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Abstract: Hydrogen peroxide (H2O2) is an important oxidizing molecule that regulates the
metabolisms of aerobic organisms. Redox signaling comprises physiological oxidative stress (eustress),
while excessive oxidative stress causes damage to molecules. The main enzymatic generators of
H2O2 are nicotinamide adenine dinucleotide phosphate oxidases or NADPH oxidases (NOXs) and
mitochondrial respiratory chains, as well as various oxidases. The NOX family is constituted of
seven enzyme isoforms that produce a superoxide anion (O2

−), which can be converted to H2O2 by
superoxide dismutase or spontaneously. H2O2 passes through the membranes by some aquaporins
(AQPs), known as peroxyporins. It diffuses through cells and tissues to initiate cellular effects, such as
proliferation, the recruitment of immune cells, and cell shape changes. Therefore, it has been proposed
that H2O2 has the same importance as Ca2+ or adenosine triphosphate (ATP) to act as modulators in
signaling and the metabolism. The present overview focuses on the metabolic processes of liver and
adipose tissue, regulated by the H2O2 generated by NOXs.

Keywords: hydrogen peroxide; NADPH oxidases; superoxide anion; signaling

1. Introduction

Living organisms that develop under aerobic conditions generate reactive oxygen species (ROS)
by cellular metabolism [1–3]. ROS are formed during cellular processes, such as cellular respiration,
NADPH oxidase (NOX) activity, and processes related to peroxisomes, nitric oxide synthetase,
lipoxygenases, xanthine oxidase, cyclooxygenases, and the cytochrome P450 system, as well as
inflammatory processes, mainly in hepatocytes and macrophages [1,2,4–7].

For a long time, ROS were considered as molecules or entities that could generate damage at
different levels, be they cellular, tissue or even at the organ level, or that their production was linked to
enzymatic reactions which involve oxygen intermediaries. Its production causes an imbalance in the
oxide-reduction (redox) state of the cells. In phagocytes, ROS are produced by the activation of NOX
to destroy pathogens during phagocytosis [8]. However, in the last 20 years, it has been shown that
the generation of ROS is linked to a variety of essential biological processes, where they participate
in the regulation of some metabolic pathways, either negatively or positively. These processes
include cell development and differentiation, generation or crosslinking of the extracellular matrix,
hormone biosynthesis, cell aging, apoptosis, the responses of oxygen changes (oxygen detection),
growth factors, hormones, and cytokines.

2. NOX Family

NOXs represent a family of enzyme complexes present in the membrane which generate ROS.
This complex is widely distributed in eukaryotic organisms [9], and recent results indicate that they are
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also present in bacteria [10]. The first NOX was described in neutrophils and produces a large amount
of ROS as a defense system [11]. The catalytic subunit of this enzyme was named gp91phox and is now
called NOX2. The development of more of sensitive assays allowed the detection of low amounts of
ROS in other cells [12]. NOX1, also known as Mox1, was the first NOX2 homolog to be identified [13].
In mammals, the NOX family is formed by seven members: NOX1, 2, and 3, activated by cytoplasmic
subunits; NOX4, which is constitutively active; and NOX5 and DUOX1 and 2, which bind calcium.
The product of NOX isoforms is O2

−, which rapidly changes to H2O2 [14].

2.1. Hydrogen Peroxide Production

NOX family members have different regulation processes, but they share a catalytic core with
two domains: the dehydrogenase and the transmembrane domains [15]. Electrons are transferred
from cytosolic NADPH to FAD in the dehydrogenase domain, then to the inner and outer hemes in
the transmembrane domain, and finally to the O2 outside the cell, producing O2

−, as shown in the
following reaction:

NADPH + 2O2↔ NADP+ + 2O2
− + H+ (1)

A superoxide is highly reactive, short-lived, and its charge prevents its diffusion through
membranes [16]. However, it can dismutase to H2O2 spontaneously (rate constant = 8 × 104 M−1s−1)
or by superoxide dismutase (SOD) (rate constant = 2 × 109 M−1s−1) [17]. H2O2 is diffusible,
transverses membranes by aquaporins (AQPs), [18] and initiates cell signaling [19].

2.2. Tissue Distribution of NOX Proteins

NOXs localize in different tissues and membrane compartments, allowing the spatiotemporal
organization of ROS signaling. The expression of NOX enzymes in various tissues supports the
idea that ROS production is not exclusive to phagocytic cells. The fact that some of these enzymes
produce low levels of ROS suggests that they may be participating in other cellular functions than
the inflammatory response [20]. NOX2 is referred as phagocyte NADPH oxidase. However, it is
also found in other cells such as hepatocytes, endothelial cells, smooth and skeletal muscle, neurons,
cardiomyocytes, and hematopoietic stem cells. NOX1 and NOX2 share a 60% amino acid identity.
NOX1 is expressed more in the colon epithelium, while NOX3 is almost exclusively expressed in the
inner ear. NOX4 expression is strongly observed in the kidney and at moderate levels in vascular
endothelial cells, vascular smooth muscle, murine osteoclasts, murine adipocytes, and the pancreas.
NOX5 is expressed in the human spleen, testis, and vascular smooth muscle. The dual oxidases DUOX1
and DUOX2 are the H2O2-producing isoforms of the NADPH oxidases (DUOXs) are highly expressed
in the thyroid, but they can also be expressed in other cells (see Table 1) [9,21–25].
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Table 1. Tissue distribution and subcellular localization of NOX isoforms.

NOX Isoforms High Expression Low to Intermediate
Expression

Subcellular
Localization

NOX1 Colon epithelium

Placenta, uterus prostate,
vascular smooth muscle
cells, endothelial cells,

osteoclasts, retinal pericytes,
colon tumor cell lines,

Caco-2 DLD-1, and HT-29

Intracellular membranes
close to endoplasmic

reticulum, endosomes,
and caveolae

NOX2 Phagocytic cells

Thymus, small intestine,
colon, spleen, pancreas,

ovary, placenta, prostate,
testis, endothelial cells,

smooth muscle, neurons,
cardiomyocytes,

skeletal muscle myocytes,
hepatocytes,

and hematopoietic stem cells

Cell membrane and
phagosomes

NOX3

Inner ear (cochlear,
vestibular sensory

epithelia,
spiral ganglion)

Fetal tissues, skull bone,
spleen, kidney, lung,

and brain
Plasma membrane

NOX4
Kidney (renal distal and
proximal tubules) and

blood vessels

Placenta, spleen, uterus,
pancreas, fetal tissues,
adipocytes, fibroblasts,
neurons, vascular and

endothelial cells, osteoclasts,
smooth muscle cells,

hematopoietic stem cells,
keratinocytes,

and melanoma cells

Focal adhesions,
endoplasmic reticulum,

nucleus,
and mitochondrial

NOX5 Testis and lymph nodes

Spleen, vascular smooth
muscle, bone marrow,

pancreas, placenta, ovary,
uterus, stomach and fetal

tissues

Plasma membrane and
endoplasmic reticulum

DUOX 1 Thyroid
Airway epithelia, prostate,

tongue epithelium,
cerebellum, and testis

Plasma membrane

DUOX 2 Thyroid

Salivary and rectal glands,
gastrointestinal tract

(duodenum, colon, cecum),
airway epithelia, uterus,

gall bladder, pancreatic islets,
and prostate

Plasma membrane

2.3. Structure and Regulation of NOX

NOX isoform structures were deduced from studies on NOX2 [14]. There are structural properties
of NOX2 that are similar to all members of the family. NOX complexes consist of one catalytic subunit
and five regulatory subunits (p22phox, p47phox, p67phox, p40phox, and Rac). The catalytic subunit has six
transmembrane domains (seven for DUOX1-2) and four hemes in the third and fifth transmembrane
domains, as well as an NADPH-binding domain and an FAD-binding domain in the C-terminal in
the cytosolic region. NOX5 has additional EF-hands and Ca2+-binding domains at the N-terminus,
and DUOX enzymes have EF-hands and a peroxidase-like domain at the N-terminus. NOX2 forms a
complex membrane with a stabilizing factor, p22phox [26]. In unstimulated cells, NOX2 and p22phox
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are found in the plasma membrane, with p67phox associating with the proline-rich region (PRR) of the
p47phox in the cytosol. The p47phox has two Src homology 3 (SH3) domains for its association with the
PRR of the p22phox [27]. In the resting state, the auto inhibitory region AIR in the p47phox combines
with the bis-SH3 domain and the domain phagocyte oxidase (PX) of the p47phox, preventing its binding
to p22phox and membrane lipids [28]. The cytoplasmic component p40phox is associated with p67phox.
Rac attached to guanosine 5′-diphosphate (GDP) is associated with RhoGDP dissociation inhibitor
(RhoGDI) in the cytosol. Rac is a member of the Rho family, and there are three expressed isoforms of
Rac: Rac1, Rac2, and Rac3. Rac1 is expressed in non-hematopoietic cells and activates many NOX
isoforms. In contrast, Rac2 is expressed in hematopoietic cells, and Rac3 is predominantly found in the
central nervous system [29,30]. The phagocytosis of bacteria induces phosphorylation in p47phox and
conformational change, allowing its interaction with p22phox [14,27]. Subunit p47phox, attached to the
membrane, transports the activator subunits p67phox and p40phox to NOX2 [31]. Phagocytosis also
causes the generation of Rac2-GTP, which is released from the RhoGDI. Rac-GTP goes toward the
membrane and interacts with NOX2 and p67phox [32,33]. The assembled complex generates superoxide
in the extracellular space (Figure 1).
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Figure 1. NADPH oxidase (NOX) types and activation of the NOX2 macrophage for the formation of
reactive oxygen species. (a) Structure of the isoforms that are part of the NOX family. (b) Activation of
the NOX2 system, which occurs by the assembly of cytosolic regulatory proteins (p40phox, p47phox,
p67phox, and Rac2) with the catalytic subunit gp91phox and p22phox in the membrane, to activate the
enzyme complex and generate superoxide anions (O2

−) and hydrogen peroxide (H2O2).

The other isoforms share some characteristics of NOX2 activation. The NOX1 isoform exhibits
60% of its identity with NOX2. Its activity depends on cytosolic subunits. NOX1 requires p22phox,
Rac GTPase, the first organizer (NOXO1), which is a homolog of p47phox, and the first activator
(NOXA1), a homolog of p67phox [34]. NOX3 shares 56% of its amino acid identity with NOX2 [35].
This NOX requires NOXO1 and NOXA1 for activation, but p47phox, p67phox, and Rac have not been
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studied [36]. NOX4 shares approximately 39% of it sequence homology with NOX2. This isoform
is constitutively active, and its activity depends on p22phox [37]. Recently, it has been described that
polymerase δ-interacting protein 2 (POLDIP2) regulates NOX4 [38]. NOX5 comprises five isoforms:
a, b, c, d, and e or S [39,40]. NOX5 a–d isoforms have an intracellular domain that contains a Ca+2

-binding EF-hand region [41]. NOX5 a–d isoforms do not require p22phox or cytosolic subunits for
activation, but they need cytosolic calcium. Heat shock protein 90 (HSP90) has been described as a
regulatory protein for NOX1–3 and NOX5 [42]. The NOX5 e isoform lacks a Ca2+-binding domain
and depends on the cAMP response element-binding protein for activity [43]. DUOX1 and DUOX2
were first identified in the thyroid gland. These enzymes share 50% of their amino acid identity with
NOX2 [44]. They have a NOX domain similar to that of NOX1-4, an EF-hand region similar to NOX5,
and a seventh transmembrane peroxidase-like domain. Both dual oxidases have been identified in
the plasma membrane and endoplasmic reticulum [45]. The permanence of DUOX proteins in the
endoplasmic reticulum depends on the maturation factors of DUOXA1 and DUOXA2. The DUOX2
immature form generates O2

−, whereas the mature form generates H2O2 [46]. DUOX proteins do not
need a cytosolic activator or organizer subunits for activation, but they do require calcium [47].

2.4. The Role of NOXs in Human Physiology and Pathophysiology

NOX proteins regulate physiological processes such as host defense, cell growth, differentiation,
metabolism, and apoptosis [9,21,24]. The deregulation or absence of some NOXs has been linked to
a variety of diseases. The earliest discovery was chronic granulomatous disease (CGD), caused by
the absence of active NOX2. Patients with CGD exhibit chronic infections, impaired wound healing,
and cognitive deficits [48,49].

NOX1 is strongly expressed in the colon epithelium, where its physiological role is controversial,
and its participation in immune system defense and cell proliferation has been proposed. It has
also been shown to be present in vascular smooth muscle cells, where it regulates its growth and
migration [24]. NOX1 can be also found in cells of the central nervous system (CNS). NOX1-deficient
mice exhibit a reduction in pain sensitivity accompanied by inflammation (hyperalgesia). It has
been suggested to have a role in the defense of the CNS in microglia, while it has been implicated
in the growth of neurites [50]. More recently, NOX1 has been associated with processes related to
cancer through participation in the control of the cell cycle, in particular of the cyclin D1. NOX1
overexpression in the epithelial cells of the lung induces an increase in the expression and proliferation
of cyclin D1. On the other hand, a correlation between Ras mutations and overexpressed NOX1 was
shown in studies of human colon cancer [24].

NOX2 is known to be essential in innate defense of the guest, as well as being protective
against colon inflammation, as CGD patients exhibit non-infective colitis [51]. Contrarily, NOX2
regulates the normal renal blood flow and enhances skeletal muscle metabolism and insulin
sensitivity [52,53]. Overactivation of NOX1 and NOX2 is involved in developing hypertension [54,55]
and inflammation [56].

NOX3 participates in the formation of the inner ear [57]. NOX3 and NOX5 induce the differentiation
of human oligodendrocytes [58]. Moreover, NOX3 mutant mice showed motor, coordination,
orientation, and behavior disorders. The degree of specialization of NOX3 and its importance
in physiological processes of the nervous system stand out. It has also been shown that NOX3 is of
functional importance in the endothelial cells of the lung. In mice, where NOX3 activity increases,
emphysema develops, though so far the involved mechanism is unknown. Another line of study has
demonstrated a new role for NOX3 in insulin resistance. In a diabetic mouse model, an increase of
NOX3 expression was shown, as well as the generation of ROS in the liver [24].

NOX4, after NOX2, constitutes the homolog with the highest expression, compared with other
NOX homologues. It has been associated with the expression of oxygen-dependent genes in the
kidney. NOX4 has also been involved in other physiological processes, including cell senescence,
apoptosis, survival, insulin signaling, migration, and differentiation [9]. It has also been shown that



Processes 2020, 8, 1424 6 of 17

NOX4 is responsible for the production of O2
− in osteoclasts, participating in the process of bone

resorption. Additionally, it was recently found that NOX4 participates in adipocyte differentiation [59],
insulin sensitivity in the liver and adipose tissue [60], and glucose-stimulated insulin secretion [61].
This homologue has also been found in smooth muscle cells, endothelial cells, fibroblasts, keratinocytes,
neurons, and hepatocytes. In vascular smooth muscle cells (VSMCs), insulin-like growth factor I (IGF-I)
induces NOX4-mediated migration by an unknown mechanism. NOX4 regulates growth and survival
in VSMCs treated with urokinase, plasminogen activators, or transforming growth factor beta (TGF-β).
Studies conducted with VSMCs, fibroblasts, adipocytes, and embryonic stem cells showed that ROS
production by NOX4 promotes differentiation [24], angiogenesis, vasodilation [62], and apoptosis [63],
and it protects the vasculature from ischemic and inflammatory stress [64].

NOX5 regulates cell signaling and functions, and it contributes to sperm motility and viability [65],
as well as vascular smooth muscle cell contraction [66]. Several authors have proposed that NOX5
plays a role in cell proliferation. For example, in humans, VSMC platelet derived growth factor
(PDGF)-induced proliferation is mediated by NOX5. This coincides with the fact that NOX5 is
expressed in various cancer cell lines. In this sense, NOX5 has been implicated in the regulation of
prostate cancer and in Barrett’s esophagus adenocarcinoma. Moreover, it has been proposed that
platelet-activating factor (PAF) induces the expression of NOX5 in these cells. In this context, it has been
suggested that NOX5 is involved in the malignancy of malignant mature B cells, since this complex is
not expressed in normal B cells [24].

DUOX enzymes were isolated originally in thyroid thyrocytes, and they are associated with
the production of H2O2 used for the oxidation of iodide during the synthesis of thyroid hormones.
In the lungs and salivary glands, DUOX provides H2O2 to lactoperoxidase that converts thiocyanate
anions into a hypothiocyanate oxidant with microbicidal functions, which gives it an essential role in
defending the guest [9]. DUOX1 and 2 deregulations have been associated with hypothyroidism [67].
DUOXs also play a role in host defense in the gastrointestinal tract and the lung epithelium [68].

Most of the functions of NOXs in humans are not yet understood. However, NOXs have also been
associated with the pathogenesis of rheumatoid arthritis [69], diabetes, atherosclerosis [70], and several
neurological diseases including Alzheimer’s [71] and Parkinson’s diseases [72].

2.5. Effect of NOX-Derived H2O2 on the Tissues

2.5.1. Liver

NOXs are widely distributed in the whole liver. The main isoforms in this organ are NOX1,
NOX2, and NOX4 [73]. NOX2 expression has been suggested for a long time in this gland, in murine
Kupffer cells [74], rat hepatocytes [75], endothelial cells [76], and in hepatic stellate cells (HSCs) [77].
NOX1 is expressed in sinusoidal endothelial cells, hepatocytes, and HSCs. While NOX4 is expressed
in hepatocytes, Kupffer cells, and culture-activated rat HSCs [77]. Finally, DUOX1 and DUOX2
are expressed in rat hepatocytes, Kupffer cells, and either activated or non-activated HSCs [78].
The functions of NOXs in the liver are not well studied. The role of NOX2 in Kupffer cells should
namely be the killing of microorganisms. ROS have been suggested to play an essential role in clearing
pathogens derived from the gut [79], regulating expression of the CD95 ligand [80], and NFκB-dependent
production of tumor necrosis factor alpha (TNF-α) [81]. In addition, ROS may intervene in hepatic
fibrosis and may directly intoxicate hepatocytes [82]. Hepatic stellate cells are involved in liver
development and regeneration, the production of cytokines, retinoid metabolism, and secretion
of lipoproteins and growth factors, but the physiological role of NOXs has not been studied [77].
Hepatocytes contain many ROS-generating systems, including cytochromes, mitochondrial respiration,
arachidonic acid oxidation, and NOXs. The generation of ROS through an NOX has been described in
response to many stimuli like adrenaline [83–85], CD95 ligand [78], TGF-β [86], and bile production in
hepatocytes [87]. Adrenaline activates the NOX2 enzyme, localized in hepatocyte plasma membranes
through the α1-adrenoreceptors (α1-AR). This activation requires GTP, but does not require adenosine
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triphosphate (ATP). The NOX2 complex present in the hepatocyte plasma membrane contains gp91phox,
p22phox, p40phox, p47phox, p67phox, and Rac1 proteins. The Gα13 protein links α1-AR and the NOX
complex in this cell. α1-AR stimulation induces Rac1-GTP generation, which is necessary for H2O2

synthesis. Negative cross-talk between α1-ARs and β-ARs for H2O2 synthesis, gluconeogenesis,
and ureagenesis was observed in these cells [83,84]. AQP8 is necessary for H2O2 to enter the hepatocyte
and carry out its function [85]. Based on previous work [88], H2O2 generated after NOX2 activation
by α1-AR in hepatocytes may react with cAMP-dependent protein kinase A (PKA) and inhibit
gluconeogenesis and ureagenesis processes (Figure 2).Processes 2020, 8, x FOR PEER REVIEW 7 of 16 
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Figure 2. Modified schemes from [85] and [89], in which the signaling and cross-linking pathways are
presented and where H2O2 participates as a second messenger, generated by the activation of an NOX.
H2O2 enters the cell through an aquaporin that modifies the redox state of protein kinase A (PKA),
producing a disulfide (-) bond between the regulatory and catalytic subunits that alters the activation
and function of the holoenzyme PKA by cAMP. (a) In the hepatocyte, the activation of α1 adrenergic
receptors (α1-AR) inhibits the activation of PKA. Reproduced with permission from Magdalena
Vilchis-Landeros, Raquel Guinzberg, Héctor Riveros-Rosas et al., and FEBS Letters, and published by
John Wiley and Sons, 2020. (b) In the adipocyte, the lipolysis pathway is inhibited by the oxidation of
PKA, due to the generation of H2O2, stimulated by insulin.

Hepatocyte-derived ROS might lead to apoptosis, but ROS generated by neighboring cells might
cause hepatocyte proliferation [78]. The CD95 ligand, hyperosmotic exposure, or hydrophobic bile
salts in primary cultured hepatocytes induce apoptosis by the activation of NOX isoforms [78,90].
Furthermore, in FaO hepatoma cells, apoptosis promoted by TGF-β increases NOX1 and NOX4
expression [91,92]. In most recent studies, authors reported the role of NOX1 as a controller of the
autocrine cell growth of FaO hepatoma cells through regulation of the epidermal growth factor receptor
(EGFR) pathway [93].
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Regardless of their physiological function, NOXs in the liver may participate in different
pathological processes by chronic production of high ROS levels in hyperinsulinemia and
hyperglycemia [94]. More recently, it has been reported that a critical role of NOX3-derived ROS is
palmitate-induced insulin resistance in hepatocytes [95]. NOX also plays a role in hepatic cancer in
many rodent models [96,97]. Increased NOX activity has been implicated in nonalcoholic fatty liver
disease [98]. In addition, NOX2 might be necessary for liver ischemia–reperfusion injury because
deficient mice in this isoform show reduced hepatic reperfusion injury [99,100]. On the other hand,
much evidence supports the role of NOX in tissue inflammation and fibrosis. The role of increased
oxidative stress in the pathogenesis of liver fibrosis is based on studies using clinical samples and
experimental animal models of liver fibrosis [101,102]. NOX4 expression is elevated in a murine model
of steatosis-induced fibrosis. In this model, hepatocyte-specific deletion of NOX4 results in lower
oxidative stress, reduced lipid peroxidation, and the attenuation of liver fibrosis [103]. NOX4-derived
ROS has also been implicated in the transdifferentiation and proliferation of HSCs [102]. NOX2-/- mice
are protected against CCl4−-induced liver fibrosis [101]. These studies support the role of NOX2 in
regulating both the expression of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9) and the
expression of the MMP tissue inhibitors (TIMP-1 and TIMP-2). NOX2 has been shown to mediate the
activation of HSCs into myofibroblasts after the phagocytosis of dying hepatocytes [104]. NOX1 is also
expressed and activated in HSCs, and NOX1 knockout mice are also protected against CCl4−induced
liver fibrosis [105]. NOX1 has also been involved in the transdifferentiation and proliferation of HSCs,
similar to NOX2 and NOX4. In vitro studies using a genetic approach to delete NOX5 in HSCs have
also suggested that NOX5 may be involved in the activation of HSCs through the modulation of p38
mitogen activated protein kinase (MAPK) [106].

2.5.2. Adipose Tissue and Other Tissues

ROS have been increasingly recognized for their role in the regulation of intracellular signaling
pathways [107–109]. H2O2 is particularly suitable for redox signaling because it has a longer half-life
than other ROS, which allows it to diffuse longer distances in cells [110]. In the international literature,
there are a large number of reports that verify the effect of H2O2 on the regulation of enzymatic
activity and how it affects the response of one or more metabolic pathways [111–116]. For this process
to be carried out, it is necessary that the structural conditions exist within the proteins or enzymes,
in addition to a temporary increase in the concentration of H2O2, so that this ROS can act and modify
the redox state of the enzymes [117,118]. H2O2 is a weak oxidant that reacts primarily with the
thiol groups of the cysteines of various proteins. Four oxidation states of cysteines can be generated:
disulfide (-S-S), sulfenic acid (-SOH), sulfinic acid (-O2H), and sulfonic acid (-SO3H). Very strong
oxidants, such as vanadate, are required for the generation of the last two oxidized states of thiols,
and their formation is irreversible under physiological conditions. In contrast, H2O2 oxidizes the SH
groups of cysteines to sulfenic acid, which is rapidly reduced by various intracellular reducing agents,
including glutathione (GSH) and thioredoxin (Trx). However, cysteine residues are only a good target
for the oxidizing action of H2O2 if they are deprotonated and exist as a thiolate anion (-S-) [119].

There are several examples where the activity of different enzymes is regulated or affected by
the presence of H2O2. A clear example is the protein tyrosine phosphatases (PTPs), including PTP1B,
which counteract the phosphorylation of protein tyrosine and, therefore, act together with the tyrosine
kinase receptor (TKR) to regulate cell signaling. PTP activity is dependent on a cysteine (Cys)
residue in the conserved active site, which renders these enzymes susceptible to oxidative inactivation.
During stimulation of the platelet-derived growth factor receptor and epidermal growth factor (EGF)
pathways, the catalytic Cys residue of PTP1B is reversibly oxidized and thus inhibited. The product of
the initial oxidation is a sulfenic acid, which can be condensed to an internal sulfenilamide or undergo
glutathionylation. Reversibly oxidized PTP1B can be reactivated by the thioredoxin (Trx) system,
allowing the Trx system to modulate cellular TKR signaling [120].
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Another relevant example is the one observed in the activation of the transcription factor NF-κB
by H2O2, which is produced endogenously by the activation of protein kinase C [121]. On the other
hand, it was demonstrated that the increase in tyrosine phosphorylation of many proteins and the
activation of the extracellular signal-regulated kinase (ERK) pathway by the activators of respiratory
bursts in macrophages depended on H2O2 [122].

In 2006, Brennan et al. [123] showed that the regulatory subunits of PKA type I (RI) have thiol groups
that detect the cellular redox state, since high concentrations of H2O2 cause the 2 RI subunits to form
disulfide bridges, which had been previously described to be constitutively formed, even when purified,
but may be formed by the oxidizing conditions of the process. The formation of disulfide bridges is
associated with the translocation of PKA from the cytoplasm to the nucleus or to the myofilament
compartment. This redistribution is accompanied by the phosphorylation of PKA substrates,
which include troponin I, myocin-linked protein C, and phospholamban. This phosphorylation
is sensitive to H89, an inhibitor of PKA, demonstrating that phosphorylation is mediated by PKA.
Lower concentrations of H2O2 are required to activate type I PKA than those necessary to activate type
II PKA.

Increased H2O2 contraction is mediated by an adrenergic discharge that increases cAMP
levels, activating PKA. This leads us to think that a treatment with H2O2 can increase contraction,
although previous studies showed that H2O2 decreases contraction. However, these studies were
carried out at very high concentrations of H2O2 or for very long periods of time [123].

An emblematic example that has been studied since the late 1970s is that an increase in the
intracellular H2O2 concentration can mimic the effects of insulin in adipose tissue, including the
inhibition of epinephrine-stimulated lipolysis [118,124,125]. Another described effect related to
insulin is that it activates NOX in adipose tissue, which transiently increases the cellular H2O2

concentration [126].
Years later, new reports expanded the information on how this pathway is regulated; that is, H2O2

is produced by NOX4, which is characteristic of adipocytes, during the physiological transduction
of insulin in adipose cells [127]. In 2001, Mahadev et al. demonstrated that insulin causes the
rapid formation of H2O2 in 3T3-L1 adipocytes, a redox signal that enhances the early cascade of
insulin-stimulated tyrosine phosphorylation through reversible oxidative inactivation of the protein
tyrosine phosphatase thiol dependent (PTPase) 1B and other enzymes [128,129], which leads to an
understanding of the regulatory mechanism that complements the first steps in insulin amplification
signaling. A more recent report on insulin signaling through H2O2 during lipolysis showed that H2O2,
whether generated by insulin or added, reversibly inhibited lipolysis rates activated by epinephrine
or Bt2cAMP [88]. This effect was produced through H2O2-mediated oxidation of two sulfhydryl
groups of the PKA holoenzyme: Cys 97 of the regulatory IIα or IIβ subunits and Cys 199 of the
catalytic α subunit, which formed a disulfide bond that inhibited holoenzyme activation by cAMP,
thus avoiding PKA-stimulated lipolysis (Figure 2b). This information, together with the inhibition of
lipolysis stimulated by non-steroidal anti-inflammatory drugs (NSAIDs), led us to propose that H2O2,
generated by the activation of NOX4 and located in the plasma membrane of adipocytes by NSAIDs,
was the molecule that acted as an agent that mimicked the activity of insulin. This effect is reflected in
the modification and inhibition of PKA type II in rat adipocytes [89].

In addition, the production of ROS in adipose tissue, especially H2O2, is physiologically relevant
in the response to insulin not only at lipolysis level, but also by exerting a protective antihyperglycemic
action through adipocyte differentiation and the uptake of glucose by differentiated adipocytes.
However, if there is a sustained excess of glucose in the body’s metabolic balance, NOX activity will
contribute to the development of obesity [130].

3. Conclusions

Cellular processes are regulated by different factors, both external and internal. ROS generated
by changes in the environment and cell metabolism itself, along with antioxidant defenses,
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directly influence cell homeostasis. An important component within this regulation is NOX,
which generates the production of ROS in a controlled manner and participates in the regulation of
different cellular components.

NOX2 is the most studied enzyme, since it is found in phagocytes and involved in the elimination
of invading agents such as bacteria. However, the other components of the NOX family are of
great interest because they regulate different metabolic pathways in tissues and organs, activating or
inhibiting key enzymes to regulate metabolic pathways that have importance within organisms and
enhance the effects of hormones like insulin. On the other hand, it is important to mention that NOX,
in turn, is regulated by different processes such as phosphorylation (NOX2) or the presence of calcium
in the medium. For this reason, they can be activated (NOX5, DUOX1 or 2). NOX4 can be also
found which, apparently, is constitutively active, so it does not need cytosolic subunits and is ready to
generate ROS when activated by some hormone.

All of this means that the study of these enzymes is increasing, since many metabolic processes
are regulated, either positively or negatively, by the metabolites generated by NOXs. As can be seen
in this review, there are many cellular processes that are regulated by the ROS generated by NOX in
the liver and adipose tissue. However, the target proteins of this redox mechanism have yet to be
defined in many of them. We have shown that, in the case of some metabolic pathways in the liver
such as gluconeogenesis, glycogenolysis, ureogenesis, and lipolysis in the adipocyte, the target protein
of H2O2, generated by NOX2 and NOX4, can be PKA, which is an important enzyme in all of these
metabolic pathways, thus indicating them as possible pharmacological targets to regulate different
pathological processes in which they participate (e.g., inflammation, cell signaling, and immune
response, among others). There is still a long way to go to understand the several roles that ROS
perform in different cellular settings, such as signaling mechanisms, the regulation of major metabolic
pathways and the cell cycle, immune defense, and both programmed and non-programmed death
processes, as well as the target proteins of ROS in these processes. However, the prospects in this
regard are encouraging, thanks to the large number of new techniques involved in the study of these
byproducts of the aerobic metabolism and the effort and investment of different research groups at an
international level. Therefore, the study of the regulation of metabolic processes by H2O2, generated by
NOX, represents a very broad field of study to understand and realize the importance of these enzymes
within cells.
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