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Abstract: Fruits and vegetables are highly nutritious agricultural produce with tremendous human
health benefits. They are also highly perishable and as such are easily susceptible to spoilage,
leading to a reduction in quality attributes and induced food loss. Cold chain technologies have
over the years been employed to reduce the quality loss of fruits and vegetables from farm to
fork. However, a high amount of losses (≈50%) still occur during the packaging, pre-cooling,
transportation, and storage of these fresh agricultural produce. This study highlights the current
state-of-the-art of various advanced tools employed to reducing the quality loss of fruits and vegetables
during the packaging, storage, and transportation cold chain operations, including the application
of imaging technology, spectroscopy, multi-sensors, electronic nose, radio frequency identification,
printed sensors, acoustic impulse response, and mathematical models. It is shown that computer
vision, hyperspectral imaging, multispectral imaging, spectroscopy, X-ray imaging, and mathematical
models are well established in monitoring and optimizing process parameters that affect food quality
attributes during cold chain operations. We also identified the Internet of Things (IoT) and virtual
representation models of a particular fresh produce (digital twins) as emerging technologies that can
help monitor and control the uncharted quality evolution during its postharvest life. These advances
can help diagnose and take measures against potential problems affecting the quality of fresh produce
in the supply chains. Plausible future pathways to further develop these emerging technologies and
help in the significant reduction of food losses in the supply chain of fresh produce are discussed.
Future research should be directed towards integrating IoT and digital twins for multiple shipments in
order to intensify real-time monitoring of the cold chain environmental conditions, and the eventual
optimization of the postharvest supply chains. This study gives promising insight towards the use of
advanced technologies in reducing losses in the postharvest supply chain of fruits and vegetables.

Keywords: food security; food quality; agricultural production; crop storage and processing;
food distribution; smart digital technology; industry 4.0; refrigeration
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1. Introduction

Food losses in the postharvest supply chain amount to a great loss of investments in the packaging,
transportation, and storage operations. About 25–30% of global food produced is lost between on-farm
food production and its storage at a retail facility, largely as a result of poor chain management and
spoilage [1,2]. Food losses occur due to a reduction in quality and safety standards driven by consumer
preferences, particularly in developed countries [3]. A high amount of losses (up to 30% per year) is
often experienced during the postharvest handling of fresh agricultural produce, such as fruits and
vegetables [4]. Advanced technologies are required to reduce the losses of fruits and vegetables in the
postharvest supply chain. The reduction of these losses would increase the number of fresh produce
available for consumption.

Fruits and vegetables are important sources of nutrients such as vitamins, minerals, and bioactive
compounds, which provide many health benefits [5–8]. However, they are highly perishable goods
that need to be appropriately preserved, to reduce the degradation of macro and micro-nutrients
and extend shelf life [7,9,10]. As a result, fruits and vegetables are often packaged and kept in a
desired low-temperature range using various refrigeration systems during the transportation and
storage postharvest handling processes. This process delays or reduces microbial growth and enzymatic
reaction, thereby improving overall quality, reducing mass loss, and extending shelf-life. The succession
of refrigeration steps along these chains can be referred to as a postharvest cold chain of fruits and
vegetables [11]. A description of the postharvest cold chain of fruits and vegetables is shown in Figure 1.
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Refrigeration is a key element in enhancing the quality of fresh produce and extending the shelf-life,
thereby enabling their adequate supply to an increasingly urbanized world [11–13]. However, more than
90% of perishable goods are still not refrigerated [1,14]. Inadequate refrigeration infrastructure or access to
energy accounts for more than 20% losses of perishable goods [15]. These losses also encompass a huge
amount of energy and water losses, but also carbon dioxide emissions [15,16]. Therefore, sustainable cold
chain technologies in terms of being more resource-efficient, improving product quality retention,
and reducing induced food losses become indispensable.

Several studies have been conducted on the postharvest cold chain of fruits and vegetables with
a view to gain more insight on ways to address these technological and developmental challenges.
The losses in the mass and nutritional qualities of strawberries, raspberries, red currants, drupes,
cherries, and sour cherries were reduced using refrigerated containers at 4 ◦C when compared to storage
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at room temperature [17]. Packaging methods such as edible coating, active modified atmosphere
packaging (MAP), nano-composite based packaging (NCP), and polypropylene/polyethylene bags
have been used to reduce quality losses of cherry tomato, kiwifruits, guava, mushroom, cucumber,
and berries during cold chain processes [18–23]. Recently, active packaging such as oxygen scavengers,
ethylene absorbers, moisture regulators, and intelligent packaging including the use of chemical
sensors, temperature, freshness and gas indicators, barcodes and radio frequency identification devices
(RFID), have been developed to maintain the quality and improve the safety of fresh produce [24–27].
These different packaging methods are simple to design, easily affordable and can help to extend
product shelf life [15]. However, retailers in the food supply chain are increasingly looking for
ways to minimize or eliminate the use of packaging, to project sustainable eco-friendly products [28].
Consequently, the negative impact of most packaging materials (e.g., plastic packaging) is largely
overestimated by consumers in comparison to other actions with much higher impacts [29–31]. As an
example, the controversy between paper bags versus plastic packaging comes to mind. Paper bags
hold a much higher environmental impact, due to its higher weight [32], but are often perceived
to be more eco-friendly by the consumer. In a similar manner, a life cycle analysis of a commonly
consumed fruit or vegetable with and without packaging will show that the environmental impact of
plastic packaging, for example, is by far smaller than the impact of the food losses [33,34]. In addition,
plastic packaging presently reduces food losses by up to 4.8% at retail and also reduces induced food
losses at households as a result of prolonged shelf life [35]. Despite all these improvements and
awareness from peer-reviewed literature, the question of why a significant amount of food losses in
the postharvest supply chain (see above) arises, suggesting that more insight and advances into cold
chain technology are required to further reduce food losses by preventing excessive quality loss of
fresh produce.

Key drivers that accelerate food losses during the postharvest supply chain of fruits and vegetables
include lack of innovative packaging materials, inadequate monitoring technology, variations in the
temperature, approach air velocity and relative humidity in cold chain systems, rate of metabolism,
long shipment duration and the heterogeneity of fruits and vegetables. During shipments, there is
often a wide variation of temperature and relative humidity at different locations in a cold chain
system. Great variations in the approach airspeed of different fruits and vegetables are often observed
as a result of the heterogeneous nature of refrigeration equipment, food properties, and packaging
container. These variations can affect the final mass loss, overall quality, and the remaining shelf life of
fresh produce [36–38].

Understanding the physics behind different phenomena that occur during the different postharvest
supply chains and linking these phenomena to measurable output using sensors that provide actionable
data may be the key in optimizing the design of packaging, storage, and transport processes for fruits
and vegetables. Unfortunately, studies on these advances are limited.

This paper aims to explore ways on how food losses can further be reduced in the postharvest
supply chain of fruits and vegetables. Particularly, we discuss the current state-of-the-art in monitoring
and optimizing cold chain systems for a reduction in quality loss during the packaging, transportation,
and storage of fruits and vegetables. We also analyze the potential of applying emerging technologies
such as the Internet of Things (IoT) and digital twins for reducing food losses. We then put forward how
the future should look towards reducing food losses during the packaging, storage, and transportation
supply chain.

2. The Need to Reduce Food Losses in the Postharvest Supply Chain of Fruits and Vegetables

Food losses can be referred to as “the reduction in the amount of fresh fruits and vegetables that
was originally meant for human consumption” [39–41]. Globally, one third to half of all food produced
is lost or wasted along postharvest supply chains, with packaging, storage, and transportation value
chains the most impacted [42,43]. Losses of fruits and vegetables worldwide are between 40% and 50%
of which 54% occur in stages of production, postharvest handling, and storage [3,44,45].
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During packaging, transportation, and storage of fresh agricultural produce, food losses are
often induced as a result of a reduction in the quality (e.g., color, texture, mass) of the produce.
These postharvest handling operations affect the nutritional and sensory quality of the agricultural
produce, the mass of the fresh produce as well as the quantity of fresh produce available to the
consumers. The quality of fresh agricultural produce can be referred to as the excellent characteristics of
such products that are acceptable to a consumer [46]. Consumers typically purchase fresh agricultural
produce based on their biochemical characteristics such as appearance, texture, flavor, and nutritive
value [46,47]. Fresh agricultural produce such as fruits and vegetables provide an essential part of human
nutrition, as they are important sources of vitamins, dietary fibers, minerals, and other biochemical
(e.g., carbohydrate, protein, etc.) with tremendous health benefits [48]. Adequate in-transit monitoring
of environmental conditions and changes in the quality attributes of fresh produce during transport
and storage will help reduce food losses and ensure the availability and accessibility of fresh fruits and
vegetables with high nutritional density to the consumers [49,50]. Therefore, emerging technologies
are needed to help reduce the overall quality loss of fresh agricultural produce, thereby reducing food
losses in the postharvest supply chain.

3. Advanced Technologies for Quality Assessment in Postharvest Supply Chain: State-Of-The-Art

In recent decades, several modern food quality techniques have been applied to monitor,
control, and predict the quality evolution of various fruits and vegetables in postharvest supply
chains. These techniques include imaging systems, spectroscopy, multi-sensors, electronic nose
(E-nose), acoustic impulse response (AIR), radio frequency identification (RFID), printed sensors (PTS),
and mathematical modeling. In this section, we analyze the application of these techniques in advancing
cold chain operations and process optimization during the packaging, storage, and transportation of
fruits and vegetables within the past 10 years.

3.1. Application of Imaging Technology, Spectroscopy, Multi-Sensors, E-Nose, AIR, RFID and PTS in the
Postharvest Supply Chain of Fruits and Vegetables

Imaging technology is an advanced method used by the food and agro-allied industries to monitor
changes in food quality [51]. This technology includes computer vision (CV), hyperspectral imaging
(HSI), multispectral imaging (MSI), thermography, and X-ray imaging. Image technology is particularly
useful in detecting and evaluating the external quality attributes (color, geometrical, size, appearance,
and surface structure) [52,53], and in some cases, the internal structures (X-rays and hyperspectral
imaging) of fruits and vegetables. This technology involves collecting and analyzing spatial information
gained from captured images of products, such as color, geometrical, size, appearance, and surface
structure. The application of imaging technology in postharvest supply chains is mainly limited to
surface detection. The surface properties of an object can be detected due to the interaction of light.
A typical imaging system consists of a CCD camera, a light source, a computer, and related software
(Figure 2). The camera captures the images of the product based on the region of interest. The captured
images are then processed to evaluate and quantify the quality changes that have occurred during
a particular postharvest operation. The image processing steps often consist of image acquisition,
segmentation, feature extraction and recognition, classification, and interpretation [54–57].
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In order to adequately discriminate and analyze the captured numerous images, chemometrics and
deep learning methods are often employed. These methods have already been found reliable
in quantifying the accuracy of processed images and associated quality changes of fruits
and vegetables in the postharvest supply chains (Table 1). They include Savitsky–Golay (SG),
Standard Normal Variate (SNV), Principal Component Analysis (PCA), Partial Least Squares Regression
(PLSR), Multiple Scatter Correction (MSC), Partial Least Squares Discriminant Analysis (PLS-DA),
Artificial Neural Network (ANN), Convolutional Neural Networks (CNN), Linear Discriminant
Analysis (LDA), k-Nearest Neighbors (kNN), Correlation-based Feature Subset Selection (CFS),
Gini Impurity Algorithm (GIA), Sequential Forward Selection (SFS), Backpropagation Neural
Network (BPNN), Extreme Learning Machine (ELM), Sparse Logistic Regression (SLR), Support Vector
Machine(SVM), Radial Basis Function (RBF), Neural Networks (NN), Genetic Algorithm (GA),
Support Vector Regression (SVR), Student–Newman–Keuls (SNK), Least Squares Support Vector
Machines (LS-SVM), and Random Forest (RF).

The applications of different imaging and smart digital technologies in monitoring the quality of
fruits and vegetables in postharvest cold chains are summarized in Table 1. These technologies include
computer vision (CV), hyperspectral imaging (HSI), multispectral imaging (MSI), X-ray imaging,
spectroscopy, multi-sensors, E-nose, and acoustic impulse response.

From Table 1, the majority of the study was done using CV [58–66]. This involves the capturing
of images of a product using a digital camera, and the ability of computers to understand the
processed image data using computational intelligence tools (e.g., chemometrics, deep learning) [54,55].
This imaging method is rapid, reliable, and consistent. However, this technique has some limitations
such as the use of artificial lighting during image capturing and the inability to detect internal attributes.
Table 1 further shows that the bulk of the studies using CV was on cold storage, mostly to monitor and
detect spoilage, chilling injury, and shelf-life of grapes, lettuce, tomato, zucchini, banana, strawberry,
oranges, and mango [58–64,66]. CV with several chemometric and statistical analytic approaches
was able to quantify quality losses with 75–92% accuracy (Table 1). Only a single study explored the
application of CV in quantifying the quality losses of lettuce as a result of packaging material used,
with 86% accuracy (Table 1) [65].

Hyperspectral and multispectral imaging (HSI and MSI) are advancements of computer vision,
which involves the capturing of image data at a different wavelength (e.g., continuous 400–1700 nm in
steps of 1 nm for HSI and targeted 400–1100 nm in steps of 20 nm for MSI) across the electromagnetic
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spectrum [67–70]. Hyperspectral imaging particularly integrates both imaging and spectroscopy
features to simultaneously gather spectral and spatial information from a product, thus making it a
more powerful imaging technology compare to CV and multispectral imaging [71]. Both hyperspectral
and multispectral imaging technologies can detect internal and external quality attributes of fresh
produce. However, they also require artificial lightning, are very sensitive to environmental conditions,
have limited penetration depth, and are very expensive to use. Closely following CV, several studies
have been conducted on the application of hyperspectral imaging in monitoring the quality of
spinach, mushrooms, cucumber, mango, apples, and citrus fruit during cold storage and packaging
(Table 1) [72–75]. This imaging system coupled with PCA, CFS, GIA, SFS, SLR, LDA, kNN, and NN
was able to give 89–98% accuracy (Table 1). However, not so much for multispectral imaging, as only
two studies quantified the quality losses of mangoes during the cold storage, with a classification rate
of ≈92% using PLS-DA (Table 1) [70,76].

Spectroscopy, which is the study of the interaction of electromagnetic waves, including ultraviolet,
visible, and infrared spectra, has been applied to monitor and optimize the cold storage process of peach
and mango (Table 1). Although only a few studies have been carried out (Table 1) [77,78], this spectral
approach can however give an accurate prediction (≈96%) of the total soluble solids, and phenolic
content of peaches during cold storage. This technique gives the advantage of repeatable spectral data
and provides high resolution of spectra. Additionally, this method is toxic-free. Nevertheless, the spectra
data often contains redundant information due to hundreds of spectral variables, limited sensitivity to
minor components, and complicated analysis.

X-ray imaging was applied to detect both the internal disorder and external changes (firmness) of
pears and kiwifruit during cold storage, respectively (Table 1) [11,79]. This technology involves the
production of electromagnetic radiation by an X-ray tube when passed through a product to absorb
part of X-ray beam energy [80]. Using SVM, FEA, NN, and LDA, X-ray adequately quantified the
columella firmness of kiwifruit and discriminated healthy pear from defective ones, with accuracy
ranging from 90% to 95% (Table 1).

Other techniques used to monitor the quality of fruits and vegetables in postharvest cold chains
are multi-sensors, electronic nose (E-nose), acoustic impulse response, radio frequency identification
(RFID), and printed sensors (PTS). In this study, multi-sensors involves the use of numerous sensors
placed at different locations on the produce and in the cold chain equipment (storage container
or transport vehicle) to capture important quality attributes (e.g., color, firmness) and food losses
(weight loss, temperature, time) metrics [81]. Data from the sensors are processed using sensor fusion
(soft sensors). Soft sensors are virtual software code to process multiple sensor information for identified
quality classifiers and for the development of warning systems (e.g., quality decline in fruits) [82].
They can be developed using different methods including mechanistic modeling based on physics of
specific measured quality and food loss metrics, statistical modeling based on low-level representations
in the feature space, and chemometrics or deep learning-based sparse representation techniques for
multi-modal event modeling. Figure 3 depicts the use of multiple sensors (e.g., temperature, humidity)
coupled with imaging technology during the cold storage of fruits and vegetables. From Table 1,
only two studies applied multi-sensors to improve the accuracy of continuous sensor data acquisition
in order to enhance transparency and traceability of the cold storage and transportation logistics
of pear [83,84]. The multi-sensors monitored critical parameters that affect the quality attributes of
fresh produce, including temperature and relative humidity (using portable low-energy-demanding
temperature and humidity sensors). The detection of these parameters during shipment allows for
effective control of safety and quality changes of the pear. Similarly, a study was reported on the use
of an electronic nose (an instrument used to detect volatile organic compounds) [85] and acoustic
impulse response to evaluate the quality of tomato and apple during cold storage, respectively (Table 1).
The accuracy of the measured quality attribute (firmness) and mass loss data using ANN was ≈85%.
This value is lower than those obtained using the aforementioned imaging technologies. This could
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be because of the complex nature of the method, which is based on the measurement of the sound
emitted by fruit as it vibrates in response to a gentle tap with a small pendulum [86].
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RFID has also been applied as an advanced tool for identifying internal and external changes in
the physical, biochemical, and physiological processes of packaged food [87–89]. This non-contact
identification communication technology can automatically identify multiple objects moving at
high-speed, and therefore can be applied in the transport cold chain, specifically as an IoT enabler [90].
Similarly, PTS which uses the printing process, such as inkjet printing, nanoimprinting, screen printing,
etc., to prepare electronic circuits on a flexible substrate enables the monitoring of temperature,
moisture, pressure, and motion of fresh produce [91]. This technology has the advantage of flexibility
when printed on substrates, ease of distribution, and low cost especially when compared to RFID [91].
However, their application as tools in monitoring and optimizing cold chain processes is scarce.

Furthermore, there is no study on the application of imaging technology and smart digital
technologies to monitor food quality losses during the transportation of fruits and vegetables. This is
surprising considering that food losses in the transportation stage of the food supply chain can be as
high as 30% as in the case of Poland, for example [92]. For this reason, future studies on the application
of imaging technology, spectroscopy, multi-sensors, electronic nose, acoustic impulse response, RFID,
PTS in the postharvest cold chain of fruits and vegetables should focus on the transportation chain.
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Table 1. Published articles on the application of imaging technology, spectroscopy, multi-sensors, E-nose, and acoustic impulse response in assessing the quality of
fruits and vegetables in the postharvest cold supply chains.

S/N Technology Cold Chain
Operation Purpose Food Type Statistical

Approach Significant Results Reference

1. Imaging technology hyperspectral Imaging Packaging
and storage

To study the image characteristics of vegetables
acquired during packaging and storage Spinach SG, SNV, PCA The arterial images were able to

sense the aging of the leaves [72]

2. Imaging technology hyperspectral Imaging Packaging To study the refrigeration conditions of vegetables
during packaging Mushrooms PLS, PLSR, MSC,

PLS-DA

This method suggested an effective
packaging solution to extend shelf

life and prevent food losses of
mushrooms during storage.

[73]

3. Imaging technology multispectral imaging technology Storage To monitor and evaluate agro-food spoilage
during storage - PLS-D The spoiled food was predicted with

an overall classification rate of 91.8% [76]

4. Imaging technology hyperspectral image Storage To explore the potential for the detection of chilling
induced damage in fruits and vegetables Cucumber PCA An overall classification rate of 90% [74]

5. Imaging technology computer vision system Storage To evaluate the effect of hydration degree during storage Strawberry PCA Lighter appearance up to 75% [58]

6. Imaging technology machine vision systems Storage To monitor the quality change of food during storage Orange ANN, CART,
CNN, LDA, kNN An overall classification rate of 91.5% [59]

7. Imaging technology NIR hyperspectral image Storage To study the mechanical damage in fruits Mango CFS, GIA, SFS,
SLR, LDA, kNN Accuracy of 97.9% [75]

8. Imaging technology X-ray CT Storage To preserve the quality of fresh fruit during the supply
chain and long-term storage Pear SVM, FEA

The X-ray computed tomography
successfully detected the internal

disorder severity of pear fruit with
classification accuracies ranging

between 90% and 95%

[79]

9. Imaging technology computer vision Storage To develop a shelf life prediction model for postharvest
handling of fruits and vegetables Grape RBF, NN The method found the prediction

accuracy of R2 0.91 [60]

10. Imaging technology computer vision Storage
To study changes in color features of fruits during
storage and to evaluate the use of image analysis
technique as a rapid and nondestructive method

Banana RBF, SVR, ANN

The computer vision technology with
SVR of color parameters provided a
useful model for prediction of the

quality indices of bananas

[61]

11. Imaging technology computer vision Storage
To provide an application designed for embedded
devices such as mobile Android smartphones to

objectivize the measurements using machine vision

Tomato and
zucchini HA

The proposed method successfully
achieved by predicting the quality

characteristics of the products during
cold storage

[62]

12. Imaging technology computer vision system Storage To develop a computer vision system to predict the
quality levels of vegetables during storage Lettuce SNK

The color information measured by
the computer vision system achieved

nondestructively to evaluate the
quality level of iceberg lettuce with

R2 of 0.77

[63]

13 Imaging technology computer vision Storage
To demonstrate the applicability of Random Forests (RF)
for estimating the internal qualities of fruits based on

peel color
Mango RF

The relationship between peel color
and fruit quality was strongly found
in different storage temperatures with

a correlation coefficient up to 0.98

[64]

14. Imaging technology X-ray Storage To design a methodology for sorting fruits with X-ray
image processing and pattern recognition techniques Kiwifruits NN, LDA

The model built with LDA predicted
the columella firmness in kiwifruit

with a 94.6%
[11]

15. Imaging technology thermography Packaging To study the temperature distribution on a pallet of
fruits during plastic boxes and cardboard packaging Apples ANN

Thermal imaging showed the
cardboard boxes to be a better
packaging material for apples

compared to plastic boxes

[93]
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Table 1. Cont.

S/N Technology Cold Chain
Operation Purpose Food Type Statistical

Approach Significant Results Reference

16. Imaging technology hyperspectral imaging systems Storage To develop a feature selection technique in classifying
problems for detecting rottenness in tropical fruits Citrus fruits ROC, NN

Hyperspectral images found the
classification success rate of around
89% for detecting the rottenness in

citrus fruits

[75]

17. Imaging technology multispectral Imaging Storage To evaluate chilling injury in fruits during storage using
multispectral imaging Mangoes LS-SVM, PCA

The statistical results demonstrated
significant changes in the reference
quality properties of samples before

and after
storage

[70]

18. Imaging technology computer vision systems Packaging To evaluate the quality of vegetables nondestructively
using computer vision during packaging

Iceberg
lettuce CNN

The CNNs method was able to
identify the lettuce quality with an

accuracy of 86%
[65]

19. Imaging technology computer vision systems Storage To evaluate fruit quality nondestructively by
computer vision Grapes RF

The system achieved a
cross-validation classification

accuracy up to 92% which support its
capability of powerfully, flexibly,
and continuously monitoring the

quality of the complete production
along the whole supply chain

[66]

20. Visible/shortwave near-infrared spectroscopy Storage

To establish optimal spectral models for the assessment
of fruits in actual production and therefore obtain early

warning information of mechanical injuries
during storage

Peach GA

The optimal spectral model through
the GA-PLS method found prediction
accuracy ranges from 0.89 to 0.91 of
the mechanical injuries of peaches

during storage

[77]

21. Handheld spectroscopy Storage To develop a nondestructive assessment of fruit quality
using handheld micro NIR spectroscopic device Mango SVM, PLS

The proposed method was able to
detect the mango fruit quality during
the storage with prediction accuracy

up to 96%

[78]

22. Multi-sensor technology Transportation
and storage

To provide decision support to quality change
and control Pear BPNN

The results indicated that this
method could improve the accuracy
of continuous sensor data acquisition

[83]

23. Multi-sensor technology Storage
To monitor and improve the data accuracy of sensory
and physiological quality attributes of fruits during

cold storage

Korla
fragrant pear BPNN

The multi-sensors technology
including temperature, relative

humidity, O2, CO2, and ethylene
sensors improved the accuracy of

data acquisition for gas content, pH,
firmness, and total soluble solids

[84]

24. Electronic nose Storage
To investigate the reliability and validity of using the

electronic nose to evaluate the quality and freshness of
vegetables after high-pressure argon treatments

Cherry
tomatoes ELM, PLS

The results demonstrated E-nose
technology combined with ELM

provided a reliable and valid method
for evaluating the quality and

freshness of cherry tomatoes during
cold storage with fitting correlation

coefficients (R2 > 0.95)

[85]

25. Acoustic impulse response Storage To apply for apple classification nondestructively Apple ANN
The accuracy was 84.9% and 84.7%

for Golden Delicious and Red
Delicious, respectively

[86]
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3.2. Application of Mathematical Modeling Techniques in the Postharvest Supply Chain of Fruits
and Vegetables

Modeling is the act of representing phenomena or processes in such a way as to explicitly describe
an observed system and to predict or optimize different behaviors, parameters, and conditions [94].
Mathematical modeling is essential for efficient engineering design and optimization. With adequate
mathematical models, undesirable effects that significantly causes food losses such as weight loss,
or quality changes can be predicted, thus cold chain logistics can be optimized or controlled.

Mathematical modeling techniques are becoming increasingly popular as an alternative to
expensive and difficult experiments of postharvest cold chain operations as a result of the sophistication
and reliability of computers as well as the affordability and availability of modeling software [95–99].
Agricultural and food engineers, and other researchers have over the years developed different
mathematical models for postharvest supply chains. Depending on the complexity, these different
modeling techniques have been developed to predict heat and mass transfer, fluid flow, and quality
changes in and around fresh produce. Gas exchange and in-depth understanding of migration from
packaging material to fresh produce have been described using mathematical models. Additionally,
several deterministic, stochastic and kinetic models have also been developed to predict the overall
quality of fresh produce, mass loss, fluid flow, and heat and mass transfer during the transportation
and storage of fruits and vegetables [98,100–106].

In this study, mathematical models used to enhance cold chain operations chain can be separated
into six different types based on their specific process application, namely: migration models (MM),
membrane gas separation (MGS) model, heat and mass transfer (HMT) model, structural behavior
models (SBM), stochastic models (SM), and kinetics rate models (KRM) (Table 2). MM are often
used to study the migration of organic compounds such as Benzophenone, Diisobutyl phthalate,
and Phenanthrene from packaging material to fresh produce. On the other hand, MGS models are
often used in a modified atmosphere (e.g., modified atmosphere storage or modified atmosphere
packaging) to study the lifespan of fresh produce by reducing the respiration rate through the adequate
regulation of atmospheric conditions (e.g., CO2, O2). Additionally, to abstract the packaging of different
fruits and vegetables [107]. This type of model works on four ideal flow patterns for a mixed gas
module including co-current flow, cross flow, counter-current flow, and perfect mixing [108–110].

HMT modeling also called hygrothermal modeling involves using a numerical physics-based
method such as computational fluid dynamic (CFD) to solve the governing partial differential
equations of heat and mass transport phenomena in a system, often using finite element analysis
(FEA) [100,105,111,112]. HMT models describe the underlining physics inside fresh produce and
how they are affected by the surrounding conditions (Figure 4). They generally are independent of
experimental calibration and validation. HMT models can also be used to investigate the impact of
different packaging designs on the convective heat transfer rate of fruits and the surrounding [105].
By reducing heat transfer from the outside environment, effective packaging can help to shield the
product from temperature variation in the storage and transport process. In addition, increasing the
packaging heat transfer resistance can also ensure temperature stability of the fresh agricultural
produce [113,114]. There is therefore a need for simulation tools and numerical models that analyze all
factors affecting optimum packaging design.
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Figure 4. Simulation domain showing loaded fruits in stacked cartons in a virtual wind tunnel system
with internal and external surrounding conditions [101].

SBM involves the study of structural and mechanical properties of packaging materials for
fresh produce using FEA (Table 2). This modeling approach encompasses a geometric representation,
material representation, and boundary conditions (loading and restraints).

SM involves predicting the variability of certain generated data following their probability
distribution, and then evaluating of results statistics until the minimum error becomes constant [115].
These models are often used to analyze the effect of biological variability on food quality and losses
during the supply chain, and also to quantify the efficiency of the cold chain technology [102,103,116].
Although they do not provide a fundamental understanding of the underlying physics, they are
however very reliable and flexible.

KRM are temperature-dependent and are frequently used to study the combination of the rate
of reaction with the material balance to predict the behavior of a particular system. Nutritional and
sensory qualities of fresh agricultural produce in the postharvest supply chain can be quantified based
on kinetics, such as zero-order, first-order, second-order, mixed order, or higher-order reactions [117].

From Table 2, most modeling studies were conducted on packaging followed by storage with very little
modeling studies on the transportation of fruits and vegetables. Over 25 modeling studies on the packaging
of fruits and vegetables during the postharvest cold chain were conducted within the last decade (Table 2).
The products studied were apple, tomato, carrots, strawberries, capsicum, citrus, avocado, grape, feijoa fruits,
and pears [100,101,105,107,112,116,118–137]. The bulk of the studies used HMT models to describe the
cooling process in a packaged material during storage [100,101,104,105,112,119,120,130,131,137–140].
Seven studies applied MGS models to modify the atmospheric conditions of fresh agricultural
produce in packaging material (Table 2) [118,121,125–127,135]. While, four studies examined the
migration of chemical compounds (e.g., Benzophenone, Diisobutyl phthalate, and Phenanthrene)
from packaging material to fresh produce using MM (Table 2) [122,124,134,136]. Several researchers
also reported the application of KRM, SBM, and SM during the packaging of fruits and vegetables
(Table 2) [116,123,128,129,132,141].
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Table 2. Summary of recent literature on the application of mathematical modeling in monitoring quality loss of fruits and vegetables in postharvest supply chain
fruits and vegetables.

S/N Technology Cold Chain
Operation Purpose Food Type Significant Results Reference

1. Membrane gas separation modeling Packaging
To predict changes in fresh produce on molecular level

based on changes in environmental conditions;
to reduce losses

Apple

A membrane-based model can be used to abstract packaging for
different fruit and vegetables; respiration of the process is

considered important in modeling, and also environmental
biological and technical factors; quality (taste, texture, color,

appearance) is based on some subjective consumer evaluation

[107]

2. Migration modeling Packaging—paper
and board

Deepened understanding of migrants from paper and
board into foodstuffs Tomato

Migration rate from paper and board to food at low temperatures is
small compared to plastic material. For modeling, paper and board

can be regarded as a two-layer system
[134]

3. Membrane gas separation modeling Packaging
To study the effect of external turbulence on the gas

exchange rate; to develop a mathematical model to predict
the effect of tube dimensions

Carrots
Different hydrodynamic condition affects the gas exchange rate in
PM-MAP (perforation-mediated modified atmosphere packaging);
the effect of temp, air velocity, and tube diameter on O2 and CO2

[135]

4. Kinetic modeling Storage
To predict the remaining shelf-life after storage; to predict
dipp loss (zero-order), vitamin C (first-order), color (zero

and first order) food quality
Broccoli

The model only looked at temperature effect on shelf life and
adequately predicted the shelf life based on a 50% threshold of

vitamin C loss at −18◦C
[144]

5. Migration modeling
Packaging migration

controlled by
diffusion

To use the Weibull distribution model to quantify
migration in food packaging systems -

Migration depends on the type of contact, food stimulant, type of
paper, chemical nature of migrant in a paper, temperature and time
of contact; migration is faster in paper than in plastics and involves

the simultaneous transfer into food and also to the atmosphere

[136]

6. Heat and mass transfer modeling Packaging; storage To quantify the impact of ventilation vent on temperature
distribution of product -

Decreasing the number of vents increased the cooling uniformity;
the model, based on velocity and temperature simulation can be

used as a design tool to provide homogenous temperature
distribution to reduce food losses

[112]

7. Heat and mass transfer modeling Packaging

To predict O2, CO2, N2, and H2O concentrate in
perforation-mediated polymeric packages; transport of O2,

CO2, N2, and H2O was modeled using Maxwell Stefan
equation for gas and Fick’s law for diffusion through the

micro-perforated package

Strawberries

The model result suggests an improvement in material properties,
especially with regard to the permeability of polymeric packaging

film; the model predicted a packaging with 30 µm thickness,
6 micro-perforation of 50 µm diameter each as the most suitable

[137]

8. Heat and mass transfer
modeling—based on compartments Transport; storage To predict temperature distribution during transport and

storage of fruits and vegetables

Spinach,
apricots, and

peaches

The model adequately predicted the maximum and minimal load
temperature distribution with lower computational time compared

to CFD simulation
[104]

9.
Membrane gas separation modeling
(Michaelis–Menten kinetic model +

mass transfer model)
Packaging; storage

To describe the evolution of MAP of capsicum using a
mathematical model; to quantify the performance of

different packaging under the dynamic condition of use
Capsicums

Temperature and perforation have a significant effect on MAP
conditions of capsicum; the combined model adequately predicted

O2 and CO2 under different storage conditions
[118]

10. Heat and mass transfer modeling Packaging; storage To assess the sensitivity of produce cooling uniformity and
cooling time with respect to the packaging vent design - Increase in the number of vents increased cooling uniformity and

reduce cooling time [119]

11 Stochastic modeling (Monte Carlo
simulations) + kinetic modeling

Storage;
transportation To estimate the expected fraction of perished products Peaches The simulation study predicted a fraction of 8.00% perished products

based on a 100.00% quality threshold. The model quantifies thereof. [143]

12. Heat and mass transfer modeling Packaging
To develop a 3D heat and mass transfer model of a fresh

food produce packaging system to predict airflow and heat
transfer characteristics

Citrus

Airflow, temperature, and turbulence property distribution inside a
single product are nonuniform; good correlation between air

velocity and temperature; the accuracy of the model depends on
geometry, thermal, physical, and chemical properties of the package,

the cooling air, and the produce

[120]

13. Membrane gas separation modeling Packaging; storage;
transportation

To develop a mathematical model to investigate the effect
of stage cut on the gas separation performance of hollow

fiber membrane modules
Avocado

The model utilizes pure gas permeances of membrane material to
predict the mixed gas separation performance; the performance of

gas separation declines over time as they age with exposure to
pressure, temperature, and contaminant loading

[121]
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Table 2. Cont.

S/N Technology Cold Chain
Operation Purpose Food Type Significant Results Reference

14. Kinetic modeling Storage

To evaluate the impact of storage conditions on vegetable
color, firmness, weight loss, and phenolic content;

to investigate the kinetics of quality parameters alterations
of stored vegetables

Tomato
Fractional kinetic model fitted adequately well with experimental
data; Arrhenius model describes well the temperature effect on all

factors studied
[142]

15. Migration modeling Packaging; storage
To study the influence of box material and plastic cover on
the distribution of 1-MCP (methyl cyclopropane) in cold

storage to delay ripening of fruit
Apple

Diffusion, convection, and adsorption were modeled to simulate the
temporal distributions of 1-MCP inside a storage container, boxes,

and fruits; the plastic cover does not affect the adsorption of 1-MCP;
wooden boxes notably adsorbed 1-MCP from the treatment

atmosphere and may reduce the efficacy

[122]

16. Kinetic modeling Packaging

To investigate the impact of temperature and relative
humidity on fruit transpiration rate (TR); to develop a

prediction model for quantifying TR; to integrate TR model
into engineering packaging design and quantify

Strawberries

Temperature and relative humidity have a significant impact on the
transpiration rate of strawberries; increase in relative humidity
increases TR; decreasing temperature decreases TR; the model

predicted the water vapor barrier properties required for
maintaining optimal relative humidity inside package

[123]

17. Heat and mass transfer modeling Storage

To model the airflow and temperature distribution in a
natural connection thermal energy storage refrigerator;
to determine the performance of the refrigerator with

different phase change material (PCM) vertical-horizontal

-
Horizontal PCM configuration produces lower compartment

temperatures than a vertical configuration; combining horizontal
and vertical configuration gives better design performance

[140]

18. Migration modeling Packaging; storage
To study the diffusion, convection and adsorption of

1-MCP gas in cold stores; to understand the mechanism of
3D distribution of 1-MCP

Apple
The model demonstrated the absence of significant spatial variation

of 1-MCP gas in a container; diffusion–convection in air and
diffusion–adsorption in the product

[124]

19. Heat and mass transfer modeling Packaging
To develop a porous medium model was develop on

volume averaging of transport equations of momentum
and 1-MCP in air and product

Apple

The velocity field in and around the stack was well reproduced by
the porous medium model; the porosity, skin mass transfer
coefficient, and specific surface area strongly affected the

simulation process

[100]

20. Heat and mass transfer modeling
Packaging (bunch

carry bag and
plastic liners)

To determine the effect of the packaging component and
box stacking on airflow, heat, and mass transfer rate Grape

The use of carry bag resulted in an increase in the cooling time;
the addition of plastic liner over the bunch carry bag increased

cooling time; moisture loss was most prevented using nonperforated
liners; CFD simulation determined optimum table grape packaging

and costing procedure

[101]

21. Heat and mass transfer modeling Storage; packaging
To evaluate the performance of corrugated fiberboard,

Supervent, Ecopack re-usable plastic container; to check
the influence of airflow rate and cooling

Citrus
With respect to cooling, Eco-pack showed lower convective heat

transfer rate but cooled in a uniform way, which improves
fruit quality

[105]

22. Membrane gas separation modeling Packaging To predict the shelf life of MAP systems - The model was able to predict the mass transfer phenomena for O2
and CO2 and also the microbial growth in the food system [125]

23. Kinetic model Storage
To describe the product time–temperature history along the

cold chain; the model considered front and rear air
circulation in the cold room

Apples

The model adequately predicted cooling rate, the temperature at
different positions, and weight loss; the model has a short CPU

computational time (<1 s) when compared to CFD models.
This enabled a rapid evaluation of input parameters such as

air temperature

[106]

24. Stochastic modeling Storage
To evaluate the quality of perishable foods using a generic

algorithm + center of gravity model; to estimate the
environmental level

Fruits

The algorithm adequately predicted temperature and humidity
levels; the algorithm was integrated to gauge the use of RFID (radio

frequency identification) and sensors for real-time
information gathering

[102]

25. Stochastic modeling Transport; storage To estimate the heat generation and also the cooling
efficiency during cold transport and storage chain Banana 10% accuracy for the heat of respiration and cooling efficiency was

reached after 4–7.5 days of transport [103]

26. Membrane gas separation modeling Packaging; storage

To describe product respiration and gas exchange through
package using Michaelis–Menten kinetics + Fick’s

equation; taking into account diffusive gas permeation
through packaging film and perforation respiration rate

and storage temperature

Tomato

The model adequately predicted the required package surface area
and perforation diameter to achieve a specific O2 concentration in
the headspace; the model can be used to set a specific equilibrium
concentration of O2 and CO2 by modifying the configuration of

the package

[126]
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Table 2. Cont.

S/N Technology Cold Chain
Operation Purpose Food Type Significant Results Reference

27. Membrane gas separation modeling Packaging
To develop describe the evolution of water vapor, O2,

and CO2 in packaging headspace, weight loss,
and condensation of water in a MAP system

Feijoa fruits The model adequately predicted weight loss and relative humidity
in the MAP system [127]

28. Structural behavior modeling Packaging To develop a validated structural behavior model to predict
the compression strength of a ventilated paperboard carton -

The model adequately predicted the compression strength of a
ventilated corrugated paperboard (VCP) packaging; the effect of

vent area, vent height, and buckling load on the performance of VCP
were adequately quantified by the model

[128]

29. Heat and mass transfer modeling Storage
To model the airflow, heat, and mass transfer in the storage

chamber of Chinese cabbage; to predict the velocity,
temperature, and relative humidity distribution

Cabbage
The model gave qualitative insight into the flow patterns in the cold
room; the model adequately predicted temperature in the bulk and

relative humidity of the air
[139]

30. Stochastic modeling Packaging; storage To model the gas exchange in pear fruit taking the effect of
biological variability Pears

The model predicted that O2 and CO2 gas profiles inside the fruit
were highly impacted by diffusivity, maximal respiration rate,
and morphology of fruit; the model was used to analyze the

incidence of fermentation at reduced O2 levels during controlled
atmosphere storage

[116]

31. Structural behavior modeling Packaging
To simulate the compression of paper and paperboard

packaging material for food using finite element
analysis (FEA)

-

The developed FEA model accurately predicted the incident
buckling load of the corrugated paperboard; the modulus of
elasticity was observed to be sensitive to the environmental
conditions; the model can adequately be used to optimize

corrugated paperboard packages

[129]

32. Heat and mass transfer modeling Packaging To develop a more accurate model for describing the
cooling process of freshly harvested apples and pears Apples; pears

The model was able to describe the cooling behavior and uniformity
of fruits in fiberboard boxes; there was large variability in convective
heat transfer coefficients from the apples and pear filling; the fruit

shape affects the model accuracy

[130]

33. Heat and mass transfer modeling Packaging

To develop a 3D HMT model to quantify cooling behavior
of 10 different carton designs based on cooling rate,

energy consumption, uniformity, weight loss, and chilling
injury of apples

Apples

The model adequately quantified the effect of airflow, and packaging
design on the product quality; vent area, shape and number of vent
have less impact on the fruit cooling; homogeneity and symmetry of
packaging vent positions have more impact on the fruit cooling rate;

the model proposed airflow velocity between 0.4 and 1.0 m/s

[131]

34. Structural behavior modeling Packaging
To develop a validated structural behavior model to study
the structural behavior of VCP packages by considering the

geometrical nonlinearities of the packages

Fruits and
vegetables

The model accurately predicted the compression strength of the
corrugated paperboard, control package, and standard vent package;
compression strength of the standard vent packages was found to be

linearly affected by paperboard liner thickness; increasing and
decreasing the baseline liner thickness of the standard vent package
by 80% resulted in an increase and decrease in compression strength
by about 15% and 19%, respectively; from the contact FEA model,

maximum Von Mises stress was produced at the corners of the
package; Von Mises stress was significantly affected by the

coefficient of friction

[132]

35. Heat and mass transfer modeling Storage; transport
To investigate the airflow distribution inside two types of
refrigerated shipping containers (T-bar floor and flat floor)

used for transporting fresh fruit handling

The airflow distribution in the two container designs was markedly
different. Good agreement was found between measured and

predicted values of air velocities. The reefer with T-bar floor design
exhibited a noticeable reduction of air recirculation zone and

enhanced uniform vertical air movement compared to the reefer
with flat floor design

[138]
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Table 2. Cont.

S/N Technology Cold Chain
Operation Purpose Food Type Significant Results Reference

36. Kinetic modeling Storage

To examine the effect of relative humidity (RH) conditions
on the shelf life of strawberries including both the sensory
and nutritional quality; to study the kinetics of sensory and
chemical changes occurring in strawberries during storage
by comparing three kinetic models; to examine and predict
through modeling the waste that would occur depending

on the storage conditions

Strawberries

Weight loss significantly increased when storage RH decreased;
the weight loss was correlated with the changes that occurred in
visual appearance and chemical properties. Overall appearance

(i.e., the average score of color and shriveling), was modeled with a
zero-order kinetics model for the various RH conditions; lower RH
increased the rate of appearance deterioration thereby reducing the
remaining shelf life of strawberries. The Weibull model adequately

fitted the chemical properties data and it was found to be an
important tool in describing the changes that occur with varying

storage conditions

[98]

37. Stochastic modeling Whole chain
To develop an Agro-Chain Greenhouse gas emissions

calculator (ACGE calculator) to calculate the percentage of
food losses per chain stage

Cut vegetables

The ACGE calculator can be applied for understanding the impacts
of different operations along a postharvest cold chain and for

analyzing chain configuration scenarios: such as weighing impacts
of the operations/impacts along the chain, comparison between

various options for supplying a specific food component,
and comparing a reference scenario with an ‘improved scenario’;

low temperature in the cold chain may result in extended retail shelf
life and a lower percentage of losses, but will cost more energy;

application of protective packaging leads to a reduction of losses,
but at the cost of the packaging

[141]

38. Heat and mass transfer modeling Transportation;
storage; packaging

To obtain more insight into the cooling process and quality
evolution of fruits parked in ventilated cartons in a pallet Citrus

Fruits packed in downstream cartons exhibited lower cooling
heterogeneity compared with those in upstream cartons.

Precooling reduced quality loss by 23%
[133]
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With respect to storage, several researchers developed various models to predict quality loss during
the storage of carrots, strawberries, spinach, apricots, peaches, capsicums, banana, cabbage, pears, citrus,
and broccoli, however not all together (Table 2) [98,102–106,116,118,119,121,122,124,126,133,138–140,142–144].
A bulk of the models used were based on heat and mass transfer simulations of the weight
loss, and temperature distribution; KRM for quality decay and shelf-life prediction (Table 2)
[98,104–106,112,119,133,138–140,142,144].

Concerning the transportation supply chain, only a few authors have applied SM, HMT models,
and KRM to estimate heat generation, cooling efficiency, temperature distribution, and the expected fraction
of perishable products (Table 2). These products include spinach, peaches, and banana [103,104,143].

The above analysis shows that mathematical models have been widely developed and applied in the
packaging and storage of fruits and vegetables with the view to improve quality and reduce food losses.
However, not so much modeling study for the transportation supply chain of fruits and vegetables.
Future mathematical modeling studies should focus on the transportation supply chain taking
into account the shipment time, the varying environmental conditions (e.g., temperature, humidity,
and airflow), packaging, and vehicular movement. In addition, the KRM could be integrated with HMT
models to give more insight into what extent the quality attributes of fruits and vegetables are preserved
better and also to quantify the effect of other drivers for decay processes (e.g., relative humidity, light)
in the fresh produce supply chain. This can be achieved by developing a digital twin of the product
(see Section 4.2).

4. Emerging Opportunities in Reducing Food Losses in the Postharvest Supply Chain

The application of IoT and digital twins in optimizing shelf-life and reducing food losses during
an entire shipment has gained significant interest in recent years. This section analyzes the potential
of applying the Internet of Things (IoT) and digital twins in reducing food losses in the postharvest
supply chains of fruits and vegetables.

4.1. Application of IoT in the Postharvest Supply Chain of Fruits and Vegetables

IoT has emerged in different fields such as e-commerce [145,146], manufacturing [147,148],
education [149–151], medicine and healthcare [152–158], and agriculture [159,160]. This is because of
the enormous number of devices connected to the Internet, as well as the widely available internet
and data storage service providers [148,161,162]. Basically, IoT allows humans, objects, and things
to connect and communicate at any time and anywhere. The European Commission Information
Society defined IoT as different things exhibiting identical and virtual personalities, connecting and
communicating in a smart space using intelligent interfaces within social, economical, and user
contexts [163].

The IoT system consists of networks of physical objects that contain embedded technology to
sense, communicate, and interact with their internal states or the external environment [164]. The key
enablers for a typical IoT system include RFID, printed sensors, web service, machine-to-machine
communication (M2M), WSN, imaging system, multi-sensors, cloud, blockchain, among others, but not
necessarily altogether [87,91,147,161,165,166].

The application of IoT is well-established in various agricultural production sectors such as
controlled environment agriculture, open-field agriculture, and livestock applications [167,168].
In recent years, the use of IoT has gained significant interest in the food industry for product tracking,
traceability and the monitoring of environmental conditions (e.g., temperature, humidity), weight loss,
and the overall quality loss in the postharvest supply chain [87,161,165,169–171]. This technology has
also received significant attention in developing intelligent packaging in the food sector [172–174].

Intelligent packaging involves the use of sensors (biosensor, printed, chemical, and gas sensor) and
indicators (time-temperature indicators, freshness indicators, gas indicators, and integrity indicators) to
detect biological, chemical, or gaseous changes from packaged fresh produce [24,25,27,91,170,174–176].
The sensor-based RFID tags as an example can detect hygrothermal and chemical changes
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(e.g., temperature, CO2, light exposure, pH, etc.) of the fresh produce in the post-harvest supply
chain [25,87,175]. The timely information obtained within the package system can be used to inform
stakeholders in the supply chain of an event that may damage the packaging material or the fresh
produce itself.

Generally, the application of IoT in different cold chain processes results in a large amount of
real-time data which can pave the way for new computational approaches such as artificial intelligence
and big data analytics [161,177]. This data will help various stakeholders in the supply chain control
and optimize the cold chain technology to reduce quality loss and also make informed decisions
regarding food safety. However, the application of IoT in controlling cold chain technologies in order to
reduce food losses in the supply chain of fruits and vegetables is still inadequate.

Table 3 shows that several studies applied IoT in tracking and tracing temperature changes and food
quality during the shipment of fruits and vegetables in the past decade [20,159,165,178,179]. Two studies
applied IoT on the packaging of fruits and vegetables, as well as during cold storage [159,178].
The application of IoT in the shipment of fruits and vegetables is accompanied by multi-sensors
such as temperature and humidity sensors, light exposure sensors, and global positioning system
(GPS) sensors (Figure 5) during shipment of fruits and vegetables (Table 3). These sensors are installed
in the food containers to monitor the changes in the environmental cold chain conditions such as air
temperature, airspeed, light exposure, and relative humidity using a sensor data fusion (soft sensors).
They are connected to a wireless network and computers to communicate with control stations,
producers, or other stakeholders in the supply chain. The collected data can then serve as input data in
analyzing the changes in the food attributes (e.g., weight loss, shelf life, nutritional, or sensory qualities),
using a mechanistic physics-based model or a digital twin. It is worth mentioning that multi-sensors
(e.g., chemical sensors, biosensors, etc.), imaging systems (see Section 3.1), E-nose (see Section 3.1),
spectroscopy (see Section 3.1), and AIR (see Section 3.1) can also be used to directly measure changes
in some quality attributes of fresh produce in the postharvest supply chain. IoT has become a very
important tool in monitoring and controlling the process conditions of food, allowing the controllers
to implement proper decisions. All of these can help to significantly reduce food losses. More so,
the reduced cost of software and hardware wireless devices [180], digital sensors, accompanied by IoT
technology in food transportation, packaging, and/or storage already increases the potential of IoT as a
veritable and sustainable tool for reducing food losses.
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4.2. Digital Twin as an Advanced Tool in Reducing Food Losses in the Postharvest Supply Chain of Fruits
and Vegetables

Digital twins have recently gained significant interest in postharvest engineering, as a way of
expanding mathematical models and computer simulations by linking input data to the solutions
implemented after the simulation study [181]. Simply, a digital twin of a product can be defined
as a virtual model of the product’s real-life representation containing all realistic characteristics.
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The virtual model contains all essential elements, including geometrical components and material
properties, and accurately and realistically simulates all relevant physics and their kinetics throughout
the product’s life-cycle. Digital twins can be mechanistic (physics-based), statistical (empirical-based),
and intelligent (e.g., machine learning, deep learning) in nature. However, only the physics-based
mechanistic digital twins can adequately evaluate the processes that cause quality loss in fresh produce.
This involves linking measured sensor data of the environmental conditions (e.g., the air temperature
around the fruit), as input data to the currently still uncharted product’s quality evolution of fresh
produce (Figure 6), preferable in a real-time update, using a physics-based model. In this way,
the digital replica reacts hygrothermally and biologically in the same way as its physical counterpart
(a real fresh fruit or vegetable).
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By enriching current real-time monitoring capabilities using sensors, digital twins can be used
to diagnose and predict potential problems in the supply chain that will increase food losses.
These problems can be caused by physiological (e.g., chilling injury), hygrothermal (e.g., mass loss),
biotic (e.g., phytosanitary pests, pathogens), and mechanical (e.g., puncture injury, bruising) effects.
This unique attribute shows that the digital twin has the potential of incorporating several physics-based
thermal, physiological, mechanical, biological, and decay models for corresponding quality and
shelf-life metrics. This insight can then help remotely analyze the quality performance of the fresh
produce in each shipment and also predict the remaining shelf life days. Based on the analysis,
a proactive preventive measure can be taken early to reduce quality losses throughout the cold chain.
Such measures can also help predict and optimize future product quality and process design.

As a next step, digital twins can be implemented in real-time with actual multiple shipments.
This is expedited with the integration of the already available big data technologies (e.g., IoT devices,
blockchain devices, soft sensors, cloud systems, etc.) [182,183]. However, such a system is not yet in
place, to the best of our knowledge (Table 3). From Table 3, only two studies developed a digital twin for
mango. The mechanistic models developed for these studies included HMT models, as well as KMR
for various quality attributes such as firmness, soluble solids content, and vitamin content [184] [185].
The air temperature data of the actual mango cold chain, collected as input from a temperature
sensor was linked to these models to create a digital twin of a virtual mango fruit [184,185]. With the
digital twins, the fruit quality evolution was quantified for multiple overseas shipments. However,
the twin did not use other significant input data history such as the humidity of the products at the
different supply chains. The temperature data collected was not in real-time, but offline, so a-posteriori.
In addition, the digital twin did not integrate models to estimate the mass loss, chilling injury, and other
biochemical models which are important for quantifying food losses in the entire cold chain (Table 2).
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Table 3. Summary of recent literature on the application of IoT and digital twins in reducing food quality losses in the postharvest supply chain of fruits and vegetables
in the last 10 years.

S/N Technology Cold Chain Operation Purpose Food Type Significant Results Reference

1. Internet of Things Transportation
To build an intelligent model for food quality

monitoring and control in a
multi-temperature distribution center

Food
The food spoilage rate of food reduced during transportation
due to the real-time food quality monitoring and control using

an intelligent model
[165]

2. Internet of Things Transportation
To improve transport

efficiency in order to save the fruits
from spoilage

Fruits IoT system in a truck refrigerator adequately used to monitor
the quality condition of fruits during transport [20]

3. Internet of Things Packaging, storage,
and transportation To monitor food quality and safety Fruits and vegetables IoT obtain real-time food traceability and monitoring data to

control the logistic and process parameters causing quality loss [178]

4. Internet of Things Packaging, storage,
and transportation

To reduce the food losses during the food
chains since 50% is lost Agro-food

IoT used to automate the packaging system with proper
tracking and monitor the temperature of the produce at cold

storage and during transportation
[159]

5. Internet of Things Transportation

To monitor the temperature changes and
inefficient management during transportation
as the insufficient temperature can pose a high

risk to food quality

Fruit and vegetables Application of IoT in food chains facilitated safety, intelligence,
and deliver quick decisions [179]

6. Digital twin Storage; transport To develop a digital twin for the cold chain
shipment of fruits Mango

Based on measured environmental conditions, the impact of
shipment duration, heat of respiration, airspeed and delivery

air temperature history on quality of mango for different
transport pathways was easily quantified using a digital twin

[184]

7. Digital twin All chain To gain a better insight into how fruits behave
under convective cooling Mango

At low speeds, a more uniform cooling can be achieved and
thereby a more homogeneous quality decay within the mango;

digital twin was able to evaluate the heterogeneity of the
temperature field and identified the zones with the highest

temperature inside the product, which can be valuable
information for the placement of temperature probes

[185]
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5. Future Opportunities to Reduce Food Losses in the Postharvest Supply Chain of Fruits
and Vegetables

With the gradual depletion of resources, there is a need to look at sustainable ways of achieving
food security by reducing food losses in the postharvest supply chain. Looking ahead, the major
challenges that cause food losses in the postharvest supply chain have to be addressed.

One emerging field is the development of intelligent packaging systems to reduce food losses,
especially fresh agricultural produce. Intelligent packaging systems through the use of internal
and external monitors (sensors, nanosensors, and indicators) provide valuable information on the
interaction of food with the packaging material and the environment at different phases of processing,
transportation, and storage. It also takes into consideration the ergonomic features of the packaging
to reduce inconvenience in the transportation, storage, use, and eventual disposal of the packaging
material [174,186]. With the recent interest and development in intelligent packaging, there is a need
to integrate the sensors, indicators, and data carriers technologically to provide real-time information
about fresh food in different cold chain logistics through the use of IoT based technologies and
digital twin.

Although the potential of a digital twin in minimizing quality losses and increasing the shelf-life
of fresh produce has been demonstrated (Table 3), the holistic implementation of digital twins in the
entire value chain (from planting-fork) and for a wide range of fresh produce is yet to be demonstrated.
The existing digital twins (Table 3) should be improved upon to include other relevant models that
simulate thermal, physiological, mechanical, and biological damages that cause food losses in the
postharvest supply chain. For example, a mass loss model can be included to quantify the salable
weight at the end of the chain. This can help quantify the market value of fresh produce due to the
subjective acceptable consumer product appearance. Additionally, tropical fruits such as banana
or papaya experience chilling injury due to low-temperature storage and long cold chain process
(Table 1). Therefore, thermal damage models predicting chilling injury during cold chain processes
should be included. The potential of linking pathogens with decay severity should also be a future
focus. Future digital twins should also capture the biological variability of fresh produce in order to
give more realistic actionable metrics as multiple fresh produce have different individual pre-harvest
and postharvest history. This can be achieved by integrating stochastic simulations (e.g., Monte Carlo
simulations) with the existing digital twin physics-based models.

An additional future focus is to integrate IoT systems (including soft sensors) in real-time with
digital twins. This real-time coupling will enable stakeholders to monitor and control each supply chain
shipment at all times and take dynamically corrective measures to reduce quality loss and increase the
remaining shelf-life days. Furthermore, by adding more “intelligence” to the coupled IoT and digital
twins system, the cold chain technology (e.g., a refrigerated container) can independently optimize
its process parameters to increase the shelf life of fresh produce and reduce food losses of the entire
shipment. This added value can be easily quantified especially in this current time, considering the
COVID-19 situation. Due to COVID-19, food producers have seen a decrease in the timely distribution
of fresh produce to supply chain retailers. This is attributed to the decrease in transport labor,
and longer shipment time because of shipment re-routing. This development has led to increased food
losses. As a consequence, for example, about 5 billion US dollar worth of fresh fruits and vegetables
were lost in the USA alone during the COVID-19 peak period from March 2020 to June 2020 [187].
With intelligent coupled IoT and digital twins, different processes and cold chain technology can be
optimized to reduce the dependency on human labor, faster shipment duration, and possible damages
caused by physiological, hygrothermal, mechanical, and biotic factors. A reduction in damages on the
fresh produce implies a reduction in food losses.

6. Conclusions

Fruits and vegetables are important sources of nutrients such as vitamins, minerals, and bioactive
compounds, which provide many health benefits. However, due to poor postharvest management
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processes, large quantities of fruits and vegetables perish before they reach the consumer. Of all the
techniques for extending the shelf life of perishable produce, storage at low temperatures is by far the
most effective.

This study, therefore, provides in-depth insight on the application of advanced technology in
improving food security, by reducing food losses during postharvest cold chain processes for fruits
and vegetables. It has been found that:

• Computer vision, hyperspectral imaging, multispectral imaging, spectroscopy, and X-ray imaging
are already widely used in monitoring and optimizing the cold chain processes of fresh
agricultural produce.

• The application of MM, MGS models, HMT models, SBM, SM, and KRM in improving the cold
chain processes and evaluating the quality losses of fresh produce is well established. These models
can help control and optimize the packaging and storage operations of fruits and vegetables in
order to reduce quality losses.

• IoT is widely applied in monitoring and controlling the process conditions of fresh produce,
enabling various stakeholders to implement proper decisions.

• Digital twins are significant in quantifying the quality evolution of fresh produce in each shipment
and also predict the remaining shelf life days.

• There is a very huge potential for coupling digital twins with big data technologies (IoT devices,
printed sensors, RFID, multi-sensors, soft sensors) to monitor, optimize, and make significant
changes that will reduce food losses in the postharvest supply chain of fresh produce. However,
such a system does not exist.

The augmented insight on the application of emerging technologies can serve as a roadmap for
future cold chain studies on fresh agricultural produce.
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Nomenclature

FAO Food and Agriculture Organization
AIR Acoustic Impulse Response
CV Computer Vision
HSI Hyperspectral Imaging
MSI Multispectral Imaging
CCD Charge-Couple Device
SG Savitsky–Golay
SNV Standard Normal Variate
PCA Principal Component Analysis
PLSR Partial Least Squares Regression
MSC Multiple Scatter Correction
PLS-DA Partial Least Squares Discriminant Analysis
ANN Artificial Neural Network
CNN Convolutional Neural Networks
LDA Linear Discriminant Analysis
kNN k-Nearest Neighbors
CFS Correlation-based Feature Subset Selection
GIA Gini Impurity Algorithm
SFS Sequential Forward Selection
BPNN Backpropagation Neural Network
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ELM Extreme Learning Machine
SLR Sparse Logistic Regression
CMS Central Monitoring System
RTS Real-Time analytic System
RFID Radio Frequency Identification Tags
MSA Multi-Sensors Analysis
SVM Support Vector Machine
RBF Radial Basis Function
LCA Life Cycle Assessment
PTS Printed Sensors
GA Genetic Algorithm
SVR Support Vector Regression
SNK Student–Newman–Keuls
LS-SVM Least Squares Support Vector Machines
RF Random Forest
LW Local Order
WSNs Wireless Sensor Networks
ROC Receiver Operating Characteristic
MM Migration Models
MGS Membrane Gas Separation
HMT Heat and Mass Transfer
SBM Structural Behavior Models
SM Stochastic Models
KRM Kinetics Rate Models
CO2 Carbon Dioxide
O2 Oxygen
N2 Nitrogen
H2O Water
FEA Finite Element Analysis
MAP Modified Atmosphere Packaging
1-MCP Methyl Cyclopropane
TR Transpiration Rate
CFD Computational Fluid Dynamic
VCP Ventilated Corrugated Paperboard
IoT Internet of Things
GPS Global Positioning System
NN Neural Networks
NCP Nano-Composite based Packaging
CFD Computational Fluid Dynamics
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