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Abstract: Monitoring the evolution of hydrogen gas on carbon steel pipe using acoustic emission (AE)
signal can be a part of a reliable technique in the modern structural health-monitoring (SHM) field.
However, the extracted AE signal is always mixed up with random extraneous noise depending on
the nature of the service structure and experimental environment. The noisy AE signals often mislead
the obtaining of the desired features from the signals for SHM and degrade the performance of the
monitoring system. Therefore, there is a need for the signal denoising method to improve the quality
of the extracted AE signals without degrading the original properties of the signals before using them
for any knowledge discovery. This article proposes a non-decimated stationary wavelet transform
(ND-SWT) method based on the variable soft threshold function for denoising hydrogen evolution AE
signals. The proposed method filters various types of noises from the acquired AE signal and removes
them efficiently without degrading the original properties. The hydrogen evolution experiments on
carbon steel pipelines are carried out for AE data acquisition. Simulations on experimentally acquired
AE signals and randomly generated synthetic signals with different levels of noise are performed
by the ND-SWT method for noise removal. Results show that our proposed method can effectively
eliminate Gaussian white noise as well as noise from the vibration and frictional activity and provide
efficient noise removal solutions for SHM applications with minimum reconstruction error, to extract
meaningful AE signals from the large-scale noisy AE signals during monitoring and inspection.

Keywords: acoustic emission; hydrogen evolution; denoising; stationary wavelet transform; SHM

1. Introduction

Acoustic emission (AE) signal is a phenomenon of transient elastic waves caused by a change
in external conditions (stress, temperature, etc.) on the part of a structure [1]. The technique
of acquiring and analyzing AE signals to determine the level of internal and external damages
in a composite structure is called AE sensor detection technology, which is currently applied for
monitoring mechanical and aerospace engineering structure [2,3]. The AE signals are the elastic waves
released by energy within a composite material, which can assess the physical phenomena essence of
hydrogen-related damage generation (stress corrosion cracking (SCC), hydrogen embrittlement (HE)
and hydrogen-induced cracking (HIC)), especially to the metallic structure. Severe hydrogen evolution
and absorption may lead to the failure of the structure itself [4–7]. Since the AE signals are released
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by many other sources such as vibration, friction and temperature, the actual collected hydrogen
evolution AE signals have overlapping frequency bands and weak features under a complex noise
background [8]. To provide online detection of hydrogen-related damages, it is essential to extract the
AE signal of a corrosion cracking source under a complicated noise background. Thus, the denoising
of AE signals during the hydrogen evolution process on the welded structure is the key to acquiring
the AE detection of hydrogen evolution-related corrosion cracking.

Several noise-reduction techniques have been explored and used outside the data acquisition
system as preprocessing tools in the literature [2,9–11]. Fast Fourier Transform (FFT) is one of the
most common conventional noise-reduction methods which is usually employed in much commercial
AE data acquisition equipment. The FFT represents the AE signals into the time-frequency domain
to extract the frequency components and discriminate the unnecessary signals. Though FFT is very
effective for noise reduction, it has a low signal resolution, and cannot perform the time domain
and frequency domain analysis simultaneously [9]. It is also less suitable for non-stationary and
transient signals [9]. On the other hand, wavelet transform (WT) is a linear transformation of a signal
in which the fundamental functions are shifted and changed based on the scaling function of a “mother
wavelet” [12]. Khamedi et al. in [10] introduced a denoising method named wavelet packet transform
(WPT) to eliminate the noise of the AE signals that originated from the fracture events on composite
materials. The WPT is an extended model of the conventional wavelet transform, which provides
a complete level-to-level resolution for the AE signal. A significant amount of noise reduction of
non-stationary signals was achieved using multi-resolution characteristics [2]. Another approach for
noise reduction of the AE signal is the Empirical Mode Decomposition (EMD), which decomposes the
AE signal into multiple components based on the frequency-amplitude of the signal. By selecting the
important components, an amount of noise reduction was performed. However, it does not interpret
stationary signals, which often lead to false signals and redundant signals [11]. The work in [2]
has been combined with EMD and WPT to denoise the AE signal by enhancing the aliasing mode
occurrence. The AE signal for each application is unique and subjective to their nature, including
random noise involved. The AE events are a more acoustical active mechanism of hydrogen evolution
monitoring because of bubble friction noise along the structure [13]. Various types of noise, including
mechanical, external environmental, friction, and Gaussian white noise are usually induced to the AE
signals during acquisition. These may hinder discovery of the information from the signals. Thus,
the noises should be removed before performing the information-discovery technique.

Several studies have attempted to use the clustering technique as a tool to remove the noise of
the hydrogen evolution AE signals [14]. The method managed to classify more than 60% of detected
signals as noise with a classification of accuracy around 65%. However, the proposed technique is
not considered to be universal for all types of AE data. Another study has also been identified as the
useful information of the AE signal from the evolution of gaseous hydrogen events by using statistical
procedures [15]. Since an AE signal is a non-linear and non-stationary signal, the conventional
noise-reduction methods are based on linear and stationary assumptions which are unable to fully
extract the necessary information. The conventional wavelet decomposition can denoise non-stationary
signals with multi-resolution characteristics. However, it aims at only a low-frequency signal part
which is unable to satisfy both the low- and high-frequency resolutions. The actual hydrogen evolution
AE signal under complex background noise has an overlapping high-frequency band and different
characteristics of information. Thus, there is a necessity to incorporate a new multi-resolution denoising
method to effectively extract the hydrogen evolution AE signals from the complex noise background.
In this paper, we propose a non-decimated stationary wavelet transform (ND-SWT) method based
on the variable soft threshold function for denoising hydrogen evolution AE signals. The proposed
method will concentrate on both low- and high-frequency resolutions and use to suppress the various
types of noises from the acquired AE signal efficiently without degrading the original properties.
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2. Background Concepts of the Denoising Methods

The fundamentals of the denoising methods that have been adopted in this research are discussed
as follows:

2.1. Empirical Mode Decomposition (EMD)

The Empirical Mode Decomposition (EMD) was introduced by Huang et al. [16]. EMD is an
adaptive time-frequency decomposition technique using the Hilbert–Huang Transform (HHT) for
non-linear and non-stationary time-series data. The main principle of using EMD is to decompose a
given time-series signal x(t) into a sum of oscillatory functions, called intrinsic mode function (IMF).
The IMF can be obtained by using the sifting process. In the EMD, an IMF should satisfy the following
two conditions: (i) the difference between the extrema which is the sum of maxima and minima, and
the number of zero crossings must be 1; and (ii) the local average or mean from the maxima and
minima should be 0. According to the time scale characteristics, the signal is decomposed into several
IMFs. The given original signal x(t) is decomposed by EMD [2] as in Equation (1):

x (t) =
n

∑
i=1

IMFi (t) + rn (t) , (1)

where IMFi(t) represents the series of IMF components and rn(t) refers to the residual component.
The first IMF retains the high-frequency impact, and it decreases accordingly for the rest of the IMFs
until the signal is not smooth. Selecting the good IMFs with high-frequency and residual components,
the signal can be reconstructed, which refers to a denoised signal.

2.2. Wavelet Transform (WT)

The wavelet transform (WT) plays a significant role for various SHM applications in the
preprocessing of stationary and non-stationary signals. The preprocessing of the signals includes
the removal of noises from the signals, detection of abrupt discontinuities, and compression of
large amounts of data. This research emphasizes the wavelet denoising method which provides a
significant outcome for noise removal for a broad class of signals of varying degrees of smoothness [17]
encountered in a diversity of applications. Wavelet denoising method is of a disarming simplicity,
yet it achieves many objectives simultaneously, such as removing the noise without significant signal
degradation. Wavelet denoising method offers all that we might desire of a technique, from optimality
to generality [17].

2.2.1. Discrete Wavelet Transform (DWT)

The DWT is a conventional method of the WT family which discretizes a signal based on
downsampling and represents it in a different level of tree-structure manner. The DWT provides an
important advantage over the traditional Fourier Transform (FT) method [18]. The DWT transforms a
signal into various scales representing different frequency components. At each scale, the position
of the WT can be determined as the vital time characteristic that provides the facility to identify
the noises and remove them effectively. The general procedures of the DWT-based signal denoising
method used in the literature are divided into three steps. Initially, the signal is transformed up
to a predefined decomposition level of j to obtain the detail coefficients. Afterwards, the threshold
function is performed on the j signal details using different threshold selection rules, either soft or
hard threshold functions, by considering a basic noise model. Finally, the signal is reconstructed using
the original approximation coefficients of the jth level and the modified detail coefficients of all levels.

2.2.2. Wavelet Packet Transform (WPT)

The WPT is a generalization of wavelet decomposition, which offers better signal preprocessing
and analysis functions than the conventional WT methods [2,19]. The WPT introduces the effects



Processes 2020, 8, 1460 4 of 19

of transformation parameters for denoising effect of a signal, such as the effects of mother wavelet,
wavelet packet bases, decomposition level, and threshold function selection. The WPT divides the
frequency band into multiple decomposition levels and further transforms the high-frequency part that
is not subdivided by wavelet analysis. The WPT selects adaptively the corresponding frequency band
to match the spectrum characteristic of the signal, which provides better time-frequency resolution.
The wavelet packet transforms a signal into the corresponding frequency band components according
to the random time-frequency resolution. In wavelet packet analysis, the noise-reduction algorithm of
the signal was basically the same as that of the wavelet analysis. The difference is that wavelet packet
analysis decomposed the low and high-frequency part at the same time, which had more accurate
local analysis ability.

2.2.3. Stationary Wavelet Transform (SWT)

Stationary Wavelet Transform is more flexible in denoising signals compared to the traditional
wavelet transform, which is also known as a non-decimated Wavelet Transform. The SWT is slightly
different from the standard DWT because of its up-sampling characteristic of filters at various levels [20].
The SWT preserves the invariance property of a translation of the original signal, whereas the
translation invariance in DWT is not preserved because of the sub-sampling operations in the
pyramidal method. The SWT uses recursively dilated filters instead of sub-sampling operations
to divide the bandwidth from one level to another level. There is no requirement to imply a translation
of the corresponding wavelet coefficients. The SWT can maintain the same number of coefficients
to all levels, while the traditional wavelet transforms lose the coefficients at each level. Thus, the
length of approximations and coefficients is the same at each level, which also corresponds with the
original signal.

3. Materials and Methods

This section explains the various features and characteristics of the given specimens. The details
about the experimental tests for mechanical and AE data acquisition are discussed.

3.1. Hydrogen Evolution System

A portion of a long carbon steel pipe was used in this test. An exposed area approximately
800 mm2 was made on the segmented pipe (artificial defect). The electrolyte used in this work is
3.5 wt.% of sodium chloride. The cathodic hydrogen charging was done by inducing 3.15 A current
using power supply at 25 V to create the hydrogen evolution mechanism on the exposed area through
the test. The counter electrode (CE) is a stainless-steel rod, which is used to complete the electrochemical
system. The schematic diagram in Figure 1 shows the cathodic hydrogen charging setup, attached with
the sensors and location of the active area.

NaCl solution

AE sensor

(a)
(b)

Figure 1. The schematic diagram for (a) cathodic hydrogen charging setup and (b) cross section pipe
with location of sensors.
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3.2. Acoustic Emission Signal Acquisition

AE signals were continuously acquired during the test. Signals were monitored via four channels
of data acquisition environmental noise test. The sensors are attached to the specimen using the
magnetic clamp. A coupling agent was applied between sensors and the specimen to greatly increase
the acoustic energy transmission from specimen to the sensor. The whole system, including sensors,
are supplied by Physical Acoustics Corporation (USA). Pencil lead-break procedure was used prior to
the data acquisition for calibration and to ensure all the sensors were receiving the optimum amplitude
from the lead break. Values for peak definition time (PDT), hit definition time (HDT) and hit lockout
time (HLT), threshold value, and sample rate were employed in the acquisition setting, as shown in
Table 1. The sensors were positioned at 12, 3, 6, and 9 o’clock relative to the pipe specimen as shown in
Figure 1b by following the recommended configuration for the cylinder-type structure.

Table 1. AE parameters.

Parameter Value

Hit definition time (HDT) 2000 µs
Peak definition time (PDT) 1000 µs

Hit lockout value (HLT) 500 µs
Threshold value 40 dB

Sample rate 1 µs per sample

In this work, R6I-AST sensors are used to acquire the AE signal and provide high-sensitivity
data acquisition and data recording components. The sensor specification is summarized in Table 2.
The normal (ground-truth) and abnormal (cathodic charging) AE signal data were taken before
and during the experiment, respectively. The total duration of charging and data acquisition is
approximately 146 s, recorded at a sampling rate of 1 µs per sample. Thus, every AE hit was producing
a 1024 line of data points. The data were acquired and recorded by AEwin software, including all the
waveform features. The AE features were analyzed and processed using the wavelet packet transform,
empirical mode decommission, and other methods.

Table 2. Specifications of R6I-AST sensor.

Parameter Value

Peak sensitivity, ref (V/(m/s)) 117 dB
Operating frequency Range 40–100 kHz

Resonant Frequency, ref (V/(m/s)) 55 kHz

3.3. Denoising of a Signal Based on ND-SWT

Non-decimated stationary wavelet transform is adopted for denoising signals which are the
foundation of the orthogonal wavelet transform. The basic decomposition tree of ND-SWT is presented
in Figure 2, where x[n] is an original signal with noise, H, and L are the high-pass and low-pass filters
as well as c is a constant, Di and Ai are the details of coefficients and approximations respectively.
This method avoids using decimators because it decreases the length of the approximation and
coefficient sequences with the increment of the iteration index in traditional DWT. The ND-SWT uses a
series of low-pass and high-pass filters at each iteration level, and the filters are upsampled from the
corresponding filters of the previous level. Therefore, the main difference between the SWT and DWT
is the filters are upsampled at each decomposition level in SWT instead of sub-sampled. The ND-SWT
is an inherently redundant method as each sequence of coefficients contains an equal number of
samples as the number of samples in the original signal. For example, the length of the approximations
and coefficients is 2l j, where l = 1, 2, · · · , n is the length of the approximations or coefficients, and j is
the number of levels.
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X[n]

H

L

cD1[n]

Level: j=1

cA1[n]

H

L

cD2[n]

Level: j=2

cA2[n]

H

L

cD3[n]

Level: j=3

cA3[n]

cDj[n]

cAj[n]

  2

  2

cDj+1[n]

cAj+1[n]

Figure 2. The ND-SWT decomposition tree.

Basic Steps of a Signal Denoising by ND-SWT

A time-series, non-stationary signal with noise is assumed, and one-dimension signal model is
described as in Equation (2).

xl = f (tl) + ωzl (2)

where f is an unknown function, tl = l/n, zl
iid∼= N (0, 1) is a Gaussian white noise and ω is a noise level.

The ND-SWT-based denoising operations can be performed according to the following steps:
Step-1: Wavelet decomposition process is performed on an original one-dimensional signal with

noise. This process is also known as multi-resolution analysis of a signal with noise. The original signal
is decomposed into jth levels varying the wavelet scale and each level carries the different frequency
components of the signal. At each level of decomposition, the signal is divided into two parts—details
of coefficients with high-frequency information of the signal and approximations with low-frequency
information of the signal. Hence, more decomposition steps provide the depth frequency information
of the signal as in Figure 2. Suppose, A1 (l) =< ψ, φ−1,l > and D1 (l) =< φ, φ−1,l >, where φ is the
scale function and ψ is the wavelet function. The non-decimated SWT-based wavelet decomposition
can be expressed as in Equations (3) and (4).

Dj,k = ∑
l

Hj
↑2 (l − 2k) Dj−1,l (3)

Aj,k = ∑
l

Lj
↑2 (l − 2k) Aj−1,l (4)

where Aj,k denotes the scale coefficients of the approximation part, Dj,k denotes the wavelet coefficients

of the details part. H↑2j and L↑2j refer to the interpolation of Aj−1 and Dj−1 respectively.
Step-2: Threshold functions are performed on the wavelet coefficients at each decomposition

level to de-noise the signal without degrading the signal quality. There are two threshold functions,
including hard threshold and soft threshold most commonly used in the wavelet transformation-based
signal denoising methods [2]. However, one of the main limitations of a hard threshold function
is to interrupt the signal continuity and provide a poor smoothness reconstructed signal. On the
other hand, the soft threshold function may discard the important characteristics of the decomposed
signal resulting may distort the reconstructed signal. Therefore, this paper adopts a dynamic soft
threshold function which is computed based on the correlation factor of the wavelet coefficients and
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it regulates in between 0 to 1, to remove all wavelet coefficients that are greater than or equal to the
set threshold value causing the reconstructed signal to be smooth are clean. Different categories of
threshold functions are mathematically expressed in Equations (5)–(7).

η (d, λ) =

{
(d) |d| ≥ λ

0 |d| < λ
{Hard thresholding} (5)

η (d, λ) =

{
sign (d) (|d| − λ) |d| ≥ λ

0 |d| < λ
{Soft thresholding} (6)

η (d, λ) =

{
sign (d) (|d| − αλ) |d| ≥ λ

0 |d| < λ
0 ≤ α ≤ 1 {Dynamic soft thresholding} (7)

where d is a wavelet coefficient, λ, is a threshold value, and α is the quantified threshold value
in between 0 to 1. After applying the ND-SWT, the wavelet coefficients at each decomposition
level are the combination of noise-free and noisy characteristics coefficients in the wavelet domain.
The noise-free coefficients are coherent and their energy concentration property is a high magnitude of
coefficients, whereas the noisy coefficients are incoherent and presented by many coefficients with
small magnitudes. Denoising of a signal is complemented by setting the noisy coefficients to near zero
or comparatively small while the threshold function is performed.

Step-3: Reconstruction of the decomposed signal. Based on the nth low approximation coefficients
and nth high wavelet detail coefficients, the reconstruction process of the decomposed signal is
performed. Reconstruction process can be expressed as in Equation (8).

Aj−1,l =
1
2 ∑

k

[
L
′
j (l − 2k) + L

′
j (l − 2k− 1)

]
Aj,k +

1
2 ∑

k

[
H
′
j (l − 2k) + H

′
j (l − 2k− 1)

]
Dj,k (8)

where L
′
j and H

′
j are the dual base of Lj and Hj respectively.

To evaluate the denoising effect of the reconstructed signal based on ND-SWT,
the Root-Mean-Square Error (RMSE), Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR)
and cross-correlation evaluation criteria have been used. The definitions with the mathematical
expressions are stated as follows:

RMSE: It is used to compute the reconstruction error after denoising a signal which can be
calculated by root of the ratio of the total number of samples of a given signal and the mean-square
difference between original given signal x(l) and denoised signal x (l). The RMSE is defined as follows:

RMSE =

√
1
n

n

∑
l=1

[x (l)− x (l)]2 (9)

SNR: It is a measure that compares the level of a desired signal x (l) to the level of signal noise.
The SNR is calculated as the ratio of mean signal power to the mean noise power and expressed
as follows:

SNR = 10log10


n
∑

l=1
x2 (l)

n
∑

l=1
[x (l)− x (l)]2

 (10)

PSNR: It is a measure which can be computed by the ratio between the maximum possible
power of a given signal x(n) and the power of corrupting signal noise that affects the fidelity of its
representation. The PSNR is defined as follows:

PSNR = 20log10

[
max (x (n))

RMSE

]
(11)
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Cross-Correlation (xcorr): The similarity between two discrete time sequences is measured. If the
value of cross-correlation xcorr is close to 1, then the cleaned signal and the signal with noise closely
resemble each other. The cross-correlation can be expressed as:

xcorr =
[

E (x (n)− µx) (x (n)− µx)

δxδx

]
(12)

where µx and µx are the mean values of the denoised signal x (n) and the signal with noise x(n)
respectively and δx and δx are denoted as the respective standard deviations of that two signals.
The operator E() is referred to the statistical expectation or mean function.

4. Results and Discussion

The description of the datasets, simulation environment, and used parameters are presented in
this section. Moreover, the performance of the proposed work in denoising AE signals is analyzed
based on several performance metrics.

4.1. Datasets and Simulation Setup

The experimental corrosion dataset acquired from hydrogen evolution on the carbon steel
pipeline and synthetic datasets with the addition of different levels of Gaussian white noise were
used to evaluate the performance of our proposed denoising method. The hydrogen evolution
corrosion dataset was collected using four AE sensors deployed on the carbon steel pipeline at 12, 3,
6, and 9 o’clock positioning manner for a duration of approximately 146 s. There is a single type of
measurement (AE signal amplitude in mV), which is recorded as waveforms in every microsecond
interval, and each waveform duration is one millisecond. Our proposed method has been applied to
the first 1000 waveforms of a single AE sensor and a total of 1,024,000 data points. On the other hand,
the synthetic datasets were generated randomly with the addition of SNR 5 dB, 10 dB, 15 dB, 20 dB and
25 dB. Each sample was recorded every microsecond and a total of 1 millisecond duration. Apart from
this, the simulations on the datasets were carried out using the Matlab environment to evaluate the
performance of the proposed method. The three-layer ND-SWT method was adopted to decompose
the given datasets based on Shannon entropy structural function. The four different mother wavelets
(haar, db, sym and coif) were selected to compute the wavelet coefficients. The threshold function α

was varied to remove the unnecessary wavelet coefficients to achieve noise reduction.

4.2. Denoising of Synthetic Datasets Added with Gaussian White Noise Based on ND-SWT

The randomly generated sinusoidal clean signal and the addition of SNR 5 dB, 10 dB, 15 dB,
20 dB and 25 dB Gaussian white noise signals are presented in Figure 3. In the graph, the vertical axis
displays the amplitude of a signal, whereas the horizontal axis represents the time. Here, the clean
signal is used as a reference signal and our proposed denoising method is applied to the generated
noisy signals to evaluate the performance in terms of accuracy in denoising without distorting the
original properties of the reference signal. The synthetic clean signal and denoised signals by the
ND-SWT are visualized in Figure 4 to observe the effectiveness of the ND-SWT method in denoising
different levels of Gaussian white noise. It can be observed that even if there is a small effect on
amplitude of the denoised signals only in the case of severe noisy signals, the rest of the properties of
the denoised signals are almost similar to the clean signal. The performance comparison among the
properties of the clean signal, the properties of the different levels of noisy signals, and the properties
of the ND-SWT-based reconstructed denoised signals are presented in Table 3. It can be clearly seen
from the table that all properties of the clean signal are influenced by the different levels of Gaussian
white noise except the “Max Peak Frequency” property. However, the ND-SWT method suppresses the
several degrees of noise effectively and the properties of the reconstructed denoised signals are almost
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similar to the properties of clean signal. Hence, it can be claimed that the ND-SWT is an effective
method in denoising severe noisy signals without degrading the original properties of the signal.
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Figure 3. Synthetic clean signal and the signals with the addition of several degrees of Gaussian white noise.
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Table 3. Comparison among the properties of synthetic clean signal, different degrees of noisy signals
and the ND-SWT-based denoised signals.

Properties Clean Signal 25 dB 20 dB 15 dB 10 dB 5 dB

Number of Peaks 21 209 209 209 273 338
Max Peak Frequency (Hz) 19.53 19.53 19.53 19.53 19.53 19.53

Mean Frequency (Hz) 19.80 20.53 22.01 26.58 41.27 71.47
Angular Frequency (Hz) 125.54 1291.41 1291.41 1690.43 1970.83 2082.04
RMS Bandwidth (kHz) 0.87 60.24 60.24 110.20 107.47 101.97

Mean Frequency Power (dB) −6.01 −5.97 −5.86 −5.80 −5.30 −4.26
RMSE 0.00 0.04 0.07 0.12 0.23 0.38

SNR (dBc) 24.49 20.91 15.66 9.29 6.04
xcorr (%) 100.00 99.84 99.52 98.48 95.17 87.76

ND-SWT-Based Denoised Signals

Number of Peaks 21 21 21 21 21 21
Max Peak Frequency (Hz) 19.53 19.53 19.53 19.53 19.53 19.53

Mean Frequency (Hz) 19.80 19.68 19.68 19.69 19.56 19.50
Angular Frequency (Hz) 125.54 125.79 125.79 125.79 125.79 125.92
RMS Bandwidth (kHz) 0.87 0.98 0.98 0.98 0.96 0.94

Mean Power (dB) −6.01 −6.37 −6.37 −6.47 −6.55 −6.81
RMSE 0.00 0.03 0.04 0.05 0.07 0.11

SNR (dB) 50.89 55.84 54.78 48.29 54.96
xcorr (%) 100.00 99.91 99.83 99.74 99.56 98.91

4.3. Denoising of AE Signal Added with Friction Noise Using ND-SWT Method

In this section, the AE signals from frictional source measured by rubbing a plate of steel on
the same test specimen and other parameters as mentioned in Section 3.2 to create an external noise
during hydrogen evolution activity are extracted. Afterwards, The ND-SWT with coif3 wavelet
method is used to suppress the frictional noise of acquired AE signal and evaluate the denoising
performance. In Figure 5, a comparison of original frictional noisy AE signal, ND-SWT-based denoised
signal and estimated noise are presented. It can be seen from the original AE signal that the AE
frictional noise is proportional to the movement pattern and the force applied on the test specimen.
The denoised signal in Figure 5 shows that the ND-SWT method effectively eliminates the frictional
noise or overlapping frequency properties and retains the necessary hydrogen evolution AE features.
Hence, the ND-SWT method can be used for the acquisition of friction noise-free AE signals which
provide original frequency components for damage assessment in SHM applications.
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Figure 5. Comparison among frictional noisy AE signal generated from hydrogen evolution experiment,
the signal after denoising and estimated noise.



Processes 2020, 8, 1460 11 of 19

4.4. Denoising of AE Signal Added with Friction and Vibration Noise Using ND-SWT Method

In this section, the AE signals measured on the same test specimen’s other parameters are
examined as discussed earlier in Section 3.2 by introducing both the external vibration and frictional
and vibration noisy signal. The test specimen is rubbed and knocked randomly along the test specimen
during a hydrogen evolution experiment for a certain duration to generate friction and vibration
noise. The ND-SWT with coif3 wavelet method is applied to the acquired noisy AE signal for
multi-scale decomposition to suppress both noises and evaluated for denoising performance. In
Figure 6, a comparison of frictional and vibrational noisy AE signal, ND-SWT-based denoised signal
and estimated noise are displayed. It can be seen that each cycle of the original AE signal has a burst
type of emission wave which may contain the hydrogen evolution AE features whereas the rest of the
signal is dominant with the continuous modulation due to knocking activity. The denoised signal in
Figure 6 shows that the ND-SWT method effectively removes both the friction and vibration noise and
retains the necessary AE information. Hence, the ND-SWT method can be used not only for removing
friction noise but also eliminating vibrational noise of generated AE signals from SHM applications.
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Figure 6. Comparison among frictional and vibrational noisy AE signal, the signal after denoising and
estimated noise.

4.5. Frequency Spectrum of the Noisy AE Signals and ND-SWT-Based Denoised Signals

In this section, the hydrogen evolution-based normal AE features are explained. Based on the
literature in [21], the normal frequency components of an AE signal concentrate the range between
30 kHz to 150 kHz during hydrogen evolution.

This range mainly depends on several bubbles generated during hydrogen evolution and the
level of induced potential. Figure 7 shows a comparison of the frequency components for original
frictional and vibrational noisy AE signals with the frequency components of the ND-SWT-based
denoised AE signals. From Figure 7, it can be seen in the case of original frictional noise that it
mainly influences the overlapping frequency band as well as having a small effect on the amplitude.
The ND-SWT-based denoised signal contains the original frequency components by removing the
overlapping frequency band and unnecessary amplitude. On the other hand, it can be observed that
both friction and vibration noises concentrate on both amplitude overlapping frequency band features
of AE signal which increases due to these noises. However, the denoised signal by the ND-SWT
retains the original frequency components according to the literature by removing the unnecessary
frequency bands.
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Figure 7. Comparison between the frequency components of the Original noisy AE signals and
ND-SWT-based denoised signals.

4.6. Comparison of the Performance in Denoising AE Signal Based on Different Methods

In this section, the performance of various denoising methods on AE signals acquired from the
hydrogen evolution experiments using different mother wavelets is analyzed. The performance of the
proposed method in terms of denoising for “haar3”, “db3”, “sym3” and “coif3” wavelets is shown in
Figure 8.
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Figure 8. Noise reduction by ND-SWT using haar3, db3, sym3 and coif3 wavelets.
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The plot illustrates the comparison between the original AE signal and the denoised AE signal
along with the estimated suppressed noise for various types of wavelets. It can be observed that the
proposed denoising method suppresses the highlighted friction noise generated from the mechanical
or experimental environment and reconstructs the denoised signal with less distortion of the original
signal for all types of wavelets. Please note that the “coif3” wavelet yields the lowest distortion after
noise reduction of AE signal as compared to others. Moreover, Figures 9–11 represent the performance
comparison of the most popular existing denoising methods between the original AE signal and the
denoised AE signal along with the eliminated amount of noise for different wavelets. It can be observed
that the existing methods yield poor performance in terms of denoising the AE signal as compared to
the proposed methods. Even the “coif3” wavelet yields better performance in denoising for all existing
methods, it still yields the poor noise suppression performance compared to the performance of the
proposed method’s “coif3” wavelet.
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Figure 9. Noise reduction by DWT using haar3, db3, sym3 and coif3 wavelets.
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Figure 10. Noise reduction by WPT using haar3, db3, sym3 and coif3 wavelets.

4.7. Performance Comparison of Different Methods Using Various Performance Metrics

In this section, the performance of various denoising methods is evaluated using different
performance metrics, including RMSE, SNR, PSNR, and cross-correlation. All performance metrics
have been measured by comparing the properties of the original AE signals and noise-free
reconstructed signals. Figures 12–15 present the performance of the proposed method on various
metrics while denoising the AE signal with respect to the four different wavelets and compare it with
the performances of the existing denoising methods. It can be clearly seen in the case of all performance
metrics that the mother wavelet named “coif3” performs better in terms of denoising AE signals for all
simulated methods than the performances of “haar3”, “db3” and “sym3” wavelets. The main reason is
that the “coiflets” uses high windows overlapping and six scaling wavelet function coefficients so that
it increases adjacent samples in both averaging and differencing leads to a smoother wavelet. Hence,
it is more capable of denoising AE signals. Apart from this, it can be observed from the graphs that
the ND-SWT yields the optimum results in terms of accuracy in denoising AE signals, as it yields the
lowest value of RMSE and highest values of SNR, PSNR, and cross-correlation as compared to the other
existing DWT, WPT, and EMD-WPT methods. This is due to its functional characteristics, including
revolving, multi-scale invariable, translation, translation invariability, and redundant properties.
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Figure 11. Noise reduction by EMD-WPT using haar3, db3, sym3 and coif3 wavelets.
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Figure 12. Comparison on RMSEs of the simulation AE signal with respect to four methods using four
different wavelets.
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Figure 13. Comparison on SNRs of the simulation AE signal with respect to four methods using four
different wavelets.
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Figure 14. Comparison on PSNRs of the simulation AE signal with respect to four methods using four
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Figure 15. Comparison on cross-correlations of the simulation AE signal with respect to four methods
using four different wavelets.
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4.8. Frequency Spectrum Analysis of AE Signal after Noise Reduction

The frequency spectrum analysis explains the frequency of a signal or distributed frequency over
a time-series. Figure 16 presents the frequency spectrum of the original AE signal, where the original
signal has been transformed using FFT and displayed the magnitude in (mV) with respect to the
frequency in (kHz) over time-series.
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Figure 16. Frequency spectrum of AE signal after noise reduction by DWT, WPT and EMD-WPT and
ND-SWT Methods.

The frequency spectrum illustrates a concentration of power at low frequencies, and it varies in
amplitude and slope. Figure 16 also shows the frequency spectrum of the reconstructed denoised
AE signal by the proposed and existing denoising methods. It can be clearly seen that the
frequency spectrum of the ND-SWT-based denoised signal yields better originality in terms of the
original frequency spectrum properties of the signal compared to the other existing methods. Thus,
the ND-SWT method provides the accurate damage characterization facility in SHM using accurate
frequency components of cleaned AE signals.

5. Concluding Remarks

Our findings and analysis confirm the fact that denoising method is very useful to clean noises
from the AE signals in order to improve the quality of the AE signals and use them effectively for
different applications in monitoring carbon steel structure, suffered from the hydrogen-induced
damage reaction. The adopted ND-SWT provides efficient noise reduction of AE signals generated by
hydrogen evolution experiments with the minimum reconstruction error hence, making it useful for
large-scale noisy AE signals generated from various monitoring applications in SHM. The simulation
results of the proposed method have proven that the SNR, PSNR, and cross-correlation performances
are maintained high with the minimum RMSE compared to the performances of the recent existing
denoising methods in SHM. The ND-SWT method can be applied to acquire AE clean signals during
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SHM inspection in real environments. However, the preliminary analysis should be carried out
in order to identify the setting parameters during acquisition including threshold value, length of
wave, the accurate AE sensor and wave velocity for a specific structure. The selection of appropriate
parameters can play a role of removing the reflected wave and other noise. The performance of the
ND-SWT method in real practice can vary due to the influence of other external and internal factors
such as temperature, humidity, load, pressure and so on which are unable to be considered in this
work. The further study can be carried out on real-world SHM application including these factors to
investigate the denoising performance of ND-SWT method.
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