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Abstract: Temperature control systems are a series of processes with large time-delay and non-linear
characteristics. Research shows that using fractional-order modeling and corresponding control
strategies can better control these processes. At the same time, the existing studies for control
performance assessment are almost committed to the integer order control systems, and the methods
used in few literatures on performance assessment of fractional order systems are also one-sided.
This paper applies the linear quadratic Gaussian (LQG) evaluation benchmark to the performance
evaluation of fractional-order control systems for the first time, starting with the LQG evaluation
benchmark considering the input and output performance. The LQG benchmark can be obtained
by the analytical algorithm, which simplifies the complexity of LQG solution. Finally, taking the
application of the fractional predictive function control (FO-PFC) controller in the experiment of
industrial heating furnace temperature control as an example, the effectiveness of the LQG benchmark
is verified.

Keywords: linear quadratic Gaussian (LQG) benchmark; fractional order system; FO-PFC control;
control performance assessment

1. Introduction

In the industry production process, the high-performance controller is the essential element of
advanced control systems. Under the complex industrial environment, the performance of a loop
controller may decline after a long time of operation [1,2]. Therefore, it is great practical significance to
make use of the control performance assessment technology to evaluate and monitor loop controllers
online in real time, in order to ensure the high-performance operation of the loop controllers and the
safe and efficient operation of the industrial control system [3,4].

The research about control performance assessment technologies has a history of more than
40 years. In 1978, Devries et al. [5] first proposed the concept of performance evaluation and
analyzed the effectiveness of quantitative control of paper machine by using multiple time series
technology, which greatly stimulates the research in the field of subsequent evaluation of controller
performance [6–17]. When a two-dimensional Roesser model was known, Wei et al. [18] proposed
a method for evaluating the control effect of iterative learning controller (ILC), which extended the
LQG benchmark from one-dimensional to two-dimensional firstly. When parameters of the batch
process were unknown, Wang et al. [19] developed a model-free control performance assessment
method based on date-driven control in 2015. Different from the finite-horizon LQG benchmark in
reference [18,19], Wang et al. [20] adopted an infinite-horizon quadratic performance cost function to
design LQG benchmark and extended the results to a multiple input multiple output (MIMO) system.
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For disposing the inconsistency of the minimum variance criterion when evaluating non-Gaussian
perturbation systems, Zhang et al. [21] proposed an improved Renyi entropy benchmark for the
performance evaluation of common cascade control systems in 2019. By the performance index
combined entropy with the output mean, the running state of the control system was evaluated.

Due to the widespread use of proportional integral derivative (PID) controllers and model
predictive control, the control performance assessment of them is a hot research spot. For achieving the
minimum variance to evaluate control loop performance, Ko et al. [22] and Sendjaja et al. [23] adopted
a minimum variance control (MVC) benchmark for evaluation which can get excellent consequences by
calculating the proportion integration differentiation regulator. Horton et al. [24] showed the optimum
performance of the PI regulator, which was as the widely-used controller. Fang et al. [25] adopted LQG
benchmark to assess running state of the IMC-PID controller under the circumstance of model matching
and mismatch in experiment of industrial furnace temperature control. By considering the tradeoff

between LQG cost and average sampling rate, an interpretation of the optimal sampled-data controller
and event- based sampling policy were obtained in terms of PID control [26]. This method helped us
understand what implementation characteristic was important for obtaining excellent event-based
PID performance. However, in industrial production process, integer order model is insufficient to
precisely describe information of a system. Additional fractional integration and differentiation can
make the process model more flexible and accurate, and reflect the dynamic characteristics of the actual
process [27–29]. In order to expand the traditional concept of integral order controller, a fractional order
controller is emerged. According to previous studies, the control effect of fractional order controller is
more excellent than integral order controller [30–33]. Consequently, the methods and techniques of
performance evaluation on fractional order controller are also worthy of studying. Škarda et al. [34,35]
proposed a new performance assessment indicator by using the ideal shape based on the sensitivity
function. By calculating the fractional order process, the optimal performance control for all PID control
models was archived. The evaluation method of minimum variances based on the classical theory
that the normalization process dead time great impact on maximum performance, so only a fixed
structure for the evaluation process controller. However, there are some limitations. For solving the
tradeoff between servo controller performance and the adjustment controller performance, a combined
performance evaluation index is developed by Meneses et al. [36]. The method carried out the theoretical
research that may be implemented on the basic of the performance of the process delay time normalized
and constrained by the robustness but also for evaluating the fractional order PID controller. However,
considering that there are drawbacks of insufficient application scope on the existing performance
assessment methods for fractional order controllers, these indicators structured performance appraisal
are one-sided and the angle output is from the process point of view.

Although LQG benchmark is a more practical industrial process evaluation criterion, which considers
both of the variance of the system input and the variance of the system output, its application is
limited to the order of the process model. Therefore, it is significance to extend the LQG benchmark to
assess the running status of fractional order system with fractional order controllers. This paper uses
an analytical algorithm to solve the LQG benchmark. Taking the heating furnace temperature controller
as an example, which is called FO-PFC controller, the validity of the LQG benchmark is verified. In the
meantime, the effectiveness of FO-PFC controller is studied whether the model matches or not.

The main contribution of this paper is applying the LQG benchmark to the performance
assessment study of a fractional order controller for the first time. Section 2 covers solution algorithm
of LQG benchmark. The block diagram of heating furnace control process is presented in Section 3.
In Section 4, LQG benchmark is used to assess the FO-PFC controller of the heating furnace temperature
control system.

2. LQG Benchmark

The LQG benchmark is based on MVC benchmark, which extends and takes the output and input
variances of the system into consideration. Consequently, a more nuanced state of the control system is
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excavated by LQG benchmark. This provides the optimal performance limits of the controlled system
in respect of input and output variance under any linear controller. The tradeoff curve is obtained by
solving an LQG problem where the cost function of LQG is defined as:

JLQG = E[YTQY] + E[UTρRU] (1)

In Equation (1), Q is the output weighting matrix and R is the input weighting matrix. The LQG
problem can be solved by changing the input weighting ρ, and a class of LQG optimal discrete points
can be obtained. The horizontal axis represents the best input variance and the vertical axis represents
the best output variance, then the LQG compromise tradeoff curve [25,37] is obtained by regressing
these discrete points as described in Figure 1, which indicates the relationship between the optimal
input variance and the optimal output variance. Through the relationship, the minimum performance
value and input-output variance of the linear controller can be obtained. However, because the
disturbance is always existed in industry, the top of the curve in Figure 1 shows what may happen in
the actual operation.
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According to the LQG performance tradeoff curve, the current input variance is Var(Uk) and
output variance is Var(UY). Var(Uopt

lqg) and Var(Yopt
lqg) are the optimal input and output variances.

Then the corresponding performance index can be defined as:

ηU =
Var(Uopt

lqg)

Var(Uk)
ηY =

Var(Yopt
lqg)

Var(Yk)
(2)

LQG Solution via State Space Model

Consider a state space model:

Xk+1 = AXk + BUk + Hαk
Yk = CXk + αk

(3)

where A, B, C are coefficient matrix. αk is Gaussian white noise and H is the Kalman filter gain matrix.
Xk and Yk are the state vector and output vector at time instant k. Uk is the input vector at time instant
k. The process equation and Kalman estimator are integrated as follows:[

Xk+1
X̂k+1

]
=

[
A −BL

HC A−HC− BL

][
Xk
X̂k

]
+

[
H
H

]
αk (4)

where X̂k is the estimated state at time instant k. L= (BTSB + λR
)−1

(BTSA + NT) is the gain matrix,
which can be obtained through the MATLAB optimization toolbox. S can be gained by calculating the
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Riccati equation described as ATSA− S− (ASB+N)
(
BTSB + λR

)−1
(BTSA+NT) +Q = 0. Q = CTWC

is weighting matrix state in the quadratic index. N is the operation weight of the state matrix, which is
set to zero. Then we can solve for Var(Uk) and Var(Yk) as follows:

Var(Uk) = [ 0 −L ]Var(X̃)

[
0
−LT

]

Var(Yk) = [ C 0 ]Var(X̃)

[
CT

0

]
+ Var(αk)

(5)

Due to the limited memory of main control cards in distributed control systems (DCS), the amount
of computation must be allocated reasonably. Therefore, the rapidness and simplicity of the LQG
solution must be considered to save the memory for the use of controllers and security interlock
programs in the process units. By combining a subspace method, a more accurate model-free LQG
solution can be achieved (If anyone wants to know more about subspace identification, please refer to
Appendix B. The way of getting data repository can be seen in Appendix A). But the model-free LQG
solution process is too complicated, which will take up more memory of main control cards. From the
perspective of the application, the proposed LQG benchmark based on a known model subspace is
simpler and the calculation is smaller, which can be directly embedded into an industrial system.

3. FO-PFC Controller Principle

As one of the advanced control methods, PFC can get more excellent control performance in
some high-precision processes. Traditional PFC, which is based on the integer order model and
the corresponding control method, has certain limitations in controlling fractional order systems.
Studies have shown that fractional order modality can be added to the objective function of conventional
PFC for optimization. Better process tuning performance can be achieved than conventional PFC
because the process model is described more accurately. In this paper, the process model of industrial
heating furnace temperature is built through the fractional order model, and the control method of the
system is FO-PFC algorithm. The block diagram of control process is displayed in Figure 2.
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Figure 2. The block diagram of control process.

According to literature [38], the optimal control law of FO-PFC is shown as follows:

u(k) = (C
T

Λ(TS,γ)C)
−1

C
T

Λ(TS,γ)(Yr − BYpast −DUpast − E) (6)

where Ts is sample time, γ is the cost function of integral coefficients. Ypast, Upast, E are corresponding
matrix constructed from input, output and error respectively, B, C, D are corresponding coefficients of
matrix (see more details for reference [38]). P is the predictive horizon.

Yr = [yr(k + 1), yr(k + 2), · · · , yr(k + P)]T

Λ(TS,γ) = TSdiag(mP−1, mP−2, · · · , m1, m0)

m j = ω
(γ)
j −ω

(γ)
j−(P−1) ,ω

(γ)
0 = 1

∀ j > 0,ω(γ)
j = (1− 1+γ

j )ω
(γ)
j−1

j < 0,ω(γ)
j = 0
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4. Case Study

In this part, the process of the heating furnace temperature is selected as an example and a fractional
order model is selected as the temperature process model. The fractional order model is developed
through corresponding measurement data and the controller of the temperature is FO-PFC controller.
Finally, the performance of control system is tested by LQG benchmark through MATLAB simulation.

4.1. System Description

The temperature controlled object is sxf-4-10 industrial electric heating furnace in this paper.
The principle diagram is given in Figure 3. The voltage during normal operation is 220 V and the
power during normal operation is 4 KW. The control flow of the furnace heating system is as follows:
heating furnace temperature is sampled by thermocouple and then transferred into the computer
through signal amplifier and signal acquisition card. The FO-PFC controller runs on the computer and
the output of the FO-PFC algorithm exports to the signal output card to control on and off state of
the solid state relay. When the solid state relay is on state, the state of the heating furnace is heating.
Otherwise, the heating loop is in the off-state.
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4.2. Process Model Establishment

An input of 20% duty-ratio is given to the heating furnace and the heating furnace begins to heat.
During the heating period, real-time data of furnace temperature is collected every two seconds until
the output trend of the heating furnace temperature is stable with no obvious change. The actual
temperature responses of this process are shown in Figure 4. For general industrial process control
systems, the first order plus dead time (FOPDT) model is generally chosen to describe the relationship
between inputs and outputs, which is beneficial for the convenience of subsequent controller design.
Here, in order to describe the actual process model more accurately, the fractional order model is
chosen, which the new luus–jaakola (NLJ) method will be used to identify.

The obtained model is:
GP(s) =

31.8
510s0.93 + 1

e−100s (7)

Since the FO-FPC controller to be evaluated is designed as a nominal model, the fractional
order model is replaced by the high-order integer order model, which is obtained by the Outsaloup
approximation method [39]. According to the Outsaloup approximation method, some extra parameters
must be chosen in the appropriate value. The order of the derivative operator is 4, and the higher and
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lower frequency approximation interval are wh = 106 and wl = 10−6. The transfer function model of
the high-order integer order is obtained as follows:

Gp(s) =
P(s)
N(s)

e−100s (8)

where:
P(s) = 31.8s4 + 2.5× 107s3 + 1.936× 1010s2 + 1.209× 107

N(s) = 1.939× 108s5 + 2.472× 1011s4 + 3.148× 1011s3 + 1.018× 109s2 + 4.847× 108s + 3.802× 105

The transfer function model of Equation (8) is further discretized. The sampling interval is 20 s
and the discrete model of Equation (8) can be obtained as shown below:

Gp(z) =
P(z)
N(z)

(9)

where:
P(z) = 9.642z4

− 0.7335z3 + 8.64z2 + 9.026× 10−19z

N(z) = z5(z5
− 2.382z4 + 2.351z3

− 0.9603z2 + 8.461× 10−12z + 7.196× 10−29)

The practical temperature data, the responses curve of the fractional order model and high-order
integer order model are focused on Figure 4. The goodness of fit of the two models is superior even if
the allowable error still exists in the Oustaloup approximation method.
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In this paper, the perturbation z function is assumed as follows:

Gd =
1 + 0.25z−1

1− 0.9732z−1
(10)

To sum up, the process model of the furnace is consists of two parts, which can be expressed as:

Yk = Gp + 0.25Gd (11)
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4.3. Computation of LQG Benchmark

In order to test the stability of the temperature control system, a Gaussian white noise is added to
the system, which has average of zero and the variance is 0.1.

The process transfer function is converted into the state space type like Equation (3) for convenient
calculation. Through the above method shown from Equation (3) to Equation (5), the LQG benchmark
can be computed. At the same time, since the interval ρ must be sufficient to delegate the overall
trend of the LQG curve, the weighted value ρ changes within [0.000000001, 160,000]. Furthermore,
the corresponding variance of the optimal input-output is calculated. After that, the LQG performance
curve is obtained which is shown in Figure 5.
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4.4. Simulation Results

From the reference [38], the predictive horizon, coefficient of smoothness and the cost function of
integral coefficients of the corresponding PFC controller are chosen as follows.

λ = 0.95, p = 12, γ = 0.6

However, some uncertainties and the immeasurable disturbances are inevitable in practical
production, which lead to some deviations in establishing the model. To verify the stability of the
controller, the cases of model match and mismatch need to be considered. Model 1 is the match model,
and Model 2 and Model 3 are mismatch models. Three groups of the model are as follows:

Model 1 : α = 0.93, T = 510, τ = 100, K = 31.8

Model 2 : α = 0.87, T = 408, τ = 80, K = 25.4

Model 3 : α = 0.92, T = 612, τ = 120, K = 38.16

Because the running condition of the FO-PFC controller under the steady state is our main
evaluation object, 600 ◦C and 605 ◦C are chosen as the temperature set-point. Figure 6 shows the
performance evaluation consequences of actual temperature and duty cycle changes of the solid-state
relay, which are obtained through multiple experiments.
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On the basis of experimental results, the corresponding parameter and calculation results can be
obtained in Table 1 under the condition of model match and model mismatch. The performance of
the FO-PFC controller has been evaluated against the performance indices. When the temperature
set-point is set 600 ◦C: under the circumstance of match model shown as Model 1, the performance
indicators are ηu = 34.89%, ηy = 78.76%. Under the condition of mismatch which are shown as
Model 2 and Model 3, the performance indicators are ηu = 42.05%, ηu = 81.01% and ηu = 30.53%,
ηy = 74.38% respectively. The temperature of the heating furnace can be set arbitrarily according to
the demand. When the temperature is set to 605 ◦C: the corresponding performance indices of Model 1
are ηu = 20.25%, ηy = 62.29%. The performance indicators of Model 2 are ηu = 23.97%, ηy = 66.02%
and the performance indicators of Model 3 are ηu = 18.20%, ηy = 59.67%. From the above results,
it can be seen that the heating performance of the furnace can be greatly improved.

Table 1. Statistical Results of Steady State Performance.

Setpoint Model Var(uk) Var(yk) Var(uopt
lqg ) ηu(%) Var(yopt

lqg ) ηy(%)

600 ◦C
Model 1 0.0321 0.7944 0.0112 34.89 0.6257 78.76
Model 2 0.0302 0.7486 0.0127 42.05 0.6289 81.01
Model 3 0.0335 0.8388 0.0102 30.53 0.6239 74.38

605 ◦C
Model 1 0.0395 0.9907 0.0080 20.25 0.6172 62.29
Model 2 0.0367 0.9164 0.0088 23.97 0.6199 66.20
Model 3 0.0412 1.0108 0.0075 18.20 0.6157 59.67

By means of the evaluation and simulation experiments, the parameters of the FO-PFC controller,
the integral and differential coefficients can be adjusted by constantly trying to use the wrong approach.
Through a lot of experiments, an optimal set of controller parameters can be obtained, which can let
control system get the best control performance. The group of optimal control parameters is:

λ = 0.97, p = 6, γ = 0.8

After adjusting and recalculating the relevant data and performance indicators, Figure 7a–c
further show the simulation results and the selected model parameters are three different parameters,
which make the experiment more convincing.
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Figure 7. (a) A comparison of the improved parameter and the current parameter (Model 1).
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When the temperature set-point is 600 ◦C, under the circumstance of model matching which is
shown as Model 1, the performance indicators are improved to ηu = 66.98%, ηy = 86.32%. Under the
circumstance of model mismatching which are shown as Model 2 and Model 3, the performance
indicators are ηu = 70.29%, ηy = 91.88% and ηu = 50.22%, ηy = 82.45% respectively. When the
temperature set-point is 605 ◦C, the performance indices of Model 1 can be obtained an better effect and
the improvements are ηu = 36.29%, ηu = 71.55%. On the condition of model mismatching, which are
shown as Model 2 and Model 3, the performance indices increase to ηu = 42.91%, ηy = 75.22% and
ηu = 33.33%, ηy = 69.94% respectively. By adjusting the above control parameters, the simulation
experiment shows that the control effect of the heating furnace temperature control system is more
superior under the circumstance of model matching or mismatching. A series of experimental data are
displayed in Table 2.

Table 2. Statistical results of steady state performance.

Setpoint Model Var(uk) Var(yk) Var(uopt
lqg ) ηu(%) Var(yopt

lqg ) ηy(%)

600 ◦C
Model 1 0.0212 0.7578 0.0124 66.98 0.6542 86.32
Model 2 0.0202 0.7176 0.0142 70.29 0.6594 91.88
Model 3 0.0221 0.7985 0.0111 50.22 0.6503 82.45

605 ◦C
Model 1 0.0248 0.8957 0.0091 36.29 0.6409 71.55
Model 2 0.0236 0.8570 0.0098 42.91 0.6447 75.22
Model 3 0.0261 0.9255 0.0087 33.33 0.6473 69.94

Through the actual input variances and output variances comparison of improved parameter and
current parameter, which are shown in Figure 8a,b, no matter in the condition of model matching or
model mismatching, the improved parameter can obtain excellent control performance.
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Regardless of the model matching or the model mismatch, reducing the input and output of
variances can be done by adjusting the FO-PFC parameters to a certain extent, which can be seen from
Figure 7a to Figure 8b. After the expected parameter adjustment, the controller improves a lot in terms
of control performance. Compared with the current parameter, the performance point of the improved
parameter is closer to LQG performance tradeoff curve. In addition, whether the model matches or not,
the gap of the input and output variances is obvious by contrasting improved parameter with current
parameter, which are displayed in Figure 8a,b. When the temperature set-value is 600 ◦C, the input
and output variances decrease by 32.09% and 7.56% respectively in Model 1; In Model 2, the input and
output variances all decrease that the input variances decrease by 28.24% and the output variances
decrease by 10.87%; In Model 3, the input and output variances all decrease that the input variances
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decrease by 19.69% and the output variances decrease by 9.07%. When the temperature set-value
is 605 ◦C, the input and output variances all decrease that the input variances decrease by 16.04%
and the output variances decrease by 10.34% in Model 1; In Model 2, the input and output variances
all decrease that the input variances decrease by 18.94% and the output variance decrease 9.02%;
In Model 3, the input and output variances all decrease so that the input variance decrease by 15.13%
and the output variances decrease by 10.27%. Due to the smaller output variances, the stability of the
controller in improved parameter is more superior to that of the current parameter. By redesigning the
controller parameters after the evaluating the running status of the controller, the effect of the controller
is better. The LQG benchmark provides a graphic way for manually adjusting controller parameters.

5. Conclusions

The proposed LQG benchmark is applied to the performance assessment of the FO-PFC controller
in the heating furnace temperature control system. The analytic method is used to calculate the LQG
benchmark, which simplifies the complexity of LQG solution. Through the solution of linear quadratic
Gaussian problem, the optimum values of input variances and output variances under different weight
coefficients can be obtained. The control effect and performance point under different parameters
are obtained through simulation experiments. Finally, the LQG benchmark can be used to evaluate
the control performance of the FO-PFC controller whether the model matches or not. When control
performance still has great room for improvement, we can use LQG benchmark to seek for the more
optimal control effect of the controller than before by adjusting the parameters. This benchmark
enables us to assess the control effect of the controller in the control experiment of the heating furnace,
and adjust its parameter in time if the expected value is not achieved.
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Appendix A

If anyone wants to get the data repository with all the code and additional files, they can contact
with us by the corresponding with the author via email.

Appendix B

More knowledge about identification of open subspace can be seen is in pages 31–53 of
Reference [37].

More knowledge about identification of stochastic subspace can be seen is in Reference [40].
More knowledge about identification of closed-loop subspace can be seen is in Reference [41] or

pages 55–78 of Reference [37].
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34. Škarda, R.; Čech, M.; Schlegel, M. Bode-like control loop performance index evaluated for a class of
fractional-order processes. IFAC Proc. Vol. 2014, 47, 10622–10627. [CrossRef]
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