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Abstract: The limited shelf life of carbon prepreg waste (CPW) from component manufacturing
restricts its use as a composite reinforcement fibre on its own. However, CPW can be recycled
with glass fibre (GF) reinforcement to develop a unique remediate material. Therefore, this study
fabricated (1) a glass fibre-carbon prepreg waste reinforced polymer hybrid composite (GF-CPW-PP),
(2) a polypropylene composite (PP), (3) a carbon prepreg waste reinforced composite (CPW-PP),
and (4) a glass fibre reinforced composite (GF-PP) and reported their degradation and residual tension
properties after immersion in water. The polymer hybrid composites were fabricated via extrusion
technique with minimum reinforce glass-carbon prepreg waste content of 10 wt%. The immersion test
was conducted at room temperature using distilled water. Moisture content and diffusion coefficient
(DC) were determined based on water adsorption values recorded at 24-h intervals over a one-week
period. The results indicated that GF-PP reinforced composites retained the most moisture post-168 h
of immersion. However, hardness and tensile strength were found to decrease with increased water
adsorption. Tensile strength was found to be compromised since pores produced during hydrolysis
reduced interfacial bonding between glass fibre and prepreg carbon reinforcements and the PP matrix.

Keywords: hybrid composites; carbon prepreg waste; water absorption; degradation

1. Introduction

Carbon fibre (CF) is a high-strength synthetic fibre with a micro graphite crystal structure. It is
mainly used as a filler or fibre reinforcement to strengthen composite materials [1–5] since it is not only
lightweight but possesses the highest specific modulus and highest specific strength in comparison to
other fibre reinforcements. General and high-technology industries utilise CF due to these excellent
properties. In the high-technology industry, the aerospace sector, as well as the nuclear engineering
sector, use it to manufacture components, such as the Boeing 787 Dreamliner and Airbus A350.
The general and transportation industries, however, use CF to produce components such as fan blades,
bearings, and gears, among other things. The aerospace industry relies the heaviest on CF since about
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50% of an airplanes’ body is made of it. A study by General Motors Research & Development Center
concluded that studying various advanced CF fabrication methods was the best way to optimise its
properties. The demand for CF in the aerospace, industrial and sport equipment sectors is estimated to
expand by a 1:1 ratio [6].

As of 2019, the global demand for CF is approximately 100,000 metric tons with an annual
growth rate of 10% to 12% in comparison to 85,000 metric tons in 2018. This annual growth rate
is estimated to increase by approximately 7.6% per year by 2024 [7]. This will inevitably increase
the amount of CF waste to be managed with minimal environmental impact. Moreover, in a bid to
encourage compliance with waste treatment policies and promote recycling, the European Union
(EU) has introduced numerous legislative measures to limit waste disposal methods such as landfills
and incineration. However, CF composites are particularly hard to recycle due to the cross-linked
thermoset polymers in their matrices. Furthermore, other reinforcements are usually incorporated in
its base constituents, thus creating complex multiphase waste [8]. This means that even if CF waste
can be recycled, it would be hard to preserve its original properties.

Numerous studies have explored CF waste management options. A study by Gopalraj and
Kärki [9] evaluated existing CF waste-glass fibre (GF) reinforced composites recycling and also fibre
recovery methods and determined the properties retained before identifying gaps in the material’s
lifecycle within a circular economy. Yang et al. examined the chemicals used to recycle CF and
GF epoxy resin composites; polyethylene glycol (PEG) and sodium hydroxide (NaOH). Their study
concluded that recycled CF and non-alkaline GF retain 94% to 96% of their original strength and
that recycled medium-alkali GF retained less than 90% of its tensile strength [10]. Tomioka et al.
fabricated carbon prepreg waste (CPW) reinforced composites via injection moulding and studied the
palletisation process. With respect to mechanical and flowability properties, they found that recycled
CF had greater impregnation in the composites due to finer interfacial adhesion compared to virgin
conventional materials [11].

There are different interpretations of conditions that cause CF and GF degradation. It is thought to
occur when the materials are exposed to or absorb moisture with a few studies verifying this assumption.
Cauich-Cupul et al. discovered that moisture uptake in CF/epoxy matrix composites correlated to
a decrease of its glass transition temperature and deteriorated the interfacial shear properties [12].
An analysis by Eslami et al. showed that GF composites exposed to humid conditions in an aging
environment changed from seawater to water causing a decrease in the failure force (from 35.1% to
51.8% kN) and reducing maximum displacement (from 26.2% to 31.6%) as the aging temperature rose
from 2 ◦C to 25 ◦C [13]. Tsai et al. [14] investigated CF/GF hybrid composites. The CF/GF composites
appeared to be more complex under these conditions. Short beam shear strength and glass transition
temperature appeared to retain 77% and 98%, respectively, of their respective properties. This was
attributed to the high density packing of CF/GF fibre interfaces which allowed only moderate damage
to fibre-matrix interface.

The literature review reveals the many drawbacks of CF composites such as degradation of
properties after the expiry date as well as the high manufacturing cost. The degradation of CPW
is, especially, uncertain and has not been investigated further. The first issue arises when the CPW
material passes its expiry date once the matrix has cured. This causes it to harden and become inflexible
and unreliable despite its usually exemplary mechanical properties. As more and more CP is used,
it will produce an exorbitant amount of CP waste. As we are surrounded by moisture, the behaviour
of CPW after water degradation warrants examination as such an investigation can be beneficial to
both local and global advancement of the material.

In this study, a glass fibre-carbon prepreg waste reinforced polymer hybrid composite
(GF-CPW-PP), a polypropylene composite (PP), a carbon prepreg waste reinforced composite (CPW-PP),
and a glass fibre reinforced composite (GF-PP) were immersed in distilled water at room temperature
to investigate the effects of moisture. The moisture absorption behaviour of these specimens was
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then evaluated. Since the specimens were in tensile form, their tensile properties prior to and after
immersion were analysed as well.

2. Materials and Methods

2.1. Materials

For the purposes of this study, four composites were made of polypropylene (PP) matrix only,
PP reinforced with carbon prepreg waste (CPW), PP reinforced with glass fibre (GF), and PP reinforced
with both GF and CPW. The CPW used was a twill weave carbon fibre fabric pre-impregnated with
an epoxy resin system of 0.3 mm thickness and 1.21 × 10−6 kg/c mm3 density from Fibre Glast
Developments Corporation, Ohio, USA While the GF reinforcement was a 450 g/m2 E-type chopped
strand mat (CSM). The PP (CAS #: 9003-07-0) provided by LOTTE CHEMICAL TITAN Holding Berhad,
Malaysia, was the TITANPRO® 6331 grade with a molecular weight of 354.57 kg/mol, melt mass flow
rate (230 ◦C/2.16 kg) of 14 g/10 min, density of 0.9 g/cm3 and tensile strength at yield of 35.3 MPa.

2.2. Preparations of Hybrid Composites

The composites were prepared via extrusion. The GF and CPW were first ground using the
FRITSCH Cross Beater Mill PULVERISETTE 16 and the 0.75 mm cast iron grinding insert. The ground
GF was ~10 µm while the ground CPW was ~5 µm. Different variations of GF and CPW were then
mixed with PP using the 27 mm-diameter screw of a Leistritz Advanced Technologies Corporation
MICRO 27 GL-32D extruder machine to form two reinforced composites (GF-PP and CPW-PP), one
composite (PP), and one hybrid composite (GF-CPW-PP). The composites were extruded in a length
to diameter (L/D) ratio of 32D at 180 ◦C and pressure of 66.9 bar. The twin-screw extruder speed
was 10 rpm and the flow rate was 1.7 g/min. The four specimens were labelled (1) PP and contained
100 wt% polypropylene, (2) GF-CPW-PP and contained 5 wt% glass fibre and 5 wt% carbon prepreg
waste, (3) CPW-PP and contained 10 wt% carbon prepreg waste, and (4) GF-PP and contained 10 wt%
of glass fibre, as shown in Figure 1.
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2.3. Material Characterization

2.3.1. Water Immersion Tests

Water uptake was measured by repeatedly immersing the specimens in distilled water at room
temperature then measuring the weight in accordance with the Standard Test Method for Moisture
Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials (ASTM
D5229). Prior to immersion, the tensile properties were determined in accordance with the Standard
Test Method for Tensile Properties of Polymer Matrix Composite Materials (ASTM D3039). Throughout
the immersion process, the specimen weights were measured at 24 h, 48 h, 72 h, 96 h, 120 h, 144 h,
and 168 h. The weight percentage during the immersion test was measured as follows,

WP, % =
W1 −W0

W0
× 100 (1)

where WP,% is the weight percentage of moisture content, W1 is the post-immersion weight, and W0 is
the pre-immersion weight.

2.3.2. Tensile Test

The tensile test was performed according to ASTM D3039 standards at room temperature with
1.0 mm/min crosshead speed and 10 kN load cell. Rectangular specimens measuring 250 mm × 25 mm
× 2.5 mm (length ×width × thickness) were tested. The tensile properties of the specimens pre- and
post-168 h of immersion were compared.

2.3.3. Hardness Test

The Rockwell hardness testing method was used to measure the impression depths on the
specimens’ surfaces under applied loads. It was conducted in accordance with ASTM D785 standards
and measured in Rockwell (R) scales. A piece of a specimen was cut then placed on the surface tester
at zero gauge before a minor load was applied. A major load was then applied for 4 s then shifted back
to the minor load before the hardness value was recorded.

2.3.4. Morphology

Scanning Electron Microscopy (SEM) is a test method that produces magnified images for analysis
under an electron beam. This method is used to obtain images of a material’s surface and texture,
especially for failure analysis. The images are in high resolution and able to precisely measure minute
features on an object at high magnifications. The specimens were cut into approximately 1 cm × 1 cm
pieces and clipped into the sample holders. They were then loaded into the equipment and analysed
by adjusting the magnification and focus.

3. Results and Discussion

3.1. Water Immersion

Since the appearance of a specimen’s surface is likely to affect its application, the goal was to
innovate various aspects of it with or without changing its condition. For any given material, water
immersion affects its characteristics based to the material’s content, structural arrangement of its
individual elements, fabrication method, etc. [15–20]. A visual assessment showed that specimens
immersed in distilled water varied in colour (Figure 2). PP was white while GF was grey and CPW was
black. However, the GF-CPW-PP specimen initially appeared charcoal but eventually turned black as
the carbon emerged allowing less light to be reflected giving it a close to zero albedo in the perceivable
spectrum region. Specimen discoloration after prolonged exposure was observed. The composites
changed from their original colour to a faded colour due to modifications in the matrix. As reported,
the colours change in reaction to the functional group adhering to the carbon polymer chain [21].
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Furthermore, morphological changes in specimen surfaces were observed post-immersion as well.
While the PP specimen was slightly smooth and did not differ greatly to its surface morphology prior
to immersion, the reinforced composite specimens had rougher surfaces due to fractional debonding
as seen in the CPW-PP and GF-PP specimens.Processes 2020, 8, x FOR PEER REVIEW 5 of 13 
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Figure 2. Specimens immersed in distilled water (a) PP (b) GF-CPW-PP; (c) CPW-PP; and (d) GF-PP.

The moisture content of the PP and other composites (GF-CPW-PP, CPW-PP, and GF-PP) immersed
in distilled water for 168 h are shown in Figure 3. While similar trends emerged, the difference in values
may be due to dissimilarities in the specimens’ percentage of moisture as a function of square root
time. The moisture content percentage value was found to increase with immersion time. This trend
increased sharply indicating accelerated moisture penetration due to active moisture penetrability and
capillary action. GF-PP had the highest moisture content percentage (4.7%) followed by GF-CPW-PP
(3.4%), CPW-PP (3.2%), and finally PP (0.5%). The covalent bonds between the GF-PP specimen’s walls
enabled more water molecules to be absorbed. Therefore, the addition of GF in GF-CPW-PP weakened
interfacial forces and increased the surface tension.

Processes 2020, 8, x FOR PEER REVIEW 5 of 13 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Specimens immersed in distilled water (a) PP (b) GF-CPW-PP; (c) CPW-PP; and (d) GF-PP. 

The moisture content of the PP and other composites (GF-CPW-PP, CPW-PP, and GF-PP) 
immersed in distilled water for 168 h are shown in Figure 3. While similar trends emerged, the 
difference in values may be due to dissimilarities in the specimens’ percentage of moisture as a 
function of square root time. The moisture content percentage value was found to increase with 
immersion time. This trend increased sharply indicating accelerated moisture penetration due to 
active moisture penetrability and capillary action. GF-PP had the highest moisture content 
percentage (4.7%) followed by GF-CPW-PP (3.4%), CPW-PP (3.2%), and finally PP (0.5%). The 
covalent bonds between the GF-PP specimen’s walls enabled more water molecules to be absorbed. 
Therefore, the addition of GF in GF-CPW-PP weakened interfacial forces and increased the surface 
tension. 

 
Figure 3. Water content percentage (%) of specimens in distilled water condition. 

The moisture absorption properties analysis of the immersed specimens was completed by 
quantifying the diffusion coefficient (DC). The DC value of the specimens was calculated using 
Equation (2) [22].                                                               ܦ஼  = ൬ ߨ  ݇ℎ4 ܯ௠൰ଶ                                                                    (2) 

where k is the initial slope from the curve in WP (%) versus √time (√h) figure, h is the thickness of the 
specimen (mm) and Mm (%) is the maximum weight gained (%). As seen in Table 1, GF-CPW-PP had 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0 2 4 6 8 10 12 14

M
oi

stu
re

 c
on

te
nt

, (
W

P%
)

√time, (√h)

PP GF-CPW-PP CPW-PP GF-PP

Figure 3. Water content percentage (%) of specimens in distilled water condition.



Processes 2020, 8, 1434 6 of 13

The moisture absorption properties analysis of the immersed specimens was completed by
quantifying the diffusion coefficient (DC). The DC value of the specimens was calculated using
Equation (2) [22].

DC = π

(
kh

4 Mm

)2

(2)

where k is the initial slope from the curve in WP (%) versus
√

time (
√

h) figure, h is the thickness of
the specimen (mm) and Mm (%) is the maximum weight gained (%). As seen in Table 1, GF-CPW-PP
had the highest DC value followed by GF-PP and CPW-PP. This could be caused by the hydrolysis
mechanism of CPW and GF.

Table 1. Value of diffusion coefficient, DC and the maximum moisture content, Mm.

Unit PP GF-CPW-PP CPW-PP GF-PP

Diffusion Coefficient, DC, ×10−3 mm2/s 4.0 4.6 3.9 3.8
Maximum Moisture Content, Mm % 0.5 3.4 3.2 4.7

The hydrolysis of the composites was noticeable in distilled water. The expected mechanisms of
composites GF-CPW-PP, CPW-PP, and GF-PP in distilled water are illustrated in Figure 4. In distilled
water, it is possible that the electronegative ions of the liquid had an active hold on the diffusion
mechanism. This allowed the CPW, GF and PP to swell and explains the excess of positive charges
surrounding them. The excess of positive charges triggered the COO− and OH− chemical bonds
in CPW. With regard to electronegative charges, GF-CPW-PP had the highest value followed by
CPW-PP and GF-PP. This correlated with the results of previous studies by Oliveux et al. [23] and
Uthaman et al. [24]. The presence of H+ ions in the liquid is typically regarded as a catalyst and thought
to highly influence the degradability of hybrid composites.
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It has been previously exhibited that the diffusional permeability of H2O particles into hybrid
composites is possibly caused by sorption. Therefore, the verification of sorption coefficient (SP) is
regularly used to estimate the diffusional permeability of H2O into hybrid composites. In this work,
the sorption coefficient (SP) is defined in Equation (3),

SP =
MS
MC

(3)

where MS is the weight gained by the specimen in equilibrium and MC is the mass of the specimen.
Meanwhile, the permeability coefficient (PP) would show the SP and DC and can be verified using
Equation (4).

PP = SP . DC (4)

The SP and PP values of the immersed composites are shown in Table 2. GF-PP had the highest
PP value followed by GF-CPW-PP and CPW-PP. The cause for this different range of action in the
composites is mainly accredited to the appearance of radial interfaces in GF and CPW. Cracks were seen
to enlarge due to weight gain and distilled water infiltration. Therefore, this investigation successfully
simulated the moisture absorption mechanism of the composites.

Table 2. Value of sorption coefficient, SP and the permeation coefficient PC of specimen immersed in
distilled water.

Unit PP GF-CPW-PP CPW-PP GF-PP

Sorption Coefficient, SP g/g 0.0785 0.4478 0.4075 0.5985
Permeability Coefficient, Pc mm2/s 0.0003 0.0021 0.0016 0.0023

3.2. Tensile Test

The PP composite, both reinforced composites (CPW-PP and GF-PP), and the hybrid composite
(GF-CPW-PP) were immersed in distilled water for a total of 168 h prior to tensile loading to examine
their mechanical properties. All specimens demonstrated extreme failure under the maximum load
indicating a stress-strain correlation commonly detected in brittle fractures (Figure 5). Although the
composites initially had random inclusion of the fibre reinforcements, tensile micro cracks began to
grow on the weakest plane close to the fibre reinforcement notch tip during tensile loading. The weakest
plane was affected by water molecule ingress through micro cracks and the edges of the fibre-matrix
structure [25–27]. Over time, degradation weakened the stress transfer mechanism and caused
debonding. The micro cracks in the specimens later formed large fracture scale linkage and failed
without necking.

As previously mentioned, increased moisture in the specimens led to degradation and impacted
mechanical performance. Water ingress influenced crack propagation and accelerated the failure
mechanisms weakening the performance of, otherwise, well-built structures. Figure 6 shows the
stress-strain curves of immersed specimens vs. control specimens (not immersed) in the tensile strength
test. The tensile strength all the composites decreased after 168 h of immersion in distilled water.
Table 3 clearly shows the difference between the specimens, where GF-CPW-PP had the highest tensile
strength (78.5 ± 2.3 MPa) followed by CPW-PP and GF-PP with 73.2 ± 5.8 MPa and 69.5 ± 2.1 MPa,
respectively. Therefore, the tensile strength of immersed composites decreased as a consequence of
moisture absorption.
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Figure 6. Stress-strain curves of specimens in control and immersed condition.

Table 3. Value of tensile strength, elastic modulus and elongation at break for control specimens and
immersed in distilled water condition.

Tensile Strength (MPa) Elastic Modulus (MPa) Elongation at Break (%)

PP
Control 28.8 ± 1.4 203.8 ± 8.1 28.0 ± 3.1

DW 21.5 ± 1.0 157.7 ± 6.3 23.0 ± 2.5

GF-CPW-PP
Control 78.5 ± 2.3 640.0 ± 51.2 19.0 ± 2.1

DW 69.3 ± 2.0 573.3 ± 45.9 18.7 ± 1.7

CPW-PP
Control 73.2 ± 5.8 520.0 ± 36.4 19.5 ± 1.8

DW 62.7 ± 5.1 420.0 ± 29.4 17.5 ± 1.4

GF-PP
Control 69.5 ± 2.1 466.6 ± 32.6 18.0 ± 1.1

DW 55.1 ± 1.6 413.3 ± 28.9 17.2 ± 1.0
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3.3. Hardness Test

Hardness measurement, in general, depends on the selected application and deliberated material.
Although common quantification methods are used, minor dissimilarity; such as stiffness variability;
occur during measurement. The hardness values, according to the Rockwell (HRR) scale, based on the
structural indentation of the specimens is shown in Figure 7. Prior to immersion, GF-CPW-PP had
the highest HRR value (103) followed by PCW-PP, GF-PP, and PP with 99, 93, and 89, respectively.
Post-168 h of immersion, the hardness test was performed again. The immersed specimens showed a
decreasing trend in hardness. GF-CPW-PP, once again, had the highest HRR value (98) followed by
CPW-PP, GF-PP, and PP with 93, 86, and 80, respectively.
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Figure 7. Hardness of the control and immersed specimens.

The change in hardness were a function of moisture absorption. The correlation between hardness
and sorption coefficient is shown in Figure 8. This may have caused the densification of the specimens
and possibly the pores within the interfacial bond between fibres and matrix as depicted by the SEM
micrograph. Despite the addition of fibre reinforcement, composites demonstrated decrease in hardness
as expected by the transformation of the sheared GF and/or CPW to deform the fibres around the PP.
This caused a large non-agglomeration from decomposition of the integrated fibres [28,29] leading to
increased internal porosity and further decrease in hardness. Other than that, the incorporation of 10%
fibre reinforcement led to minor differences in hardness value. Therefore, although the addition of
fibre reinforcement increased the rigidity of the composites, it caused porosity and a less integrate fibre
structure that decreased hardness.
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Figure 8. Effect of the hardness on the sorption coefficient of the specimens.

3.4. Morphology

The morphology of control and immersed specimens (GF-CPW-PP, CPW-PP and GF-PP) was
observed. The radical parts of the composites formed brittle fractures, whereas the obscured parts
were the moisture. As the DC of the obscured part increased at a particular rate, depending on the type
of the fibre reinforcement and the fabrication techniques, reinforcement fractures persisted. It was
observed that GF had the highest moisture aspect which correlated to its moisture content percentage.
Therefore, GF-PP was expected to allow moisture to occupy the region. Figure 9 shows the internal
fractures in the control and immersed CPW-GF-PP, CPW-PP and GF-PP specimens after extensible
testing. It was observed that PCW was dark while GF was white. The GF and CF in the composites
were ~8 µm and ~3 µm, respectively, with clearly observable textures. The surface texture of the
specimens was not smooth. GF and CPW seemed randomly oriented and were easily observable
in micrographs of the interior as the interfacial adhesion between the fibres and the PP matrix were
weak. Greater distilled water dispersion in the PP matrix was seen in composites containing GF. GF-PP
disintegrated as moisture penetrated deep into its interfacial adhesion. However, GF-PP had the
lowest GF content in comparison to CPW-PP and GF-CPW-PP. Previous studies reported that [30–33]
composite failure mechanisms may be represented as follows: when there is no load disruption by
the reinforcement break under mechanical testing, the load is uniformly distributed among the fibres
next to the break fibre resulting in a degree of concentrated stress developing on those fibres and
damaging the surrounding matrix. Therefore, the presence of intense moisture increased vulnerability
and decreased the tensile strength of the composites.



Processes 2020, 8, 1434 11 of 13

Processes 2020, 8, x FOR PEER REVIEW 11 of 13 

 

  
(a) 

 
(b)  

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 9. SEM images of (a) GF-CPW-PP (control); (b) GF-CPW-PP (DW); (c) CPW-PP (control); (d) 
CPW-PP (DW); (e) GF-PP (control), and (f) GF-PP (DW) specimens. (red circle shows porosity). 

4. Conclusions 

In this study, the immersion test of the composites showed increasing moisture content over 
time. The maximum moisture content obtained was in the following order: GF-PP > GF-CPW-PP > 
CPW-PP > PP. The tensile strength for all immersed specimens decreased in comparison to control 
specimens (not immersed). The tensile strengths, in descending order, were: GF-CPW-PP > CPW-PP 
> GF-PP > PP. In comparison to pure PP, the tensile strength of GF-CPW-PP was found to have 
increased by 272.6% and by 254.1% in CPW-PP and by 241.3% in GF-PP. However, the hardness of 
all specimens showed a decreasing trend. The Rockwell (HRR) values of GF-CPW-PP decreased from 
103 to 98, from 99 to 93 in CPW-PP, from 93 to 86 in GF-PP, and from 89 to 80 in PP. This indicated 

CPW CPW 

CPW 

CPW 

Figure 9. SEM images of (a) GF-CPW-PP (control); (b) GF-CPW-PP (DW); (c) CPW-PP (control);
(d) CPW-PP (DW); (e) GF-PP (control), and (f) GF-PP (DW) specimens. (red circle shows porosity).

4. Conclusions

In this study, the immersion test of the composites showed increasing moisture content over time.
The maximum moisture content obtained was in the following order: GF-PP > GF-CPW-PP > CPW-PP
> PP. The tensile strength for all immersed specimens decreased in comparison to control specimens
(not immersed). The tensile strengths, in descending order, were: GF-CPW-PP > CPW-PP > GF-PP
> PP. In comparison to pure PP, the tensile strength of GF-CPW-PP was found to have increased by
272.6% and by 254.1% in CPW-PP and by 241.3% in GF-PP. However, the hardness of all specimens
showed a decreasing trend. The Rockwell (HRR) values of GF-CPW-PP decreased from 103 to 98,
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from 99 to 93 in CPW-PP, from 93 to 86 in GF-PP, and from 89 to 80 in PP. This indicated that moisture
absorbed by the specimens caused decreased interfacial bonding between fibre reinforcements and the
PP matrix, thereby causing the composites to disintegrate.
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