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Abstract: The design and synthesis of new multifunctional organic porous polymers has attracted
significant attention over the years due to their favorable properties, which make them suitable
for carbon dioxide storage. In this study, 2-, 3-, and 4-hydroxybenzaldehyde reacted with
phenyltrichlorosilane in the presence of a base, affording the corresponding organosilicons 1–3,
which further reacted with benzidine in the presence of glacial acetic acid, yielding the organic
polymers 4–6. The synthesized polymers exhibited microporous structures with a surface area
of 8.174–18.012 m2 g−1, while their pore volume and total average pore diameter ranged from
0.015–0.035 cm3 g−1 and 1.947–1.952 nm, respectively. In addition, among the synthesized organic
polymers, the one with the meta-arrangement structure 5 showed the highest carbon dioxide adsorption
capacity at 323 K and 40 bar due to its relatively high surface area and pore volume.

Keywords: carbon dioxide storage; adsorption; porous organic polymers; Schiff base; polysilicates

1. Introduction

Fossil fuels are under pressure due to the constantly increasing energy demand in many industrial
applications. However, their combustion leads to high levels of greenhouse gas (e.g., carbon dioxide
(CO2)) emissions [1], which in turn cause several environmental problems including weather changes
and global warming [2]. Therefore, the capture of CO2 plays a vital role in reducing the negative
effects of global warming [3–6]. The efficient capture and storage of CO2 requires its separation from
other gases, such as hydrogen (H2), methane (CH4), and nitrogen (N2), which can be achieved under
high-pressure conditions during pre-combustion or at atmospheric pressure and temperature during
post-combustion [7]. The storage process involves the adsorption of CO2 followed by desorption of
the gas in a pure form.

To date, the commercial scale processes for the separation of CO2 from gas flue have mainly focused
on the use of amines, aqueous ammonia, and potassium carbonate as absorbents [8,9]. Although the
use of chilled ammonia is simple and easy and generates ammonium carbonate as a solid at a relatively
low temperature (<20 ◦C) [9], the process requires significantly high energy levels. Alternatively,
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a mixture of polyethylene glycol and dimethyl ether has been used as a CO2 absorbent [10], as it
requires low energy for the generation step. However, this method is suitable only for streams with high
pressure. Ionic liquids also require low energy for the solvent regeneration and can absorb CO2 through
physisorption [11], but have high viscosity, which limits the absorption rate of CO2 [12]. In contrast,
solid CO2 adsorbents are more beneficial in terms of energy efficiency compared to absorbents, as they
can form van der Waals (physisorption) or covalent (chemisorption) bonds with CO2 [13].

Porous materials, such as activated carbons, zeolites, molecular sieves, and metal oxides,
are common CO2 physical adsorbents [14] and their properties can be easily modified by incorporating
several functional groups [15]. In particular, porous materials should have low density and
high CO2 adsorption capacity, surface area, and physical and chemical stability under practical
conditions [16]. Porous organic polymers (POPs) have high CO2 adsorption efficiency and stability
in harsh environments, well-defined structure of porous networks, good lifetime, and recyclability,
which make them suitable materials for gas storage [17]. Hence, the development of new POPs as gas
storage media, heterogeneous catalysts, molecular sensors, light harvesters, and other applications
has recently attracted considerable attention [18–25]. POPs can be synthesized either through simple,
convenient, and high yielding synthetic procedures or by using suitable monomers [18], which may
bear multifunctional groups that lead to high-porosity materials with different geometries [26–30].
For example, MCM-41, produced from pulverized coal fly ash, has a large pore volume and acts as an
excellent CO2 storage medium in the presence of amine [31]. The implementation of both strategies
allows full control of both the functionality and the porosity of the synthesized POPs. Furthermore,
it has been reported that porous polymeric materials with tetrahedral geometry have a high surface
area, porosity, rigidity, and gas adsorption capacity [32–37].

In this regard, our group has recently designed, synthesized, and examined the application of
various materials as gas storage media [38–43]. Herein, we synthesized a series of new polymeric
materials that contain silicon and a Schiff base moiety to investigate their properties and applicability
as CO2 storage media. Specifically, three silicon-containing polymers were successfully prepared with
a porous amorphous surface and different particle diameters. Further characterizations revealed that
all polymers were thermally stable at temperatures of up to 400 ◦C and could reversibly adsorb CO2

within their pores. Finally, the estimation of the CO2 uptake by the three polymers revealed that their
pore size distribution, surface area, and geometry could significantly affect their CO2 storage capacity.

2. Materials and Methods

2.1. Instrumentation

The FTIR and 1H NMR spectra (500 MHz) were recorded on a Shimadzu 8400 spectrophotometer
(Shimadzu, Tokyo, Japan) and a Bruker DRX500 NMR spectrometer (Bruker, Zürich, Switzerland),
respectively. Energy dispersive X-ray spectroscopy was analyzed on a Bruker XFlash 610. The field
emission scanning electron microscopy (FESEM) images were obtained using a SIGMA 500 VP
microscope (ZEISS Microscopy, Jena, Germany), while the X-ray powder diffraction (XRD) spectra
were measured on an ADX-2500 X-ray diffraction instrument (Angstrom Advanced, Inc., Stoughton,
MA, USA). The thermogravimetric analysis (TGA) was performed on a TGA4000 thermogravimetric
analyzer (PerkinElmer, Waltham, MA, USA) and the differential scanning calorimetry (DSC) analysis
was carried out on an ASTM E1356 calorimeter (Intertek, Wilton UK). A Quantchrome analyzer was
used to record the nitrogen (N2) adsorption–desorption isotherms at 77 K, while the surface area and
pore sizes were calculated using the Brunauer–Emmett–Teller (BET) method. The pore volumes were
determined at a relative pressure (p/p◦) of 0.98. The CO2 uptake was estimated on an H-sorb 2600
high-pressure volumetric adsorption analyzer (Gold APP Instrument Corporation, Beijing, China) at
323 K and 40 bar. Before the measurements, the polymers were dried at 150 ◦C under inert atmosphere
(N2) for 5 h and degassed at 50 ◦C under dynamic vacuum for 1 h. A standard procedure was used for
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the preparation of sample for adsorption experiments and the samples were sputter coated by gold
(ca. 15 nm).

2.2. Synthesis of Organosilicons 1–3

To a stirred solution of 2-, 3-, or 4-hydroxybenzaldehyde (3.66 g, 30 mmol) in dry pyridine
(20 mL) at 0 ◦C under nitrogen atmosphere, a solution of phenyltrichlorosilane (2.11 g, 10 mmol)
in dry tetrahydrofuran (THF; 10 mL) was added dropwise over 30 min through a dropping funnel.
The mixture was stirred at 40–45 ◦C for 6 h and then was allowed to cool to room temperature.
The generated solid was removed by filtration and washed with THF (3 × 25 mL). The filtrate was then
concentrated under reduced pressure, affording a yellow oil, which was washed with cold distilled
water (2 × 10 mL) and dried under reduced pressure at 60 ◦C for 2 h to give the corresponding
organosilicon 1, 2, or 3.

2.3. Synthesis of Polymers 4–6

A mixture of 1, 2, or 3 (4.65 g, 10 mmol) and benzidine (2.76 g, 15 mmol) in THF (25 mL) containing
glacial acetic acid (AcOH; 0.5 mL) was stirred under reflux for 5 h under nitrogen atmosphere.
The mixture was allowed to cool to room temperature, generating a solid, which was afterwards
filtered, washed with THF (2 × 10 mL) and hexane (3 × 10 mL), and dried under reduced pressure for
2 h to give the corresponding polymer 4, 5, or 6 as an orange powder.

3. Results

3.1. Synthesis of Organosilicons 1–3

The reaction of 2-, 3-, and 4-hydroxybenzaldehyde with phenyltrichlorosilane in pyridine as a
base at 40–45 ◦C for 6 h afforded the desired [(phenylsilanetriyl)tris(oxy)]tribenzaldehydes 1–3 as
yellow oils in 73–85% yields (Scheme 1).
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Scheme 1. Synthesis of organosilicons 1–3.

A strong absorption band was observed at 1686–1713 cm−1 in the FTIR spectra of 1–3
(Figures S1–S3), which was attributed to the aldehyde carbonyl group, while no absorption band
corresponding to the hydroxyl group of the hydroxybenzaldehydes was detected, implying the effective
reaction of the starting aldehydes. The formation of the desired organosilicons was confirmed by the
appearance of the characteristic peak of the Si–O group at 1161–1174 cm−1. The most common FTIR
absorption bands detected for 1–3 are reported in Table 1.
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Table 1. Common FTIR absorption bands of organosilicons 1–3.

Organosilicon
FTIR (ν, cm−1)

C–H C = O C = C Si–O C–O

1 3010 1686 1599 1161 1136
2 3036 1709 1587 1174 1155
3 3077 1713 1612 1167 1142

Moreover, a singlet peak was observed at 9.93–9.91 µmol/mol in each of the 1H NMR spectra of
1–3 (Figures S4–S6), which corresponded to the protons of the aldehyde groups, while the protons
of the aromatic moieties were also detected (Table 2). In particular, the structure of 2 was further
confirmed by the 13C NMR spectroscopic data (Figure S7), where a very strong peak was observed at
191.3 µmol/mol, corresponding to the carbonyl group of aldehyde, while all the expected aromatic
carbons were identified within the 153.9–116.8 µmol/mol region.

Table 2. 1H NMR data of organosilicons 1–3.

Organosilicon 1H NMR (500 MHz: DMSO-d6, δ, µmol/mol, J in Hz)

1 9.93 (s, 3H, 3 × CHO), 7.54–7.39 (m, 5H, Ph), 7.11–6.96 (m, 12H, Ar)
2 9.92 (s, 3H, 3 × CHO), 7.81–7.72 (m, 5H Ph), 7.61–7.32 (m, 12H, Ar)
3 9.91 (s, 3H, 3 × CHO), 7.89–7.80 (m, 5H, Ph), 7.74 (d, J = 8.3 Hz, 6H, Ar), 7.62 (d, J = 8.3 Hz, 6H, Ar)

3.2. Synthesis of Polymers 4–6

The reaction of 1–3 and benzidine in boiling THF in the presence of glacial acetic acid for 5 h gave
the corresponding polymers 4–6 in 79–85% yields (Scheme 2). The FTIR spectra of 4–6 (Figures S8–S10)
indicated the absence of the carbonyl group, clearly implying the polymerization of 1–3. Additional
absorption bands were also detected with the 1605–1647 cm−1 region, which were attributed to the
azomethane bond (C=N). The most common FTIR absorption bands of 4–6 and their melting points,
yields, and color are shown in Table 3.
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Table 3. Common FTIR absorption bands of 4–6 and their melting points, yields and color.

Polymer Melting Point (◦C) Yield (%) Color
FTIR (ν, cm−1)

C = N C = C Si–O

4 261–265 79 Light yellow 1605 1572 1169
5 286–291 80 Light brown 1647 1584 1173
6 246–250 85 Dark yellow 1626 1580 1113

To further confirm the formation of the desired polymers, the elemental composition of 4–6 was
determined by energy-dispersive X-ray spectroscopic measurements (Figures S11–S13), indicating the
presence of carbon, nitrogen, oxygen, and silicon in 84.4–85.6, 6.5–7.1, 6.5–7.0, and 1.0–1.5%, respectively.

3.3. Surface Morphology of Polymers 4–6

The FESEM technique provides not only less distorted, but also high-resolution pictures for the
surface of the examined material [44]. Thus, it was used in this study to explore the surface morphology
of the synthesized polymers 4–6 (Figure 1 and Figures S14–S16).
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In particular, the FESEM images shown in Figure 1 indicated that 4–6 were porous materials
and irregular in shape, uniform, and contained cracks within smoother surfaces. However,
despite their similar surface morphology, the particles within the surface had different shape, size,
and diameter. Specifically, the particle diameter of polymers 4, 5, and 6 was 35.3–109.8, 40.2–178.4,
and 45.2–208.2 nm, respectively.

The X-ray powder diffraction was also used to examine the surface of the synthesized polymers
4–6, as it can provide useful information about the crystallinity, defects, average grain size, and strain
of the examined material [45]. As shown in Figure 2, polymers 4–6 had amorphous and very similar
structures, which contained an aura that was described as a broad hump. There was no degree of any
crystalline form within the polymeric structure. The amorphous structure could result from the sliding
of the layers, which destructed the crystalline forms. It should also be noted that there were no peaks
indicating a specific recurring shape within the structures.
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3.4. TGA and DSC of Polymers 4–6

TGA is mainly used to explore the thermal stability and composition of polymers [46]. When the
temperature rises, polymers may lose weight, and volatile components, such as low molecular weight
oligomers, moisture, or residual solvents, can be abstracted. It is also known that the degradation of
polymers at high temperatures leads to the formation of volatile components due to chain scission,
elimination of side groups, and unzipping to monomers [47,48]. Thus, the weight loss of the synthesized
polymeric materials could be estimated by TGA.

Figure 3 shows a significant weight loss was observed between 285 ◦C and 400 ◦C (Table 4),
suggesting that the polymers 4–6 consisted of only one phase due to the lack of secondary products.
DSC is also used to measure various thermal parameters of materials [49]. The glass transition (Tg) and
melting (Tm) temperatures for polymers 4–6 were determined from the DSC measurements (Table 4,
Figure 3). According to these results, we concluded that polymers 4–6 are amorphous and thermally
stable materials at a temperature up to 290 ◦C and have endothermic peaks.
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Table 4. Tg, Tm, and weight loss temperatures of polymers 4–6.

Polymer
DSC TGA

Tg (◦C) Tm (◦C) Weight Loss Temperature (◦C)

4 220 253 400
5 225 290 295
6 175 245 285

3.5. Surface Area and Porosity of Polymers 4–6

The BET method is generally used to estimate the surface area of the examined adsorbents [50,51].
The collected data are displayed in the form of a N2 adsorption isotherm, which is obtained by
plotting the quantity of the adsorbed gas against the relative pressure. The N2 adsorption–desorption
measurements of polymers 4–6 at 77 K were of type III with no single-layer adsorption and their
average pore diameter and total volume were less than 2 nm (i.e., microporous materials) and
0.015–0.034 cm3 g−1, respectively (Table 5). The N2 adsorption–desorption and pore size distribution
isotherms of polymers 4–6 are shown in Figures 4 and 5. The BET surface area (SBET) of polymers 4, 5,
and 6 was relatively low (Table 5). Clearly, both the surface area and pore volume of polymers 4–6 are
lower compared with those for activated carbons [52].
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Table 5. Textural properties of polymers 4–6.

Polymer SBET (m2 g−1) a Total Volume (cm3 g−1) b Pore Size (nm) c,d

4 12.112 0.016 1.950
5 18.012 0.034 1.952
6 8.174 0.015 1.947

a SBET was calculated from the N2 adsorption isotherms using the BET method. b The total pore volume was calculated
at p/p◦ = 0.98. c Average pore diameter. d Adsorption and desorption were carried out in the same conditions.Processes 2020, 8, x FOR PEER REVIEW 9 of 14 
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Porous materials are often described based on the size of the pores. However, the reported average
pore size cannot be used to describe the porosity of the synthesized polymers. The synthesized POPs
have mainly microporous structures, along with mesoporous, macroporous, and other materials.

3.6. CO2 Adsorption of Polymers 4–6

The CO2 adsorption of polymers 4–6 was investigated at 323 K and 40 bar. High temperature
and pressure were used in order to maximize the CO2 uptake by polymers based on our previous
work [40–43]. The CO2 adsorption isotherms for the adsorbed CO2 within the polymer pores under
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the applied temperature (323 K) and pressure (40 bar) conditions are shown in Figure 6. Polymers
4–6 showed a reasonable CO2 uptake in the range of 11.295–30.581 cm3 g−1 (Table 6), while polymer 5
with the meta-arrangement exhibited the highest CO2 uptake (6.0 wt%), probably due to its relatively
high surface area (18.012 m2 g−1) and total pore volume (0.034 cm3 g−1) compared to the other two
polymers with ortho- and para-arrangements. Similar findings have been reported for polyphosphates
containing 1,4-diaminobenzene and benzidine [41,42]. It was thus clearly indicated that the pore size
distribution and surface area can affect the CO2 storage capacity of polymers 4–6 under the applied
conditions. Since these parameters are probably mainly controlled by the geometry of the polymer
building blocks, the higher CO2 adsorption capacity of 5 could also be explained.
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Table 6. CO2 adsorption capacity of polymers 4–6 at 323 K and 40 bar.

Polymer
CO2 Uptake

cm3 g−1 a mmol g−1 b Wt %

4 20.418 0.910 4.0
5 30.581 1.364 6.0
6 11.295 0.503 2.2

a The volume occupied of adsorbed CO2 per gram at the thermodynamic state. b The millimoles of the adsorbed
gas per gram of the substance.

The adsorbent–adsorbate interactions were relatively weak and the gas was clustered around
the –CH=N group within the polymer surface [53]. The surface area of polymeric materials is not the
only contributing factor to the adsorption of CO2. However, polar groups such as –CH=N, –OH, NH2,
and O=C–NH within the skeleton of the POPs can lead to a high CO2 uptake by tuning the isoelectric
head of adsorption [54–58].

The storage capacity of POPs 4–6 was also comparable to that reported for metal
complexes containing valsartan [39], and telmisartan [40], and for polyphosphates containing
1,4-diamainobenzene [41]. Instead, polyphosphates consisting of benzidine [42] and melamine
Schiff bases [43] showed better CO2 uptake than 4–6, possibly due to the tunable pore size of their
particles and the presence of functional groups. Nevertheless, in this case, it should be considered
that a direct comparison between phosphate- and silicate-containing polymers is difficult. The newly
synthesized POPs are easy to produce, have high thermal stability, and their surface area and pore
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structures can be tuned to maximize CO2 uptake. Therefore, these materials have potential to be used
in gas capture applications.

4. Conclusions

Three silicon-containing POPs with ortho-, meta-, and para-arrangements were synthesized and
their structures and properties were established. The synthesized porous polymers had different
properties and adsorption capacity toward CO2 due to their different surface area and pore size
distribution. Among the synthesized POPs, the meta-arranged polymer (5) exhibited the highest CO2

uptake, as it had a relatively high surface area and pore total volume compared to polymers 4 and 6.
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