expected
cumulative reward of policy π.

Qπ(s, a) = E
[

∑
t≥0

γtrt|s0 = s, a0 = a, π

]
(1)

π is a policy mapping states to actions.
An optimal state-action value function Q∗(s, a) satisfies the Bellman equation which is shown in

Equation (2).

Q∗(st, at) = Est+1∼p(st+1|st ,at)

[
rt + γ max

at+1
Q∗(st+1, at+1)|st, at

]
(2)

With Equation (2), Q∗ can be estimated with a function approximator such as a linear function
or a nonlinear function through iteration. In this paper, an ANN is used to estimate Q∗. Training is
done by discretizing each dimension of the state S and action sets A intoN spaces. Every combination
of the discretized states and actions are passed to the system, which returns the reward. The neural
network is then trained to estimate the reward given a state–action pair. For stochastic environments,
the ANN may overfit to noise which causes a plant–model mismatch.

To find the maximum value state–action pair for the estimated Q∗, PSO is used. PSO is a derivative
free optimizer which uses multiple particles, collectively called the swarm, to search the solution space
to find an optimal action. The particles are initially given random positions and velocities and then are
guided by each particle individual best and the swarm best positions to find the optimal solution of
function f . The algorithm is shown in Figure 2 (ANN-PSO online computation section).

For ANN-PSO, the actions are the positions and the function to be maximized is the reward
returned by the ANN. For every new state, PSO searches for optimal actions. This process is
computationally expensive since there are many particles and iterations that must be performed
for every new state encountered.

2.3. Proximal Policy Optimization (PPO)

While ANN-PSO finds the optimal action by learning values of every state–action pair and
searching for the optimal action, Proximal Policy Optimization [39] learns an optimal policy to sample
actions, given states. PPO is an example of an actor–critic algorithm where a policy network is
trained to maximize the cumulative reward, while a critic is trained to determine how much better the
new policy is and push the probabilities of those actions up or down. PPO is an on-policy algorithm
meaning the algorithm learns from data collected based on the algorithm policy, and thus the algorithm
requires interaction with the environment.

The PPO algorithm for training is shown in Figure 2 (PPO offline preparation section). While online,
the mean action is selected from πθ(at|st) and is shown in Figure 2 (PPO online computational section).

For PPO, the policy, denoted as π(a|s), is an action probability distribution function, given a state.
π(a|s) is approximated using a neural network πθ(a|s) with parameters θ optimized to maximize a
utility function U(θ). U(θ) is shown in Equation (3) and represents the policy expected reward from
time t to time t + t f starting from state st.

U(θ) =
∫

τ
r(τ)p(τ|θ)dτ (3)

τ is all possible trajectories from state st, r(τ) is the discounted reward of τ, and p(τ|θ) is the probability
of τ given parameters θ. The probability distribution is typically a normal distribution.
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Instead of directly maximizing Equations (3) and (4), a surrogate objective with the same gradient
is maximized so constraints can be applied to limit update step sizes.

U∗(θ) = Eτ∼p(τ|θold)

[
r(τ)

p(τ|θ)
p(τ|θold)

]
(4)

However, using r(τ) in U(θ) poses a problem as the agent increases probabilities of all trajectories
with positive reward which leads to high variance and low sample efficiency. Thus, r(τ) is replaced
with a generalized advantage estimation Âτ , which is shown in Equations (5a) and (5b).

Âτ = δt + (γλ)δt+1 + ... + (γλ)T−t+1δT−1 (5a)

δt = rt + γV(st+1)−V(st) (5b)

λ is a factor for trade-off of bias vs. variance, and V(st) is the expected episode cumulative discounted
reward of state st given πθ(a|s). V(st) is approximated with a neural network Vθ(st) and, in this paper,
shares parameters with πθ(a|s).

Âτ provides a baseline by comparing action at received reward to the previous policy estimated
value of state st and pushes the agent to increase probabilities of trajectories that have higher rewards
than the current policy. Combining Equations (4) and (5a) yields Equations (6a) and (6b):

U∗(θ) = Eτ∼p(τ|θold)

[
Âτητ(θ)

]
(6a)

ητ(θ) =
p(τ|θ)

p(τ|θold)
(6b)

To prevent the agent from making excessively large updates, the surrogate objective is clipped as
shown in Equation (7).

LCLIP(θ) = Ê
[
min

(
ητ(θ)Âτ , clip(ητ(θ), 1− ε, 1 + ε)Âτ

)]
(7)

ε is a hyperparameter to limit the policy updates.
This limits how much the policy changes the probabilities of trajectories compared to the old

policy since ητ(θ) denotes trajectory probability ratios between the new and old policies. As the
policy and value function neural networks share parameters in this paper, the objective function
incorporates the value function error. An entropy bonus is also added to encourage the agent to
explore and avoid premature convergence to a suboptimal solution. The final objective is shown in
Equations (8a) and (8b).

LCLIP+VF+S(θ) = Ê
[

LCLIP(θ)− c1LVF(θ) + c2S[πθ ](st)
]

(8a)

LVF = (Vθ(st)−Vtarg
t )2 (8b)

c1 and c2 are hyperparameters, S[πθ ](st) is an entropy bonus function, and Vtarg
t is the observed

cumulative discounted reward from time t to the end of the episode.

2.4. First Principles with Nonlinear Programming (FP-NLP)

Maximizing the reward by using nonlinear programming (NLP) on a first principles model
(FP-NLP) is a reliable and well-accepted approach [40–42]. Thus, FP-NLP is used as a benchmark
to evaluate the performance of the two previous methods. Using FP-NLP requires thorough
understanding of the system governing equations, such as fundamental equations for energy and mass
balances, to formulate the first principles model. This first principles model can then be formulated into
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an optimization problem and solved using NLP algorithms such as an interior-point method for NLP
(IPOPT). While this method does not require learning like ANN-PSO and PPO, the requirement for an
accurate first principles model makes this method difficult to implement in systems where accurate
models are difficult to develop. Furthermore, FP-NLP requires an iterative line search, as shown in
Figure 2 (FP-NLP online computation section), which can lead to long computational times.

3. Case Study

These methods were evaluated by having them perform economic optimization of a steady state
continuously stirred tank reactor (CSTR) model as shown in Figure 3. The values for the model
constants are listed at the end of this section in Table 1. The CSTR is assumed to be well mixed. A mass
balance with species A and B flowing in at rates of v̇A and v̇B, respectively, is shown in Equation (9).

v̇A + v̇B = v̇ = c
√

h (9)

c is a valve constant and h is the liquid height in the tank.

Figure 3. CSTR model.

Inside the CSTR, an elementary, liquid phase, endothermic, irreversible reaction occurs with
Equation (10).

A + B→ C (10)

The rate −rA is given by Equation (11).

− rA = kCACB (11)

CA and CB are the concentrations of A and B in the reactor, and k is related to temperature with
Arrhenius equation as shown in Equation (12).

k = Ae
−Ea
RT (12)

A is the Arrhenius pre-exponential factor, Ea is the activation energy of the reaction, R is the universal
gas constant, and T is the temperature of the reactor.
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Table 1. Model simulation parameters.

Parameter Value Unit

c 1.2 m2.5 ·min−1

h 8 m
A 0.23 m3 · kmol−1 ·min−1

Ea 5000 kJ · kmol−1

R 8.314 kJ · kmol−1 ·K−1
ρ 780 kg ·m−3

cp 3.25 kJ · kg−1 ·K−1

CA,0 15 kmol ·m−3

CB,0 15 kmol ·m−3

T0 500 K
Tub 800 K
V 100.53 m3

∆Hrxn 156 kJ · kmol−1

PA,low 2 $ ·m−3

PA,high 20 $ ·m−3

PB,low 5 $ ·m−3

PB,high 50 $ ·m−3

PC,low 2 $ · kmol−1

PC,high 20 $ · kmol−1

Pq,low 0 $ · kJ−1

Pq,high 2× 10−5 $ · kJ−1

σ 0.1
N 120

As the system is at steady state, the mole and energy balance equations for the system are written
as Equations (13)–(16).

dCA
dt

= 0 = (v̇− v̇B)CA,0 − v̇CA −VA exp
(
−Ea

RT

)
CACB (13)

dCB
dt

= 0 = v̇BCB,0 − v̇CB −VA exp
(
−Ea

RT

)
CACB (14)

dCC
dt

= 0 = −v̇CC + VA exp
(
−Ea

RT

)
CACB (15)

dE
dt

= 0 = v̇ρcp(T0 − T)−V∆Hrxn A exp
(
−Ea

RT

)
CACB + q (16)

A and B are assumed to have similar densities and heat capacities of ρ and cp, respectively,
which remain constant over the operating temperature range. A and B enter with concentrations
CA,0 and CB,0, respectively, T0 is the feed temperature of both species, V is the volume of the reactor,
∆Hrxn is the heat of reaction, and q is the heat input.

Solving for CB using Equation (13) yields Equation (17).

CB =
(v̇− v̇B)CA,0 − v̇CA

VA exp
(
−Ea
RT

)
CA

(17)

Plugging this back into Equation (14) yields Equations (18a)–(18d).
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a0 =
−(v̇− v̇B)CA,0v̇

VA exp
(
−Ea
RT

) (18a)

a1 = v̇BCB,0 +
v̇2

VA exp
(
−Ea
RT

) − (v̇− v̇B)CA,0 (18b)

a2 = v̇ (18c)

CA =
−a1 +

√
a2

1 − 4a0a2

2a2
(18d)

Thus, CC and q can be written as Equations (19) and (20).

CC =
VA exp

(
−Ea
RT

)
CACB

v̇
(19)

q = V∆Hrxn A exp
(
−Ea

RT

)
CACB − v̇ρCp(T0 − T) (20)

The cost per time (CPT) function is defined as Equation (21).

CPT = (v̇− v̇B)PA + v̇BPB + qPq − v̇CCPC (21)

Pi is the price of commodity i and is sampled from a uniform distribution ranging from Pi,low to Pi,high.
The agents can manipulate v̇B within the range of [0, v̇] and the temperature set point (Temp

SP) within [T0, Tub] where Tub is the upper temperature limit for steady state operation of the CSTR.
The goal is to minimize the cost so the optimization problem can be formulated as Equation (22a)
subject to Equations (17), (18a)–(18d), (19), (20), (21), (22b) and (22c).

min
v̇B ,T

CPT (22a)

s.t. Equations. (17), (18a)− (18d), (19), (20), (21)

T0 ≤ T ≤ Tub (22b)

0 ≤ v̇B ≤ v̇ (22c)

For the MDP formulation, the possible states are all combinations of prices, and the possible
actions are all combinations of v̇B and T. p(s0) is a uniform distribution over the ranges of all four
prices, and the reward function is −CPT in Equation (21).

To make the model more realistic, feed concentrations and temperatures were stochastic and
sampled from a normal distribution with a given mean and a relative standard deviation of σ.
Actions were also perturbed by sampling from a normal distribution with a mean of the chosen
action and a relative standard deviation of σ. For each set of prices, the agent selects one action and
the simulation is repeated N times. The average reward is then calculated and returned.

4. Evaluation

Simulations were run on an Intel(R) Core(TM) i7-6500U CPU with 2.50 GHz clock rate and 8 GB
of RAM.

4.1. ANN-PSO Implementation

The neural network was trained to map prices with actions to profits. The prices, PA, PB,PC, and Pq,
and actions v̇B and T were each discretized intoN spaces. N ranges from 3 to 14 to test the performance
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of ANN-PSO given various amounts of training data. All combinations of the prices and actions (N 6)
are fed through the reactor simulation and the profit is returned. The ANNs were configured and
trained using Keras [43] with an Adam optimizer. The network trained on the minimum-maximum
scaled data and k-fold validation was used to evaluate the networks. The network architecture was
optimized by varying number of layers, activation functions, regularization coefficients, and learning
rate. The network trained with N = 13 discretization points performed best and was used for algorithm
comparisons. PSO was done using Pyswarms [44]. The hyperparameters can be found in Table A1.

4.2. PPO Implementation

PPO training was done using Stable Baselines, which is an RL python package [45]. The PPO
agents were trained for 146 ≈ 7.5 × 106 time steps and agents were saved periodically to
investigate performance improvement over training time. The agents were trained in a normalized
vectorized environment and the network used was 2 fully connected layers of 64 units followed
by a long short-term memory layer of 256 units. This was then split into the value and policy
functions. Hyperparameters, such as the entropy coefficient, value function coefficient, activation
functions, and number of epochs were varied to optimize the agent performance. The final network
hyperparameters as well as the particle swarm hyperparameters are listed in Table A2. For evaluation,
action means from the action probability distributions were used.

4.3. Benchmark Algorithms

For FP-NLP, the case model study was coded into GEKKO, an optimization suite [46]. IPOPT was
then used as the NLP solver to minimize the cost. Another strategy evaluated was maximizing the
production of product C regardless of the prices. The actions for maximizing production were T = Tub
and v̇B = v̇

2 .

4.4. Testing and Metrics

To evaluate the agents’ overall performance in profitability, sample efficiency and computational
time, ANN-PSO agents, PPO agents, FP-NLP, and maximum production chose actions for the same
1000 random price combinations. The random prices are not necessarily examples the agents have
seen before, but they are within the range of prices the agents have encountered. The received profits
from the stochastic system, predicted profits, and computational times were saved and compared
between algorithms. To examine the agent actions and their effects on profits, a sensitivity analysis
was performed by holding the prices of B and C at their average values of 27.5 $/m3 and 11 $/kmol,
respectively. Prices for A and q were discretized into 500 points and ranged from 2 to 20 $/m3 and
0 to 2× 10−5 $/kJ, respectively. The agents’ selected actions for each combination of A and q and
the simulation returned profit were recorded. For the sensitivity analysis, the simulation was made
deterministic by setting all random variables to their mean.

5. Results

5.1. PPO Achieves Higher Profits, but ANN-PSO Has Better Training Efficiency

The methods’ average profits for the 1000 random price evaluation are shown in Figure 4. FP-NLP
has the highest average profit at $139.28/min and is followed by PPO best profit of $139.20/min.
ANN-PSO best profit is $138.37/min and max production has a mean profit of $120.23/min. This shows
both methods achieve a higher profit than the maximum production strategy with ANN-PSO and
PPO increase the average profit by 15% and 16%, respectively. PPO is also shown to perform as well as
FP-NLP with PPO achieving 99.9% the profit of FP-NLP.



Processes 2020, 8, 1497 11 of 19

Figure 4. Methods’ learning curves on continuously stirred tank reactor (CSTR) optimization.

Figure 4 also shows ANN-PSO has better training efficiency than PPO, as ANN-PSO profit
overtakes the max production benchmark with ≈ 4.1× 103 data points and plateaus with ≈1.2× 105

data points as compared to PPO, which overtakes the max production benchmark with roughly four
times the amount of data at≈1.6× 104 data points and plateaus at≈2.6× 105 data points. PPO’s lower
training efficiency is due to needing to learn both the policy and the value of the state, while ANN-PSO
only needs to learn the value of the state–action pairs. Furthermore, ANN-PSO exploration is
determined by the fed data while PPO explores based on the stochastic policy. This allows for
easier implementation of ANN-PSO since normal operation data—such as when PID controllers or
expert personnel controls the process—can be used as training data.

More training examples likely would not improve performance of either method as ANN-PSO
and PPO’s average profit starts oscillating near 107 training examples.

While ANN-PSO training efficiency is appealing, PPO still converges to policy with higher profits.
This can be explained by examining the neural networks’ prediction accuracy, shown by parity and
residual plots in Figure 5. Figure 5a shows that ANN-PSO neural network accurately predicts the agent
profits, as seen by the high R2 value of 0.998. However, if the residual plot is examined, the prediction
error has a mean of almost $3/min, indicating the prediction network is overestimating the profit.
This is due to the PSO algorithm exploiting small errors in the neural network that arise from overfitting
to stochastic data. Figure 5b shows that PPO value network has a similarly high R2 value. The residual
plot shows that PPO’s profit prediction errors are evenly distributed around 0 with a mean of −0.01.
PPO does not overpredict the profit due to the update clipping, stochastic policy, and online training.
The update clipping both prevents the critic from overfitting to noise and the actor from exploiting the
critic prediction errors. The stochastic policy helps to further prevent critic error exploitation, and the
online training allows the PPO agent to explore actions with high predicted profit and update the critic
with the observed reward.

Figure 6 shows the computational times of the algorithms to return the optimal action. ANN-PSO
has the longest average computational time of 41 s. PPO and FP-NLP have relatively fast computational
times of 0.002 s and 0.02 s, respectively. This highlights the fast computational time of PPO since the
computation is one forward pass through the policy neural network. Both FP-NLP and ANN-PSO
require iterations to find the optimal action, which results in longer computational times.
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(a) (b)
Figure 5. Parity plots (Row 1) and residual plots (Row 2) for ANN-PSO and Proximal Policy
Optimization (PPO) value functions. (a) ANN-PSO action-value function; (b) PPO value function.

Figure 6. Online average computational times for ANN-PSO, PPO, and FP-NLP.

5.2. Sensitivity Analysis

The results of the sensitivity analysis are shown in Figure 7. For these pricing cases, the temperature
set point selection is the main variable affecting price, while the flow of B can be held nearly constant.
All three methods have similar profit contour plots, but ANN-PSO has a more jagged profile and
overall darker contour indicating the agent had a lower profit compared to the other methods. This is
caused by PSO exploiting the errors in the ANN, which is shown clearly in the ANN-PSO flow of
B actions. While FP-NLP flow of B ranges from 1.63 to 1.68 m3/min, ANN-PSO ranges from 1.6 to
1.73 m3/min. Overall, the ANN-PSO contour plot appears random showing how PSO finds apparent
optimal actions in areas the ANN overpredicts the reward. The erroneous flow of B may contribute
to the suboptimal temperature set point selection as ANN-PSO typically selects lower temperatures
compared to FP-NLP when Pq is between 0.25 to 0.75 $/kJ. The temperature profile is also jagged,
indicating the PSO is again exploiting the ANN model overprediction.
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Figure 7. Contour plots for methods’ profits, flows of B, and temperature set points over prices of A and q.
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PPO on the other hand has smoother actions and the profiles appear to be very similar to
FP-NLP actions. The main reason for the smooth action contour plots is because instead of optimizing
a complicated ANN, PPO is mapping the state to actions with a continuous function. The main
difference between FP-NLP and PPO actions is in the flow of B, but the difference between the actions
is negligible. PPO is choosing actions based on the training with the stochastic environment, and
FP-NLP is choosing actions based on a perfect deterministic environment. This causes PPO’s actions
to be slightly suboptimal in the tested deterministic environment compared to FP-NLP.

6. Conclusions

In this study, we compared the performance and applicability of two RL algorithms—ANN-PSO
and PPO—by exploring their methods and applying them on stochastic steady-state economic
optimization of a CSTR with FP-NLP as a benchmark algorithm [4–6]. We evaluate the RL algorithms’
performance with their profitability and online computational times, and their applicability with their
data requirements and training efficiencies. On the case study, PPO shows better performance as
its average profits are higher compared to ANN-PSO and its online computational times are faster.
ANN-PSO shows better applicability as the algorithm can train with normal operational data and
converges to a policy with less training data. Both algorithms perform similarly to FP-NLP with
ANN-PSO and PPO achieving 99.3% and 99.9% of FP-NLP’s average profit, respectively. PPO has
the fastest online computational time, 10 and 10,000 times faster than FP-NLP and ANN-PSO,
respectively. While these results are based on this case study, they may be useful guidelines for
more complex applications.

Investigation of the ANN-PSO residual plots reveal PSO exploits overpredictions in the ANN,
resulting in suboptimal actions. PPO does not have this issue as it has update clipping and a stochastic
policy. The ANN exploitation is also seen in a similar algorithm named deep deterministic policy
gradient. Some methods to combat this issue are to clip the artificial neural network and perturb
actions to prevent ANN error exploitation [47].

As ANN-PSO has high training efficiency, researching methods to limit value overprediction to
improve performance, such as training two ANNs and taking the minimum predicted profit of the two,
would be beneficial. Other off-policy algorithms should also be investigated like twin-delayed deep
deterministic policy gradients and V-trace to observe their performance on a chemical system after
training on operational data. Other improvements to ANN-PSO include decreasing the computational
time. Our previous work shows replacing PSO with an actor ANN can significantly reduce the
online computational time and find an optimal policy [48]. As PPO and other on-policy algorithms
requires interaction with an environment, they should be explored in their ability to augment FP-NLP.
Another research topic is exploring how these algorithms perform with more complex systems or
when the system changes such as multiple reactions, reversible reactions, or heat exchanger fouling.
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Nomenclature

Acronyms
ANN Artificial neural network
ANN-PSO Artificial neural network with particle swarm optimization
CSTR Continuously stirred tank reactor
FP-NLP First principles with nonlinear programming
MDP Markov decision process
NLP Nonlinear programming
PPO Proximal policy optimization
PSO Particle swarm optimization
Temp SP Temperature set point

MDP symbols
γ Factor to discount future rewards
R Real numbers
A Set of possible actions in the environment
at Action at time t
m Dimension of action space A
n Dimension of state space S
p(st) Probability distribution for state st
R(st, at) Probability distribution of rewards given st and at
rt Reward received at time t
S Set of possible states in the environment
st State at time t
t Time after environment episode starts

ANN-PSO symbols
E[x] Expected value function of x
N Number of times state and action sets are discretized for training data generation
π Function which maps states to actions
Qπ(s, a) Value of a state-action pair given policy π

PPO symbols
ε Coefficient to limit policy updates in LCLIP

ητ(θ) Trajectory τ probability ratio between new and old policies
Âτ Generalized estimated advantage of parameters θ over θold
λ Factor for bias vs. variance trade-off
τ Trajectory starting from state st
θ Vector of policy and value neural networks parameters
c1 Coefficient to weight value function loss in LCLIP+VF+S(θ)
c2 Coefficient to weight entropy bonus in LCLIP+VF+S(θ)
LCLIP+VF+S(θ) Final objective function to maximize LCLIP, minimize Vθ(st) mean, and encourage

exploration
LCLIP(θ) Clipped objective function to prevent excessively large updates
LVF(θ) Mean squared error between Vθ(st) and Vtarg

t
r(τ) Discounted reward of trajectory τ
S[πθ ](st) Entropy bonus function for exploration encouragement
t f Time length of trajectories τ
U(θ) Policy expected cumulative reward from time t to time t + t f starting from state

st given parameters θ
Vθ(st) Expected episode cumulative discounted reward given policy with parameters θ
Vtarg

t Observed cumulative reward from time t to the end of the episode

Case study symbols
∆Hrxn Heat of reaction
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v̇ Total Flow Rate
v̇i Flow rate of species i
A Arrhenius constant
ρ Density of all species
σ Relative standard deviation for stochastic parameters
c Valve constant
Ci Concentration of species i
cp Specific heat capacity of all species
Ci,0 Feed concentration of species i
CPT Cost per time
Ea Reaction activation energy
h Height of CSTR
k Reaction constant
N Number of times simulation is repeated for one set of prices and actions
Pi Price of commodity i
Pi,high High price of commodity i
Pi,low Low price of commodity i
q Heat input rate
R Universal gas constant
rA Reaction rate
T Temperature of CSTR contents
T0 Feed temperature
Tub Upper limit on CSTR temperature
V Volume of CSTR

Appendix A. Hyperparameter Tables

Table A1. ANN-PSO hyperparameters.

Hyperparameter Value

Adam learning rate 1× 10−4

Adam exponential decay rate for the first-moment estimates 0.9
Adam exponential decay rate for the second-moment estimates 0.999
Adam small number to prevent any division by zero 10−7

ANN layers 1
ANN nodes 64
ANN activation function ReLU
ANN L1 norm regularization coefficient 10−4

ANN Loss function Mean squared error
PSO cognitive parameter 1× 10−3

PSO social parameter 1× 10−3

PSO inertia parameter 0.9
PSO swarm size 100
PSO lower velocity bound 1× 10−8

PSO upper velocity bound 1
PSO iterations 100
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Table A2. PPO hyperparameters.

Hyperparameter Value

Policy Value Shared Network layers 2 Fully connected layers + 1 LSTM layer
Policy Value Shared Network structure [64,64,128]
γ 0
n_steps (t f ) 100
ent_coef (c2) 0.01
learning_rate 2.5× 10−3

vf_coef (c1) 0.5
max_grad_norm 0.5
lam (λ) 0.95
nminibatches 4
noptepochs 4
cliprange (ε) 0.2
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