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Abstract: Sensors and process control systems are essential for process automation and optimization.
Many sectors have adapted to the Industry 4.0 paradigm, but copper smelters remain hesitant to
implement these technologies without appropriate justification, as many critical functions remain
subject to ground operator experience. Recent experiments and industrial trials using radiometric
optoelectronic data acquisition, coupled with advanced quantitative methods and expert systems,
have successfully distinguished between mineral species in reactive vessels with high classification rates.
These experiments demonstrate the increasing potential for the online monitoring of the state of a charge
in pyrometallurgical furnaces, allowing data-driven adjustments to critical operational parameters.
However, the justification to implement an innovative control system requires a quantitative framework
that is conducive to multiphase engineering projects. This paper presents a unified quantitative
framework for copper and nickel-copper smelters, which integrates thermochemical modeling into
discrete event simulation and is, indeed, able to simulate smelters, with and without a proposed set of
sensors, thus quantifying the benefit of these sensors. Sample computations are presented, which are
based on the authors’ experiences in smelter reengineering projects.

Keywords: Industry 4.0; copper smelter; nickel-copper smelter; radiometric sensors;
Peirce-smith converting; matte-slag chemistry; discrete event simulation; adaptive finite differences

1. Introduction

Modern metallurgical installations such as steel plants and copper smelters require a range of
plant sensors and process control systems to attain their highest efficiency. It is often stated that the
levels of so-called “smart automation” today represents the fourth-generation industrial revolution
(sometimes also called “Industry 4.0”)—following the first, considered as the power generation and
mechanical automation (early 1800s), the second as widespread industrialization (early 1900s), the third
as electronic automation (starting 1950s), and, now, the fourth [1], benefitting from modern information
and communication technology (ICT), as illustrated in Figure 1. Learning from history, it is well-known
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that if a plant does not remain up to date, taking advantage of modern but proven equipment and
controls, then it lags its competitors. This paper discusses the application of techniques, sensors,
and mathematical modeling that can support copper smelters in their endeavors to modernize their
operations through data acquisition and, thus, remain competitive.
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By way of background, copper smelters [2] are quite complex, with a number of individual
high-performance operating units functioning together. Two of the key primary instrumentation and
control needs in copper smelting today—and throughout history—are air (or oxygen) measurement
and control and furnace temperature. In February 1956, a paper was presented at the AIME Annual
Meeting in New York on the fine and well-recognized converter operation at the Noranda smelter
(now Glencore Horne) located in Rouyn-Noranda, Quebec, Canada [3].

After describing how the production capacity at the fairly new plant increased over the previous
two decades since the start-up (in 1927) by simply installing additional and/or larger units, the author
discussed a major effort at further increasing production capacity that included the installation of
reliable instruments for measuring both the instantaneous air flow and reporting the accumulated
air blown over any given time interval. The significance and benefits of this new instrumentation
(higher production rates) were subsequently described; of interest, the converters at this plant reached
record or near-record air blowing rates in the industry at this time, reflecting the fact that it was one
of the leading plants of the day. Of course, such equipment is mandatory today, coupled with the
distributed control system (DCS) and advanced computer models to provide feedback for optimizing
the operation.

Furnace temperature measurements at the time were made by an optical pyrometer mounted so
that it pointed downward onto the molten bath. While generally reliable, it was often prone to dust and
fume build-up affecting a clear sight line; unsmelted flux and other materials on the bath could also
lead to low temperature readings. Some thirty years after the above noted paper [3], a new pyrometer
instrument operated by sighting directly into the bath through one of the tuyères was described at the
Copper 87 conference held in Viña del Mar, Chile [4]. During the discussion, the authors were asked
about the cost of the new instrument. An indicative preproduction price range was given when the
questioner loudly stated that he could buy “a Mercedes-Benz automobile” for the price mentioned,
whereupon the authors responded that if the questioner installed one of these instruments at his plant,
the profits he would make would allow him to purchase quite a few Mercedes! The point is that proper
selection and use of reliable instruments for automated data acquisition and control are vital for a
proper functioning plant to remain competitive, as the cost of sensors are comparatively modest.

In batch processes, such as steelmaking or copper converting, knowledge of the precise endpoint
of the operation is extremely important for compositional control and optimization of the subsequent
refining operations.
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The Boliden’s Rönnskär smelter, located at Skelleftehamn, Sweden, operates one of the best
converter aisles in the world today, in the authors’ opinion. They also pioneered the use of the
ingenious Semtech Optical Process Control (OPC) sensor device for precise endpoint determination [5]
to detect when the last of the iron was expelled into slag and, subsequently, when the last of the
sulfur was expelled into the SO2 offgas. This instrument spectrometrically measures trace amounts
of lead and copper sulfides and oxides in the offgas and signals when the level of sulfides starts
to decrease, signaling the end of the batch [6]. The precise endpoint control saves significantly in
processing time at Rönnskär in the subsequent anode furnace, thus lowering operating costs and
allowing higher throughput.

In spite of the successful implementations of modern sensors at certain smelters such as Rönnskär,
there is a general hesitance for copper smelters to adopt sensor arrays, as it is often unclear what the
operational implications will be. Indeed, it is unclear what will be the series of changes that will be
necessary so that the perceived benefits of the sensors will be manifest, and it is therefore difficult to
quantify what will be the true impact of these new sensors. This paper presents a unified quantitative
framework for copper and nickel-copper smelters, which integrate thermochemical modeling into
discrete event simulations and is intended to assist in smelter reengineering projects that feature
innovative sensors in consideration the Industry 4.0 paradigm.

2. Radiometric Sensors for Extractive Pyrometallurgy of Copper

Within copper smelters, the reality is that even the 3.0 industrial revolution (information technology
(IT) and automation) still has room for continued development. This current condition limits the ability
to integrate Industry 4.0 developments for process optimization. Indeed, the degree of analytical
instrumentation usage for the monitoring and control of the smelter processes is limited. As a result,
the information available for operational decision-making at many plants is mainly based on static
mass and energy balances. In such cases, the operational dynamics continues to depend largely on the
experience of ground operators.

Only a handful of advanced measurement instruments have gained industry acceptance for
operational monitoring and control in copper pyrometallurgical reactors. The aforementioned Semtech
OPC system, which has been on the market for more than 25 years, monitors pyrometallurgical variables
by analyzing the emission spectrum of flames emitted by gases during the conversion of copper sulfide
mattes within Peirce-Smith (PS) converters. Additionally, the Noranda Pyrometer, configured solely
for bath furnaces using blowing tuyères, has been on the market since the 1980s without any change to
the original concept and with only some upgrades to the unit’s robustness (with regard to assembly,
material selection, etc.). By measuring radiation through an analog array, it monitors the temperature
of the molten bath by applying Planck’s law for two fixed wavelengths. Other instruments include
level measurement in a feed bin and furnace melts and equipment vibration monitoring.

One option for the advancement of process monitoring and control systems in copper smelters is
to modernize the use of radiometric measurements, since this approach was previously validated with
both the OPC system and the Noranda Pyrometer. A series of proposed concepts and results from
initial industrial trials are discussed here.

2.1. Reactive Systems

A recent work focused on radiometric optoelectronic sensors that consider a broad spectrum,
which includes the visible range up the near infrared range [7–9]. This approach is different from
available commercialized sensors, which only analyze a limited selection of wavelengths. The idea
here is to analyze both the continuous and discontinuous parts of the spectrum, as well as its
dynamics in different time scales. The purpose is to correlate the measured spectral radiation to the
operational conditions of the reactors following the emission of radiation from the oxidation reactions.
These sensors also measure temperature with better precision than the Noranda Pyrometer by using
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more sophisticated techniques to select the appropriate (two or more) wavelengths. The sensor thus
solves the complex problem of simultaneously measuring emissivity and temperature.

Results from an experiment using a drop tube setup for the flash oxidation of copper concentrates
(Figure 2) validate the formation of wustite (FeO), magnetite (Fe3O4), and copper oxides (CuO/Cu2O)
as indicators of the concentrate smelting/oxidation/combustion process [7–9]. This information is
of special interest to track the physicochemical dynamics of the process in real-time and establish
operating criteria for a smelting reactor. Examples of such criteria could include adjustments to
concentration/oxygen ratios, oxygen enrichment for the incoming blast, and the quantity of cold charge
that will be required to maintain the heat balance.
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Figure 2. Radiometric measurement scheme and associated radiative processes: (a) single-heated
particle radiative emission with its surroundings, in which the intensity I of the emitted radiation is a
function of wavelength λ, particle temperature Tp and particle emissivity εp and (b) sensing scheme
depicting the different particle states as they fall through the reaction zone (adapted from [8]).

The spectral acquisition system consists of a multicore optical fiber with its own cooling process
(Figure 2b), which measures the combustion flame radiation. Figure 2b shows a simple combustion
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scheme for sulfide particles covering the physical phase changes that a particle can experience inside
the reaction zone. However, measuring the spectrum is a complex task. As shown in Figure 2a, there is
an ensemble of physical and chemical processes that complicate this measurement. One example is
drop tube radiation caused by increased electrical resistance due to the higher temperatures; processing
these spectral signals can, however, mitigate the effect of the unwanted radiation [8,9].

Applying specialized algorithms in the treatment of the spectral signals obtained from the
experiment, coupled with multivariate data analysis methodologies, allows for the identification and
classification of copper and iron sulfide minerals present in the blend [10]. These results are particularly
important as they demonstrate that spectral data obtained from the oxidation process can be used to
identify the type of charge being treated within a molten bath. The controlled bench-scale laboratory
study was carried out on several different types of concentrate. An exploratory analysis of the results
using principal component analysis (PCA) applied to the spectral data depicted high correlation features
among species with different mineral characteristics but similar elemental compositions. Classification
algorithms were tested on the spectral data, and a classification accuracy of 95.3% was achieved using
a support vector machine (SVM) classifier with a Gaussian kernel. Initial industrial-scale trials with a
prototype have confirmed these results [10].

2.2. Nonreactive Systems

Despite tremendous advances in the development of passive and active photonic sensors, such as
hyperspectral imaging (HI) and laser-induced breakdown spectroscopy (LIBS), real-time analytical
sensors do not exist at present for the conditions of pyrometallurgical copper processing. To date,
there is no commercial instrument capable of online quantification of copper content (% Cu) without
contact during tapping operations. Nor can the available sensors discriminate between the phases that
are of particular interest to smelter operations. The distinction between matte and slag during the
tapping of a smelting furnace can significantly impact copper recovery, yet this function is heavily
reliant on the experience of operators involved in tapping.

However, in the last decade, the spectral behavior of pig iron and slag in the ferrous industry
has been studied to estimate different variables that allow for improved control of the tapping
process [11,12]. These models describe the parameters contained in the iron–slag mixture during blast
furnace tapping, such as iron emissivity, casting depth, slag layer thickness and absorption coefficients,
and radiometric parameters (e.g., reflectance at the iron-slag interface). The methodology begins
by determining a spectral range in which the radiation of the molten phases is comparatively high.
This facilitates detection by a silicon charge coupled device (CCD) camera, which is sensitive in the
visible spectral range and part of the near-infrared. An optical filter centered at 650 nm was used
together with the optics, such that the radiation emitted by the wash was partially filtered in the
indicated spectral range.

The results confirm that the difference in emissivity of iron and slag at 650 nm allows for the spatial
distinction of these phases. Furthermore, it was identified that the radiation intensity of the molten iron
remains practically constant during the process, while that of the slag fluctuates. This fluctuation is due
to differences in the thickness of the slag layer, as it absorbs and transmits the radiation coming from
the steel to varying degrees. Additionally, the optical system was calibrated with a high-temperature
black-body radiator, allowing the temperatures to be estimated at 1500–1600 ◦C, which is considerably
higher than the copper smelter temperatures (1200–1350 ◦C). The results confirm that, by using sensitive
optoelectronic systems in the molten iron spectral emission band, coupled with appropriate spectral
models and processing software, it is possible to develop reliable and robust systems at both the
laboratory and industrial scales. The authors believe that this approach could be adapted for copper
smelter processes and represents a natural pathway for future work.
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3. Unifying Framework for Copper and Nickel–Copper Smelter Dynamics

3.1. Overview of Copper and Nickel–Copper Smelter Operations

The copper pyrometallurgy process treats mineral concentrates to produce copper anodes that are,
in turn, electrorefined to generate effectively pure (99.99% Cu) end-product cathodes. The concentrates
are comprised of copper–iron sulfide minerals with particle sizes of generally less than 150 µm.
Elemental compositions typically range from 25% to 30% Cu, 25% to 35% S, and 20% to 40% Fe,
with the remainder made up of gangue material (oxides). The smelter targets the selective oxidation
of Fe and S in order to retain Cu for the final product. Specifically, the iron is skimmed away as
liquid slag and the sulfur is removed as SO2 offgas, eventually resulting in molten copper [13,14].
This pyrometallurgical technique accounts for approximately 75% of the primary copper production
worldwide [15,16], the majority of which is carried out using the conventional approach depicted in
Figure 3. In some cases, the incoming concentrates are subject to roasting reactions prior to being fed
into the smelting operation; these roasted concentrates are known as calcines.
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Within a copper smelter, the concentrate or calcine is smelted by exothermic reactions while
controlling the oxygen mass balance, which produces an intermediate matte phase composed of
copper, iron, and sulfur. This molten matte is then subject to further oxidation, which converts the
matte into a molten metal product called blister copper (>98% purity). The subsequent liquid–state
refinement (fire-refining) precedes the casting of a Cu anode product (~99.5% purity). The anodes are
then transferred to an electrorefinery for a final upgrade to end-product Cu cathodes that are 99.99%
pure; the electrorefinery also recovers gold, silver, and other valuable byproducts that are contained
in the anodes. Nonetheless, smelting and converting are the central processes in a copper smelter,
since they transform the mineral input into an initial metallic output [14].

The smelting operation is a continuous process typically executed in one (or at certain large
plants, two) large furnace(s). There are two main smelting technologies that induce similar chemical
transformations but differ in the mechanism by which oxygen is delivered to the concentrate. Flash
smelting, in which the oxidation of the concentrate takes place in a generally vertically mounted burner,
currently accounts for roughly 45% of the world copper smelting capacity [2,15,17]. Within a flash
smelting furnace, the refractory-lined reaction shaft is like an industrial scale “drop tube” (Figure 2).
On the other hand, bath smelting technologies inject air or oxygen-enriched air into the molten bath
either via a top-mounted lance (called top smelting lance or TSL technology) or via submerged tuyères;
bath smelting technologies account for roughly 50% of smelting capacity, and this proportion has
recently increasing due to new bath smelting technologies introduced in China [15,17].

Peirce-Smith (PS) converting is the most longstanding and widely used technology in conventional
copper smelters [14] and is performed in discrete batches. PS converting is indeed a remnant of
the second industrial revolution (Figure 1) and was influenced by the 19th century developments
of Sir Henry Bessemer in steelmaking [16]. PS batch conversions are often carried out in parallel
(Figure 3) and may share a limited set of resources (e.g., oxygen and offgas handling capacities).
The continuous-discrete contrast of smelting converting is central to conventional smelter dynamics,
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in which PS converting can be a major bottleneck in conventional copper smelters [14]. Moreover,
PS converting is also a feature of nickel–copper smelters (Figure 3), noting the difference in the final
discharge product (Figure 3). Copper PS results in blister copper, whereas nickel–copper PS converting
is simply to remove the iron and its associated sulfur; the resulting iron-free matte still contains
considerable sulfur and is known as Bessemer matte, in honor of Sir Henry Bessemer.

Smelting furnaces can generally produce, and hold, matte in excess of the converting capacity,
which means that the smelting schedule can depend on the converting schedule. Given that smelting
and converting are central to the overall smelter operation, all other critical functions at the smelter
plant can also be restricted by the converting cycles. Each converting cycle begins when a fresh charge
of matte (and possibly some amount of cold charge) is delivered to an empty converter and ends
with the final discharge. The matte is subjected to pressurized blowing wherein oxygen-enriched
air is blown into the melt, and N2 and SO2 are exhausted through a hood mounted on the vessel
(Figure 4). The offgas is captured in order to convert SO2 into sulfuric acid; meanwhile, N2 acts as
a coolant in the process [14]. Copper and nickel–copper smelters both apply the first stage of PS
converting, which is called the slag-blow, producing an iron-rich slag that forms atop the denser matte
(Figure 4a). This stage may require intermittent pauses in order to skim away slag accumulation
and replenish the vessel with fresh matte and cold charge. Once all of the slag is removed (<1% Fe
in matte), copper smelters continue blowing the remaining matte; this final stage of converting is
known as the copper-blow, as it results in the formation of blister copper that sinks to the bottom of the
vessel (Figure 4b). The copper-blow does not produce any more slag and, therefore, does not require
intermittent skimming. Nickel–copper smelters, however, only apply the slag-blow (Figure 4a), not the
copper-blow. In either context, the cycle is complete when all of the matte is converted to the correct
endpoint and discharged (Figure 3).
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In addition to scheduling constraints, various process parameters are also subject to statistical
variations, including the chemical composition of incoming plant feed, matte grade, furnace
performance, and converter cycle times, among other global factors. It is critical to measure, model,
and simulate such uncertainties in order to streamline and support the decision-making processes in
the design, development, and operation stages of industrial systems.

3.2. Detailing of Smelter Dynamics Within Discrete Event Simulation

In a previous work, Navarra et al. [18,19] incorporated thermochemical equilibria within a discrete
event simulation (DES); it was suggested generally that the hybridization of time-adaptive finite
differences (TAFD) and DES is a suitable paradigm for multiphase smelter reengineering projects [20].
Within copper and nickel–copper smelters, thermochemical equilibria determine the iron-speciation of
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smelting and converting slags, as described in the following section. However, the early phases of a
smelter reengineering project can assume fixed molar ratios of iron and oxygen.

Assuming that the smelter feed is composed mainly of iron, sulfur, and copper, a smelter
accomplishes the following unbalanced reaction:

(Cu, Fe, S)(Feed) + O2(Blast) + Flux → (FeOx, Flux)(Slag) + SO2(Offgas) + Cu(Blister) (1a)

In which FeOx represents a mixture of wustite FeO and magnetite Fe3O4, such that x = 1 and
x = 1.25 corresponds to pure wustite and magnetite, respectively. For simplicity, x can be fixed to 1,
although typical values can range between 1.0 and 1.1, depending on the nature and quantity of the
flux and the monitoring and control of the process itself; in particular, a low level of magnetite in
slag is desirable, which is associated with low slag viscosity. In practice, the flux is predominantly
silica SiO2, but certain smelters include varying quantities of CaO and other stable oxides; CaO is
especially common in continuous converting [21], which is an alternative to the conventional PS
converting [16]. The SO2 is captured for sulfuric acid production, and the blister copper is subject to
fire refining prior to being cast into anodes that undergo electrolytic refining. A similar reaction can
describe nickel–copper smelters:

(NI, CU, CO, FE, S)(FEED) + O2(Blast) + Flux
→ (FeOx, Flux)(Slag) + SO2(Offgas) + (Ni, Cu, Co, S)(Bessemer)

(1b)

The subsequent processing of Bessemer matte depends on the given nickel–copper plant.
Equation (1a,b) provide more detail to Figure 3 for copper and nickel–copper smelters, respectively.

Depending on the scope and phase of the project, x can be regarded as a single global value for the
entire smelter or as distinct values for the smelting furnace(s) and converters. Equation (1a) can thus
be rewritten

(Cu, Fe, S)(Feed) + O2(Blast) + SFlux + CFlux
→

(
FeOxS , SFlux

)
(SSlag)

+
(
FeOxC , CFlux

)
(CSlag)

+ SO2(Offgas) + Cu(Blister)
(2)

For copper smelters, which decompose the global x into xS and xC, characterize the slag of the
smelting furnace. A similar decomposition of the global x could be applied to Equation (1b) in the case
of nickel–copper smelters.

Moreover, the individual slag-blow segments of PS cycles can each be assigned appropriate x
values. Therefore, Equation (2) could be further detailed as:

(Cu, Fe, S)(Feed) + O2(Blast) + SFlux + CFlux1 + CFlux2 + · · ·+ CFluxn
→(

FeOxS , SFlux
)
(SSlag)

+
(
FeOxC1 , CFlux1

)
(CSlag1)

+
(
FeOxC2 , CFlux2

)
(CSlag2)

+ · · ·

+
(
FeOxCn , CFluxn

)
(CSlagn)

+ SO2(Offgas) + Cu(Blister)

(3)

In which xS characterizes the slag of the smelting furnace, and, depending on the level of detail,
xCi can characterize the types of converter cycles or can characterize the individual types of slag-blow
segments, for i = 1 to n. For example, Figure 5a shows an action graph that occurs within a smelter that
practices two kinds of converter cycles, long and short; hence, n = 2. Figure 5b shows a more detailed
representation, which considers 13 kinds of blow segments. (The slag-blow segments are punctuated
with charging and skimming actions, although these are not explicitly shown in Figure 5b). For a
conventional copper smelter, actions 1–9 describe slag-blow segments (Figure 4a); hence, n = 9, and the
remaining actions 10–13 represent copper-blow segments (Figure 4b) that complete the cycle as a batch
of blister copper is discharged. In the case of a nickel–copper smelter, all of the arcs represent slag-blow
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segments; hence, n = 13, noting that the discharge is the so-called Bessemer matte (Ni, Cu, Co and S)
that is described in Figure 3 and Equation (1b).
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Figure 5. Examples of action graphs that represent Peirce-Smith converting cycles, which consider
two types of cycles: long and short. (a) The low-detail representation shows the long and short cycles
as single actions that are characterized by broad distributions of cycle times, whereas (b) a more
detailed representation considers individual blow segments, from 1 to 13; each of the segments can be
characterized by comparatively narrow time durations (which were omitted from the figure).

The decision to apply one segment versus another (e.g., segment 3 versus 4) would depend
on the state of the plant, to the extent that the state variables can monitored with the available
sensors. Even if the resulting slag compositions for the different cycles (Figure 5a) or blow segments
(Figure 5b) are relatively consistent, it may be unclear how frequently each cycle or segment will be
applied, e.g., depending on how often certain plant conditions occur. A global mass balance based on
Equation (3) requires an estimation of how often each of the different cycles (Figure 5a) or segments
(Figure 5b) are applied; such estimations are the result of DES computations, as described below.

The broad distributions of Figure 5a approximate the combined effects of narrower distributions
that would characterize the individual segments of Figure 5b. A proposed technological change
within the smelter (e.g., installation of new sensors) may require a rethinking of the slag-blow and the
definition of new action graphs. Depending on the project, it may be necessary to further decompose
the actions of Figure 5b into sub-actions and sub-sub-actions, possibly including thermochemical
modeling [22,23] or computational fluid dynamics [24]. This decomposition may be essential in order
to properly simulate the system with and without the technological change, thereby evaluating the
benefit of the proposed change. In the case of sensors, it is necessary to simulate how the additional
information will be incorporated into the decisions and operational actions of the smelter, thereby
computing the value of these better-informed decisions and actions.

In many reengineering projects, the phenomena that occur within the smelter may be less important
than the phenomena that occur outside of the smelter. For instance, the DES model of the Hernán Videla
Lira (HVL) Smelter developed by Navarra et al. [25] focuses on the smelter-wide response to changing
meteorological conditions and has a comparatively simple representation of converter cycles, similar
to Figure 5a. The HVL Smelter considers distinct categories of meteorological conditions—normal,
unfavorable, and extreme—to describe the potential for the surrounding atmosphere to disperse the SO2

effluent. If the smelter is running in its normal operational mode when the unfavorable meteorological
conditions emerge, there is a so-called “environmental incident”. The model of Navarra et al. [25]
computes the trade-off between production and environmental risk. Moreover, this model quantifies
the improved trade-off that can result from a more accurate array of meteorological sensors.

DES development is a means to extend the static mass balances, to detail the critical phenomena
that are driving and/or constraining a particular phase of an engineering project. The simulated events
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can dynamically affect the mass balances that are detailed throughout the model. Figure 6 makes the
distinction between the events that occur outside of the smelter and within the smelter, which constitute
the external and internal logistics, respectively. There is a further distinction between the logistical
coordination of smelter equipment (furnaces, ladles, cranes, etc.) and the kinetics that occur within
the equipment. In general, the state variables that describe the system, and the events that would
alter these variables, can be positioned within the concentric ellipses of Figure 6. The incorporation of
variables and events within a DES model must be guided by the scope and the phase of the engineering
project. For example, it is not recommended to detail individual crane movements, unless the particular
project would benefit from a comprehension of this aspect [26]. Likewise, it is not recommended to
detail particular equipment breakdown events, unless the project would benefit from a comprehension
of this aspect [27].
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Figure 6. Relationship between smelter kinetics, internal and external smelter logistics, and broader
system dynamics.

The computational efficiency of DES is due to adaptive time stepping, as the virtual clock advances
from one event to the next without explicitly representing the dynamics that occur between events
(Figure 7a). The sequencing of events is governed by the future event list (Figure 7b). Within this
scheme, a prolonged activity is represented by a sequence of events, including starting and ending the
activity. For example, a basic representation of converter cycles described by Figure 5a may include only
two events: the start and end of the cycle. A more detailed representation (e.g., Figure 5b) may include
several intervening events to represent individual slag- and copper-blow segments, as well as the
intervening skimming, charging, actions of the operators, etc. with the level of details that correspond
to the given project. Incidentally, DES applies random number generation to determine the duration
and outcome of the activities and is thus a form of Monte Carlo simulation [28]; the distributions and
action paths illustrated in Figure 5 can be incorporated into the framework.
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Figure 7. Fundamental components of a discrete event simulation (DES) framework, including
(a) a virtual timeline that is subject to discrete steps and (b) a future event list.

Moreover, the simultaneous operation of several converters in unison with other logistical
phenomena is integrated into one single future event list (Figure 7b); hence, a system-wide
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representation. Periods of time with relatively few events are computed relatively quickly, thereby
focusing the computational efforts on periods of time that are more heavily packed with activity.
This time-adaptive aspect of DES allows the simulation of thousands of operating days within minutes.

A DES framework can include operational criteria that determine the action pathway of converter
cycles, allowing the computation of frequency confidence intervals. Following the example of Figure 5a,
the average frequency of short cycles may be between 2.8 and 3.2 cycles/day with 95% confidence and
that of long cycles may be between 0.9 and 1.2 cycles/day with 95% confidence; this result will allow a
mass balance based on Equation (3), given the data about the matte that are charged within each cycle
and the corresponding flux and oxygen requirements. In a slightly more detailed representation, the DES
framework may include the criteria that would determine the more detailed action paths of Figure 5b.

Standard DES frameworks do not explicitly represent the dynamics that occur between events.
However, a linearly dynamic state variable can be represented as a combination of discretely dynamic
state variables. For instance, the mass of feed stockpile k may be computed at a time t, as

mk(t) = mPrevious
k +

.
mPrevious

k ·

(
t− tPrevious

)
(4)

in which mPrevious
k and

.
mPrevious

k are the mass and rate change of k that were computed at the previous
event, which occurred at time tPrevious. Thus, each feed k would require two discretely dynamic
variables (mPrevious

k and
.

mPrevious
k ), in addition to the tPrevious variable that remembers the time of the

previous event. Equation (4) can used in simulations that consider alternating modes of operation that
control feed blends in response to imbalances in incoming concentrates [29].

Other linearly continuous variables can be implemented in a manner similar to Equation (4),
representing each of these continuous variables as two discrete variables: level and rate (e.g., mPrevious

k

and
.

mPrevious
k ). Considering the DES representation of time (Figure 7), this constitutes a time-adaptive

finite difference (TAFD) scheme. However, a full representation of the continuous dynamics requires
the detection of threshold-crossing events, as described in Section 3.4. These threshold-crossing events
are especially important in assessing the installation of sensors whose role may be to signal the need
for corrective actions precisely when critical thresholds are crossed.

3.3. Slag Iron Speciation and Other Thermochemical Considerations

The iron oxide speciation, i.e., the balance between FeO and Fe3O4, can be quantified as the
oxygen-to-iron ratio x presented in Equations (1)–(3). Indeed, x represents a degree of freedom that
must be resolved in order to complete the mass balance. This degree of freedom can also be expressed
as the ratio of ferric to ferrous ions within the slag, α = Fe3+/Fe2+, often called the degree of oxidation.
The homeomorphic relationship between x and α is given by

x =
2 + 3α
2 + 2α

(5)

Equation (1a) can thus be rewritten as

(Cu, Fe, S)(Feed) + O2(Blast) + Flux → (FeO( 2+3α
2+2α )

, Flux)
(Slag)

+ SO2(Offgas) + Cu(Blister) (6)

similar to Equation (1b), in which the minimum α = 0 corresponds to pure wustite FeO and α = 2
corresponds to pure magnetite Fe3O4. Equation (6) can be further detailed in a similar manner as
Equations (2) and (3) by assigning appropriate subscripts to α, as in [20].

In the modeling of slag chemistry, α is preferred over x to avoid ambiguity between the reactive
oxygen of the blast and the inert oxygen that is strongly bonded within the flux (i.e., within the SiO2,
CaO, etc.). For instance, the role of SiO2 flux is made more evident by expressing the wustite as a
component within a fayalite matrix FeO·2SiO2; hence, the balance of FeO versus Fe3O4 is considered
as FeO·2SiO2 and Fe3O4. In practice, SiO2 is added into the slag in proportions that surpass the
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stoichiometry of fayalite and may be accompanied by other stable oxides. Under matte-processing
conditions, the stable molecules SiO2, CaO, etc. can be regarded as if they were indivisible atoms.
Most notably, the strongly bonded oxygen is not explicitly represented in Equations (1)–(3) and is
not taken into account in x; these equations only explicitly consider the blast oxygen. The degree of
oxidation α considers only the iron species isolated from any mention of the blast and flux oxygen.

Within Equation (6) and its nickel–copper equivalent, the slag-blow reaction can be isolated and
balanced as:

FeS(Matte) +
(2 + 3α

4 + 4α

)
O2(Blast) → FeO( 2+3α

2+2α )(Slag) + SO2(Offgas) (7)

which applies to both the smelting and converting furnaces for both copper and nickel–copper smelters.
Indeed, the melting of the feed of Equation (6) results in molten matte that is a mixture of FeS and
Cu2S; in the case of nickel–copper smelters, the matte will also contain nickel and cobalt sulfides [18],
but Equation (7) is still correct. The incoming blast includes N2, as well as O2 (see Figure 4). As the N2

passes through the bath and is exhausted into the offgas, along with the SO2, it carries away sensible
heat and is a critical consideration in controlling the bath temperature.

To resolve the degree of freedom α (or equivalently x), the equilibrium between iron oxide species
can be expressed as

FeS(Matte) + 3Fe3O4(Slag) ↔ 10FeO(Slag) + SO2(Offgas) (8)

having enthalpy and entropy values ∆H0 = 622,549 J/mol and ∆S0 = 342.64 J/mol K, respectively,
which can be obtained from HSC ChemistryTM. The corresponding Gibbs free energy balance is

∆G = ∆H0 − T∆S0 + RT ln


(
aFeO,Slag

)10
pSO2,Offgas

aFeS,Matte
(
aFe3O4,Slag

)3

 (9)

which is set to zero to assume equilibrium. R is the ideal gas constant, T is the bath temperature, and aij
is the activity of species i within phase j. The activity of SO2 in the offgas is taken to be the partial
pressure pSO2,Offgas.

Within Equation (9), the activities (aFeS,Matte, aFeO,Slag, and aFe3O4,Slag) can be re-expressed in terms
of α, T, and the operational parameters. The usual parameters include the oxygen enrichment of
the blast ϕ and the silica–iron mass ratio r = (mSiO2,Slag/mFe,Slag), which are considered in Section 4.
Empirical measurements relate the activities aij to their respective mole fractions Xij. In particular,
the classic model of Goto [30,31] is validated for smelting and converting, in both the copper and
nickel–copper contexts [32], and is the subject of Appendix A.

Iron speciation computations are simpler for smelting furnaces than for converting, since the
smelting bath temperature can usually be treated as if it were at a steady state and is approximately
uniform and constant. Under this simplification, α can be resolved through an application of Newton’s
Method [18,19]:

α(k) = α(k−1)
−

fG
∂ fG
∂α

(10)

or, in case T is not constant,(
T(k)

α(k)

)
=

(
T(k−1)

α(k−1)

)
−

1
∂ fH
∂T

∂ fG
∂α −

∂ fH
∂α

∂ fG
∂T

 ∂ fG
∂α −

∂ fH
∂α

−
∂ fG
∂T

∂ fH
∂T

[ fG
fH

]
(11)

which is a two-variable form of Newton’s Method, in which (T(k), α(k)) denote the results of the kth
Newton iteration. The righthand sides of Equations (10) and (11) include proxy functions, f G and f H,
and their derivatives, which are all evaluated at the preceding values (T(k−1), α(k−1)), considering
(T(0), α(0)) = (1473 K, 0.15) as typical starting values. The proxy function f G must be formulated so that
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f G = 0 when the Gibbs free energy balance of Equation (9) is satisfied, i.e., when ∆G = 0. Appendix A
presents a formulation of f G that is based on the classic Goto model [30,31]. Likewise, f H is formulated
such that f H = 0 when the heat balance is satisfied [19].

Following the results of Appendix A, it is relatively simple to program Equations (10) and (11) into
a simulation platform, thereby relating slag chemistry to the wustite–magnetite balance and, indeed,
to the overall mass balance. Depending on the project, Goto’s model may be an appropriate starting
point, although it does not consider olivine slags [21], nor does it consider the transport of minor
elements. In practice, it is preferable to have more wustite than magnetite, since the latter increases the
slag viscosity and the entrainment of matte into the slag [21,33]. The modification of slag chemistry
through flux additions affects the migration of minor elements [22,23], possibly at the expense of
having higher slag viscosity [21].

There is an interest to develop DES platforms that draw upon state-of-the-art thermochemical
databases [19] to assist in the retrieval of valuable elements such as gold, silver, and platinum and
the handling of deleterious elements such as arsenic, bismuth, and antimony. The authors suspect
that the partition of trace elements can be efficiently computed as a function of the main elements a
posteriori when Equations (10) and (11) converge. This is an area of future research, and the resulting
platforms would support smelter-wide strategies for the processing increasingly problematic feeds.
Yet, in reality, for similar apparent conditions like matte grade, temperature, etc., the balance of FeO
versus Fe3O4 can depend on various parameters, including flux quality, refractory wear, and amount
of charge (hence, affecting mixing), and so, an empirical approach to speciation may be more effective.

3.4. Estimation of Threshold Crossing Times Using Time-Adaptive Finite Differences

Time-adaptive finite differences are an important feature of our smelter DES frameworks, allowing
the correct placement of threshold-crossing events within the future event list (Figure 8). In the
approach of Navarra et al. [18,19], the Newton iterations of Equations (10) and (11) are nested within
the Runge-Kutta-Fehlberg (RKF) method, which is a well-known time-adaptive finite difference
(TAFD) scheme [34,35]. This method is a combination of finite difference schemes based on fourth
and fifth-order Taylor expansions [34]; an attempted timestep is only accepted if the fourth and fifth
order estimates of T and α are within an acceptable error tolerance; otherwise, a smaller timestep is
attempted. Moreover, each attempted timestep uses the previous results of T and α as a starting point
for the Newton iterations, so that convergence is faster, thus making the computation more efficient.
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Figure 8. Threshold-crossing event in relation to another event e. Time-adaptive finite differences
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The efficiency of DES depends on this time-adaptive aspect to limit the computational effort
devoted to dynamics that occur between the discrete events (Figure 7). Alternatives to the approach
of Navarra et al. [18,19] include the use of cubic Hermite spline interpolation [36,37] and Richardson
extrapolation [38]. These techniques can be adapted to isolate the threshold crossing event of a state
variable and improve the accuracy with which we can find the time at which it crosses. In fact, it is
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important to recognize that both the efficiency and accuracy of the method rely on an accurate time
estimate for threshold crossing. In our case, the threshold is first contained in the interval bounded
by the two timesteps bracketing an evaluation of the state variable below and above the threshold.
This precisely guarantees we have access to values already computed at both of the upper and lower
estimates (as a result of the RKF attempt), which includes state variable values, as well as their time
derivatives (by direct evaluation if the right-hand side at the state variable values). With this data,
we constructed a cubic Hermite spline, which is, therefore, a valid fourth-order interpolation of the
solution over this interval. Since the Hermite spline is, in fact, a cubic polynomial, we can compute
analytically the crossing time as a simple root-finding problem. We also note that this approach
is robust, since the data at the end of the interval provided need not be exact. In fact, if the state
variable data has a fourth-order accurate truncation error (e.g., by only using a third order Runge-Kutta
integrator) and the derivatives are third-order accurate, the interpolant is guaranteed to be fourth-order
accurate [37]. Further, while this approach is tailored to the RKF used here, it may be expanded by
considering Hermite quintics if a further need for accuracy is required.

While conventional DES frameworks support basic representations of smelter logistics,
a hybridization with time-adaptive finite differences supports a detailed representation of the kinetics
that occur within the individual unit operations. In particular, the detailed representation of individual
slag-blow segments may require a dynamic simulation of the evolving thermochemical states of matte
and slag. Moreover, the DES-TAFD hybridization allows the simulation of several simultaneous
converting cycles, in conjunction with the intervening actions involving cranes and ladles, the delivery
of a cold charge, and other phenomena. Nonetheless, the explicit representation of slag-blow segments
should only be implemented if it is beneficial to the particular engineering project. Beyond the
internal dynamics of smelter, a project may require an explicit representation of market-related or
environmental phenomena (Figure 6). The hybridization of DES and TAFD is indeed capable of linking
detailed representations of diverse aspects throughout the smelter and beyond, whose coordination
may be critical to the sustainability of the smelter. Furthermore, aging smelters will not be sustainable
unless they can successfully modernize their operational practices, benefitting from sensors and other
novel technology.

4. Sample Computations and Context

The sample calculations presented in this section are typical of an aging copper smelter that:

• has been successful for decades in processing reasonably clean feeds;
• is confronted with increasingly challenging feeds that carry excess quantities of arsenic, bismuth,

and antimony; and
• is aware of an approach to draw a critical portion of the undesirable elements into the converting

slag, which is only effective as the iron in matte approaches zero

Regarding the third point, there may be operator experiences in treating marginal feeds that
had a manageable amount of the trace elements; such feeds were treated by driving the individual
slag-blow segments to a relatively low iron content (e.g., ~3% Fe), in combination with particular flux
compositions. Indeed, a more forceful elimination of the undesirable elements could be induced at an
even lower iron content, but this would increase the level of entrained into the slag, under imperfect
mixing, as blister copper would be precipitated heterogeneously in certain regions of the vessel. Better
endpoint control on the individual segments would allow a more careful advance toward 0% Fe with
a limited risk of copper entrainment and could be attained by adapting the endpoint approach at
Boliden’s Rönnskär Smelter [5], mentioned earlier; this approach depended on customized sensor
development [10–12].

From the authors’ experience in copper smelter projects, it is incumbent on outside experts to
integrate their general understanding with the detailed understanding of in-house experts at the given
smelter. There may be issues that were already confronted with some amount of success, but these



Processes 2020, 8, 1478 15 of 22

issues may gradually become critical. For instance, the increasing presence of penalty elements is
especially common in custom smelters that receive concentrates from a combination of regional mines,
which are themselves confronted with ore blending challenges [29]. The experiences of the smelter
should be cross-checked with thermochemical models and a literature review [22,23] in proposing new
operational modes that may require a technological upgrade. In effect, this can be a standardization
and optimization of approaches that the in-house experts were already considering.

The DES framework described in Sections 3.1–3.4 was implemented using Rockwell ArenaTM

software and replicated the general aspects of conventional smelters while incorporating
smelter-specific data. Tables 1–3 contain sample data that are loosely based on published values
from [2,5,6,13,39,40]. As stated in Section 3.1, conventional smelters have smelting capacities that
normally exceed the downstream converting capacity; indeed, the smelting furnace should not usually
produce matte at full capacity, nor should it function in fits and starts. The definition of so-called short
and long converter cycles (Figure 6) provides the operational flexibility to set a fixed smelting rate.
Moreover, some smelters may have several cycle types under consideration to respond to build-ups
of cold charges or compositional imbalances in the feeds that are received from the supplying mines.
For simplicity, the current computations consider only two types of cycles.

Table 1. Feed compositions entering the smelting furnace.

Element Weight%

Copper 20
Iron 39

Sulfur 40
Arsenic 0.4–1.0
Bismuth 0.02–0.20

Antimony 0.02–0.10

Table 2. Examples of smelting furnace operational parameters.

Parameter Value

Matte holding capacity 900 t
Bath temperature 1275 ◦C

Blast rate 1100 Nm3/min
Oxygen enrichment 50 vol%O2

SiO2/Fe in slag 0.7
Matte grade 60 wt% Cu

Table 3. Examples of Peirce–Smith (PS) converting data describing short and long cycles.

Short Cycle Long Cycle

Duration (h) * Ladles Added Duration (h) * Ladles Added

First slag-blow
segment 2.0 3 3.0 4

Second slag-blow
segment 0.5 ± 0.2 1 1.0 2

Third slag-blow
segment - - 0.5 ± 0.2 1

Copper-blow 4.5 ± 0.7 - 5.0 ± 1.2 -

* Assume that ladles are added at the beginning of the segment, each carrying 30 t of matte.

To maintain stable throughput, the blending strategy ensures comparatively stable portions of
the main elements (Table 1) but with unavoidable fluctuations in the undesirable trace elements.
Additionally, to maintain stable throughput, the smelting parameters are kept constant (Table 2),
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including the grade of the output furnace matte; given that the matte is a mixture of FeS and Cu2S,
an elemental mass balance determines that a 60% Cu grade corresponds to roughly 24% S and 16% Fe.

Effectively, the smelting furnace blasts 550 Nm3/min of oxygen into a bath in order to decrease
the iron content from 39% to 16% as it burns the FeS. The smelting blast also includes 550 Nm3/min
of nitrogen, which carries away a portion of the heat. The control of the temperature at 1275 ◦C
depends on this nitrogen flow. Given the stable temperature T = 1275 ◦C = 1548 K, oxygen enrichment
ϕ = 0.5, and silica-iron ratio r = 0.7, the Newton iterations of Equation (10) are used to obtain the
degree of oxidation α = 0.166, with a corresponding throughput of 36.928 t/h of matte or equivalently
1.231 ladles/h. At a matte grade of 60% Cu, this corresponds to 22.157 t Cu/h.

Figure 9 shows graphs of the matte content using the data from Tables 1–3. The largest declines
correspond to the initiation of long cycles (four ladles = 120 t) and short cycles (three ladles = 90 t),
and the other declines correspond to the recharging actions that occur during the cycles at the second
and third slag-blow segments. As is common in larger smelters, the offgas handling capacity allows
for the execution of two simultaneous converter cycles.
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Figure 9. Matte levels of the smelting furnace with data from Tables 1–3, in which (a) exceeding 800 t
triggers two long cycles and (b) exceeding 700 triggers three long cycles. The second case is safely
below the maximum holding capacity of 900 t.

Within Table 3, the times for the initial slag-blow segments are fixed as operational parameters.
However, the durations of the final slag-blow segments depend on the exact nature of the charge
(including the cold dope), as well as variable operator behavior and, potentially, other factors.
By extension, the copper-blow durations are also variable. For the purposes of Figure 9, these fluctuating
values are used to define uniform distributions, e.g., the copper-blow durations are uniformly
distributed between 3.8 and 5.2 h for the short cycles and between 3.8 and 6.2 h for the long cycles.
Uniform distributions, triangular distributions (Figure 5a), and other simple forms are typical of the
early phases of a smelter project. More advanced phases can include more elaborate distributions that
are supported by goodness-of-fit testing of the plant data [41].

An analysis of Table 3 reveals that the average conversion rates are 0.571 ladles/h and 0.737 ladles/h
for the short and long cycles, respectively. Considering that the smelting furnace produces 1.231 ladles/h
that is fed into two simultaneous converter cycles (i.e., 0.615 ladles/h per converter), the balancing
of the smelting and converting throughput will require a combination of the long and short cycles.
(Incidentally, the long cycle copper-blow is more productive than that of the short cycle; this may
be because it is loaded with cold copper scrap, which makes the heat balance less dependent on the
nitrogen convection, thus supporting a more intense higher-oxygen blast).

Figure 9 considers a threshold criterion that, whenever the matte level surpasses a critical value,
the next several cycles are set to a long cycle. Poor adjustment of this threshold can diminish the overall
throughput, as the smelting furnace is deactivated when it reaches the 900-t capacity given in Table 1;
this is depicted in Figure 9a, in which the threshold is set to 800 t, which triggers two long cycles,
which is insufficient to prevent the approach to 900 t observed at time 140 h. A balanced production is
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shown in Figure 9b, which applies a threshold of 700 t, which triggers three long cycles. In general,
a DES-TAFD hybrid can be adapted to incorporate the operational decision-making of the smelter that
is being studied; this flexibility is vital in the context of reengineering projects [20].

Table 4 and Figure 10 describe modified dynamics in which an array of sensors track the approach
to 0% Fe and the presence of the undesirable trace elements. The data-driven approach to removing
the iron is reflected by the (uniform) variation ascribed to all of the slag-blow segments, whereas the
previous configuration (Table 3) fixed predetermined blow times for the initial segments. Moreover,
Table 4 follows the action graph of Figure 5b, in which the commitment to an extended cycle is made
only after the cycle begins. Indeed, the regular short cycles correspond to 2-5-13, the extended short
cycles to 2-5-18-12, the regular long cycles to 1-4-7-10, and the extended long cycles to 1-3-6-9-11.
For the sake of Figure 10, it is assumed that 30% of the short cycles are extended and 20% of the long
cycles are extended, although different values could be tested and should be driven by actual forecasts
of what the incoming feed might be.

Table 4. Example of PS converting data, including short and long cycles that can be extended.

Regular Short C. Extended Short C. Regular Long C. Extended Long C.

Duration (h) * Ladles
Added Duration (h) * Ladles

Added Duration (h) * Ladles
Added Duration (h) * Ladles

Added

First SB segment 2.2 ± 0.2 3 2.2 ± 0.2 3 3.4 ± 0.2 4 3.4 ± 0.3 4
Second SB
segment 0.3 ± 0.1 1 0.3 ± 0.1 1 0.7 ± 0.2 2 1.2 ± 0.2 3

Third SB segment - - 0.4 ± 0.1 1 0.4 ± 0.1 1 0.3 ± 0.1 1
Fourth SB segment - - - - - - 0.4 ± 0.1 1

Copper-blow 4.5 ± 0.7 - 5.6 ± 0.8 - 5.0 ± 1.2 - 7.0 ± 1.7 -

* Assume that ladles are added at the beginning of the segment, each carrying 30 t of matte.

Processes 2020, 8, x FOR PEER REVIEW 17 of 22 

 

Table 4. Example of PS converting data, including short and long cycles that can be extended. 

 Regular Short C. Extended Short C. Regular Long C. Extended Long C. 

 
Duration 

(h) 
* Ladles 
Added 

Duration 
(h) 

* Ladles 
Added 

Duration 
(h) 

* Ladles 
Added 

Duration 
(h) 

* Ladles 
Added 

First SB 
segment 

2.2 ± 0.2 3 2.2 ± 0.2 3 3.4 ± 0.2 4 3.4 ± 0.3 4 

Second SB 
segment 

0.3 ± 0.1 1 0.3 ± 0.1 1 0.7 ± 0.2 2 1.2 ± 0.2 3 

Third SB 
segment 

- - 0.4 ± 0.1 1 0.4 ± 0.1 1 0.3 ± 0.1 1 

Fourth SB 
segment 

- - - - - - 0.4 ± 0.1 1 

Copper-
blow 4.5 ± 0.7 - 5.6 ± 0.8 - 5.0 ± 1.2 - 7.0 ± 1.7 - 

* Assume that ladles are added at the beginning of the segment, each carrying 30 t of matte. 

 

Figure 10. Matte level of smelting furnace with data from Tables 1, 2, and 4, in which exceeding 700 
triggers three long cycles, 30% of short cycles are extended, and 20% of long cycles are extended. 

A comparison between Figures 9 and 10 shows the effect that responsive converter cycles (Table 
4) can have on the matte levels; although the matte levels of Figure 10 remain mostly between 600 
and 700 t, the pattern of peaks and dips is far less regular. These fluctuations may be acceptable, 
considering that it would allow the smelter to handle problematic feeds. Otherwise, the feed rate into 
the smelting furnace could be controlled in coordination with a variable blast rate, which may be the 
subject of a following stage of engineering. 

To the authors’ knowledge, the computations of Figure 10 are the first published instance in 
which several converters are simultaneously drawing upon a smelting furnace and operational 
decisions are finalized after the cycles begin, i.e., in response to incoming sensor data. This level of 
detail is necessary to evaluate the utility of sensors in supporting smelter-wide responses to 
problematic feeds. The computations described by Table 4 and Figure 10 rely on the representation 
of individual slag-blow segments (Figure 5b), although other approaches might require the detailed 
representation of additional aspects within or surrounding the smelter (Figure 6). 

5. Conclusions and Future Work 

Not only warehouses and manufacturing facilities but metallurgical plants such as a steel plant 
or copper smelter—which are more difficult to automate—will be transformed in the future with use 
of new machine capabilities, automation, and improved sensors and controls. Steel is, by far, the 
major metal produced in the world, representing about 95% by tonnage of all metal production, with 
the world copper smelter output some 80 to 90 times less than world steel output. This, in part, helps 
understand that certainly more developments are attained in the iron and steel industry relative to 
copper. However, the computational framework described in this paper will help close the gap, 
regarding HI and LIBS and other radiometric sensors, as it enables the implementation of these 
technologies and justifies their further development within the copper industry. In particular, LIBS 

Figure 10. Matte level of smelting furnace with data from Table 1, Table 2, and Table 4, in which exceeding
700 triggers three long cycles, 30% of short cycles are extended, and 20% of long cycles are extended.

A comparison between Figures 9 and 10 shows the effect that responsive converter cycles (Table 4)
can have on the matte levels; although the matte levels of Figure 10 remain mostly between 600 and
700 t, the pattern of peaks and dips is far less regular. These fluctuations may be acceptable, considering
that it would allow the smelter to handle problematic feeds. Otherwise, the feed rate into the smelting
furnace could be controlled in coordination with a variable blast rate, which may be the subject of a
following stage of engineering.

To the authors’ knowledge, the computations of Figure 10 are the first published instance in which
several converters are simultaneously drawing upon a smelting furnace and operational decisions
are finalized after the cycles begin, i.e., in response to incoming sensor data. This level of detail is
necessary to evaluate the utility of sensors in supporting smelter-wide responses to problematic feeds.
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The computations described by Table 4 and Figure 10 rely on the representation of individual slag-blow
segments (Figure 5b), although other approaches might require the detailed representation of additional
aspects within or surrounding the smelter (Figure 6).

5. Conclusions and Future Work

Not only warehouses and manufacturing facilities but metallurgical plants such as a steel plant
or copper smelter—which are more difficult to automate—will be transformed in the future with
use of new machine capabilities, automation, and improved sensors and controls. Steel is, by far,
the major metal produced in the world, representing about 95% by tonnage of all metal production,
with the world copper smelter output some 80 to 90 times less than world steel output. This, in part,
helps understand that certainly more developments are attained in the iron and steel industry relative
to copper. However, the computational framework described in this paper will help close the gap,
regarding HI and LIBS and other radiometric sensors, as it enables the implementation of these
technologies and justifies their further development within the copper industry. In particular, LIBS is
expected to have an increasing importance in handling problematic feeds as existing copper smelters
are confronted with increasing amounts of arsenic, bismuth, and antimony [42].

Modern sensors will be vital in supporting smelter-wide responses to increasingly challenging
feeds that are being confronted throughout the world, as described in the previous section. It should be
noted in particular that smelting and converting operations are central within copper and nickel–copper
smelting and are linked to supporting operations throughout the smelter. High-quality and reliable
process instrumentation and controls are therefore important in maximizing the global operating
efficiency. Additionally, the monitoring of the furnace integrity, refractory wear, preventative
maintenance, and plant safety are also key aspects that constantly need attention at the plant.
Many high-performance smelting furnaces today include water-cooled copper blocks generally
externally mounted on a furnace sidewall to protect the refractory lining at the hot face. The Peirce-Smith
converter operates with a converter hood that includes water-cooled panels on the cold face in order
to protect the steel wall at the hot face. Recent developments in the instrumentations for detecting
and measuring the presence of small levels of water vapor in furnace offgas can signal a water leak
and lead to improved furnace monitoring [43]. However, the implementation of such measures often
requires quantitative justification.

This paper showed that combining thermochemical equilibrium data with a knowledge of smelting
and converting dynamics provides a powerful tool for advancing smelting operations in the form
of DES-TAFD hybrid simulations. The specialized use of Newton’s Method, Runge-Kutta-Fehlberg,
and Hermite interpolation within a DES are, in fact, an advancement within the industrial system
analysis, which can be adapted to other industrial contexts, supporting modernization projects that
include novel sensors and other technology.
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Appendix A Proxy Function for Gibbs Free Energy Balance Based on Goto’s Model

The approach of Navarra et al. [18,19] to obtain a viable proxy function f G considers that each
mole of wustite FeO contains one mole of ferrous, that each mole of magnetite FeO·Fe2O3 contains one
ferrous and two ferric, and that all other iron-bearing slag compounds are negligible. It follows that
α = Fe3+/Fe2+ can be taken as

α =
2nFe3O4,Slag

nFeO,Slag + nFe3O4,Slag
(A1)

in which nij generally denotes the number of moles of i within phase j.
When setting ∆G = 0, Equation (9) can be reorganized:

0 = aFeS,Matte

(
aFe3O4,Slag

)3
−

(
aFeO,Slag

)10
pSO2,Offgase(

∆S0
R −

∆H0
RT )

Using the expressions from Goto [30] and Kemori et al. [31] for the activity coefficients of (aFeS,Matte,
aFeO,Slag, and aFe3O4,Slag), a series of algebraic manipulations were performed by Navarra et al. [18,19]
to obtain the following form that explicitly features T and α:

0 =
3∏

l=1

(Al + Blα)
Cl+Dl/T

−

9∏
l=4

(Al + Blα)
Cl+Dl/T

In which the coefficients (Al, Bl, Cl, and Dl) are given in Table A1, from which a viable proxy
function is obtained:

fG(T,α) =
3∏

l=1

(Al + Blα)
Cl+Dl/T

−

9∏
l=4

(Al + Blα)
Cl+Dl/T (A2)

Indeed, ∆G = 0 if and only if f G = 0. Moreover, the partial derivates of f G can be obtained with
respect to α and T, so to complete the Newton iterations described by Equations (10) and (11). To obtain
the expression for ∂ fG

∂T , it is helpful to notice that Dl is zero for all factors except for the third and ninth.

fG(T,α) =
(

2∏
l=1

(Al + Blα)
Cl

)
(A3 + B3α)

C3+D3/T

−

(
8∏

l=4
(Al + Blα)

Cl

)
(A9 + B9α)

C9+D9/T
(A3)

However, to obtain an expression for ∂ fG
∂α , it is more effective to work directly with Equation (A2).

Within Table A1, ϕ denotes the volume fraction of oxygen within the blast, which can be related
to pSO2,offgas. Additionally, the mole fraction of FeS within the matte is taken to be

XFeS,Matte =
nFeS,Matte

nFeS,Matte + nNiS,Matte + nCu2S,Matte + nCoS,Matte
(A4)

which supports the modeling of nickel–copper smelters, as well as copper smelters in which nNiS,Matte

and nCoS,Matte are set to zero. Moreover, Table A1 has several instances of the silica-to-iron mole ratio
(nSiO2,Slag/nFe,Slag), which can be related to the silica-to-iron mass ratio r within the slag:

r =
(

MSiO2

MFe

)(nSiO2,Slag

nFe,Slag

)
(A5)

in which MSiO2 and MFe are the molar masses of silica and iron, respectively; r is a common operational
parameter used to control the flux additions.
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Table A1. Coefficients for Equation (A2) (adapted from [19]).

l Al Bl Cl Dl

1 1 1 1 0
2 2 −1 10 0

3
(
2.44− 0.4

(
nSiO2,Slag

nFe,Slag

))
−

(
1.42− 0.4

(
nSiO2,Slag

nFe,Slag

))
0 15,430

4 XFeS,Mattee
∆S0

R 0 1 0
5 0 1 3 0

6
(

3−φ
2φ

) (
7−3φ

4φ

)
1 0

7
(
1.38 + 12.28

(
nSiO2,Slag

nFe,Slag

)) (
56.8 + 12.28

(
nSiO2,Slag

nFe,Slag

))
3 0

8 2
(
1 +

(
nSiO2,Slag

nFe,Slag

))
2
(

nSiO2,Slag

nFe,Slag

)
4 0

* 9 2
(
1 +

(
nSiO2,Slag

nFe,Slag

))
K 2

(
nSiO2,Slag

nFe,Slag

)
K 0 15,430

* In which K = e−∆H0/15,430R(0.54 + 0.52XFeS,Matte + 1.4XFeS,Matte ln XFeS,Matte)
1458/15,430.
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