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Abstract: Acellular assays of oxidative potential (OP) induced by ambient particulate matters
(PMs) are of great significance in screening for toxicity in PMs. In this review, several typical OP
measurement techniques, including the respiratory tract lining fluid assay (RTLF), ascorbate depletion
assay (AA), dithiothreitol assay (DTT), chemiluminescent reductive acridinium triggering (CRAT),
dichlorofluorescin assay (DCFH) and electron paramagnetic/spin resonance assay (EPR/ESR) are
discussed and their sensitivity to different PMs species composition, PMs size distribution and
seasonality is compared. By comparison, the DTT assay tends to be the preferred method providing a
more comprehensive measurement with transition metals and quinones accumulated in the fine PMs
fraction. Specific transition metals (i.e., Mn, Cu, Fe) and quinones are found to contribute OPDTT

directly whereas the redox properties of PMs species may be changed by the interactions between
themselves. The selection of the appropriate OP measurement methods and the accurate analysis of
the relationship between the methods and PM components is conducive to epidemiological researches
which are related with oxidative stress induced by PMs exposure.
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1. Introduction

Numerous epidemiological and experimental studies between exposure to ambient particulate
matters (PMs) and lots of adverse health effects such as respiratory and cardiovascular diseases and
diabetes have been carried out [1–5]. Compared to other air pollutants, PMs are complex in chemical
composition and source origination, and their capability to absorb large amounts of toxic chemicals [6,7].
Adverse health effects which are most potentially caused by PMs are thought to be PMs-induced
oxidative activity. Reactive oxygen species (ROS) are produced when PMs interact with epithelial cells
and macrophages.

There are two kinds of ways for PMs to induce ROS in the human body: (1) oxidants existing on
and/or within the particle itself are deposited in respiratory systems; (2) cells are stimulated by certain
chemicals in PMs to produce excess ROS or specific biochemicals interact with components in PMs to
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produce ROS [8,9]. ROS are highly reactive due to their unpaired electrons, and they include hydroxyl
radical (•OH), hydrogen peroxide (H2O2), organic peroxyl radicals (RO2), superoxide radical (O2

•−)
and hypochlorite ion (OCl−) [9].

Previous studies mostly defined “oxidative potential” (OP) as the generation of ROS and depletion
of antioxidants catalyzed by inhaled PMs [9,10]. Oxidative potential, representing the capacity of
PMs to oxidize molecules with the generation of ROS, can be used as a plausible metric of PMs
toxicity [11]. Compared to the cellular assays, acellular assays have the advantage of faster reading
speed, lower price, less control environments and being suitable for automation. Each acellular OP
assay has certain specificity for the ROS or the precise type of ROS-inducers, leading to the fact that
none of the methods has been used as a standard method to assess toxicity of ambient particles [12].

Considering that different assays focus on different chemical fractions of the oxidative activity
caused by the PMs, there are no clear criteria for which OP assay and results are likely to be the
best [13]. This work briefly describes some commonly adopted acellular OP assays, including
electron paramagnetic/spin resonance (ESR assay, OPESR), dithiothreitol assay (DTT assay, OPDTT),
dichlorofluorescin assay (DCFH assay, OPDCFH), ascorbic acid assay (AA assay, OPAA-only) and the
respiratory tract lining fluid assay (RTLF assay, OPRTLF) firstly. Their sensitivity to different PMs
species composition, PMs size distribution and seasonality are discussed in the following part with the
aim of providing a preferred method to measure OP. Because of the comprehensiveness of the DTT
assay, its driving factors are introduced as the focus in this review. Understanding the differences
between acellular OP techniques, as well as the varying relationship to PMs composition and size
distribution, is conductive to future research on investigating the relevance between epidemiologic
disease and OP assay.

2. Oxidative Potential Measurement Methods

Oxidative potential is considered as a reasonable indicator of PMs toxicity. Some acellular
methodologies are used to quantify the OP and demonstrate the complex mechanisms of the generation
of ROS. Some assays measure the OP of PMs by the loss of a proxy of cellular reductants (i.e., OPDTT),
or endogenous antioxidant species (i.e., RTLF assay, AA assay). ESR assay measures the generation of
hydroxyl radical in the presence of H2O2. Fluorescence intensity in DCFH assay and the intensity of
the emitting light in CRAT assay are both converted into equivalent H2O2 concentrations. In order
to ensure the standardization of interlaboratory measurement, residual oil fly ash (ROFA) always
is selected as a positive control and inert carbon black as a negative control. Blank filters are also
routinely extracted and run through assays system [14–17].

2.1. Respiratory Tract Lining Fluid Assay

The respiratory tract lining fluid (RTLF) represents the first detoxifying environment encountered
by inspired particulate matter [18] and has been shown to contain both small molecular weight
and high concentrations of the antioxidants uric acid (UA) and ascorbic acid (AA), and reduced
glutathione (GSH) [14]. The structure of urate and its initial degradation products can be seen in
Figure 1. GSH is a tripeptide and its reaction with reactive species in PMs can often generate thiyl (GS•)
radicals. Any available GS− can react quickly with GS• to form glutathione radical disulfide anion
(GSSG•−) and in turn O2

•− (Equation (3)). This assay detects concentration variation of antioxidant
molecules in the simplified synthetic human respiratory tract lining liquid after mixing with particle
suspension [17]. PMs sample and composite antioxidant solution (200 µM) pH were adjusted to pH
7.0. The mixture was then transferred into an incubator maintained at 37 ◦C for 4 h [14]. Antioxidant
concentrations were determined after incubations by high-pressure liquid chromatography (HPLC)
and glutathione-reductase enzyme recycling method respectively [19]. The extent to which PMs
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depleted antioxidants provided not only a quantitative PMs oxidative potential, but also reflected
reactions that may occur at the air-lung interface in the body.

GSH⇔ H+ + GS− (1)

GS• + GS− = GSSG•− (2)

O2 + GSSG•− = GSSH + O2
•− (3)
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The dithiothreitol (DTT) could reduce oxygen to the superoxide anion (O2•–) that could then 
form other ROS (i.e., •OH). Redox active compounds oxidized DTT to its disulfide form and 
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extracted using Milli-Q or methanol. The PMs extraction solution was then incubated for a period 

Figure 1. Urate can be oxidized by urate oxidase and forms 5-hydroxyisourate (HIU) initially [20].

The Ascorbate Depletion Assay

In the ascorbate (AA) depletion assay, only ascorbate acid is used which is thought to be a
simplified version of the RTLF assay [21]. AA is oxidized to dehydroascorbic acid with the decrease
in redox active substances in PMs. Figure 2 shows the structure of ascorbate and its oxidation and
degradation products. In the AA assay, PMs extracts were incubated at 37 ◦C, after adding ascorbate
acid. The reaction occurred directly, and was then measured in a UV/VIS-spectrophotometer with
spectral scans (190–350 nm) performed at intervals of 10 min [13,22]. The depletion rate of AA was
applied to represent the PM oxidative potential.
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2.2. Dithiothreitol Assay

The dithiothreitol (DTT) could reduce oxygen to the superoxide anion (O2
•−) that could then form

other ROS (i.e., •OH). Redox active compounds oxidized DTT to its disulfide form and transferred
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an electron to O2, generating O2
•− (Figure 3) [8,24]. In the DTT assay, particles were first extracted

using Milli-Q or methanol. The PMs extraction solution was then incubated for a period with
DTT in a phosphate buffer. At preset times, an aliquot removed from the mixture was added
with trichloroacetic acid (TCA) (quench reaction), Ethylene Diamine Tetraacetic Acid (EDTA) and
5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) solution. The reaction of residual DTT and DTNB formed
2-nitro-5-thiobenzoic acid (TNB), which could be quantified by a UV/VIS spectrophotometer at
412 nm [21,25,26]. When DTT was in excess, the consumption rate of DTT which was dependent on the
linear slope of DTT depletion was proportional to the concentration of redox-active species in the PMs
sample. The OP responses could be normalized by the volume of sampled air as an exposure metrics
or by the PMs mass to represent the intrinsic ability of the PMs to deplete relevant antioxidants.
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2.3. Chemiluminescent Reductive Acridinium Triggering Assay

Chemiluminescence of acridine esters under alkaline conditions is the foundation of the
chemiluminescent reductive acridinium triggering (CRAT) assay [28]. The mechanism of this reaction
can be seen in Figure 4. DTT or GSH were adopted as reductants in the CRAT assay to produce H2O2,
which reacted with acridinium ester after adding a slightly alkaline buffer into the solution. The emitting
light during this reaction was determined by about 1 s with a luminescence meter. The intensity of
the emitting light could be applied to quantify rates of H2O2 production [21]. CRAT, a relatively new
methodology, has not yet been widely used in large air pollution studies.
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triggering (CRAT) assay [28].

2.4. Dichlorofluorescin Assay

Dichlorofluorescin is a non-fluorescent reagent that fluoresces when oxidized [29]. In the presence
of horseradish peroxidase (HRP), DCFH could be rapidly oxidized to a fluorescent compound (DCF)
(Figure 5). Prior to analysis, the DCFH in sodium phosphate buffer (pH = 7.2) was mixed with
horseradish peroxidase (HRP) in a ratio [30]. This experiment was performed under dark conditions
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to prevent DCFH photooxidation and reduce the variability of background H2O2 concentration [31].
Sample filters were suspended in a beaker containing DCFH–HRP, and sonicated to extract ROS from
the particles. The formed DCF was determined by fluorescence at the excitation wavelengths of 485 nm
and emission wavelengths of 530 nm. The measured fluorescence intensities were converted into
equivalent H2O2 concentrations using least-squares analysis with a H2O2 calibration curve [29,32,33].
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2.5. Electron Paramagnetic/Spin Resonance Assay

The electron paramagnetic/spin resonance (EPR/ESR) assay was developed for the direct detection
and quantification of materials containing unpaired electrons, such as free radicals or transition metal
ions [13,34,35]. The physical assay can be measured by free radicals from the particles collected on
filters. Stronger free radical signals generated from coal combustion fine particles (PM < 1.1 µm) could
be measured (Figure 6).
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different particle sizes. Fine particles (PM < 1.1 µm) could generate stronger free radicals (present
study, not published).

Additionally, the ESR assay could be used to test different free radicals with different spin traps,
and the free radical spectrum pattern was different with different spin traps. Four peaks could be
found in the pattern with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) spin trap, while only three peaks
showed with 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine (TEMPONE-H) (Figure 7). Oxidative
potential of particles on filters based on the capacity of PMs to generate •OH via Fenton-type reaction
in the presence of H2O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a specific spin-trap [36,37].
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DMPO–OH adducts could be formed from direct trapping of •OH (Equation (4)) or the decomposition
of DMPO–OOH (Equation (5)) [36]. The OP was calculated from the sum of total amplitudes of the
DMPO–OH quartet signal and expressed as the total amplitude arbitrary units divided by the volume
of sampled air or weight of PMs [38,39].
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(present study, not published).

In addition to DMPO, another spin-trap 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine
(TEMPONE-H) was adapted to quantify total concentrations of ROS (Figure 7). TEMPONE-H
is a closed shell molecule that could be transformed to radicals by deprotonation in a reaction with
radicals. TEMPONE-H reduces peroxynitrite to NO2 (Equation (6)) and reduces NO2 to nitrite
(Equation (7)). Moreover, TEMPONE-H can react with superoxide radicals (Equation (8)) and
peroxy radicals (Equation (9)) with a formation of 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidinoxyl
(TEMPONE) [40,41].

DMPO + •OH = DMPO-OH (4)

DMPO + O2
•−
→ DMPO-OOH→ DMPO-OH (5)

TEMPONE-H + ONOOH = TEMPONE + NO2 + H2O (6)

TEMPONE-H + NO2 = TEMPONE + HNO2 (7)

TEMPONE-H + HO2
− = TEMPONE + H2O2 (8)

TEMPONE-H + RO2 = TEMPONE + RO2H (9)

3. Comparison of Acellular Assays

Chemical constituents of PMs drive different responses by different assay types, and particle sizes
also have significant influences on OP outcomes [9]. In order to provide a preferred method to measure
OP, the sensitivity to different PMs species composition, size distribution and seasonality are discussed.

3.1. Sensitivity of Different Acellular Assays

Different OP assays capture different ROS species due to different redox reactions [9]. The DCFH
assay measures particle-bound ROS that are inherently existing on and/or within the particle itself [29].
OPESR measures the certain production of ROS over time whereas OPRTLF and OPAA measure the
depletion of target molecules [28].

Certain OP assays respond differently by panels of chemicals and may also vary due to interactions
between different components in PMs. For example, the DTT assay has different responses to metals
and organic compounds. The OPDTT was also sensitive to organic compounds (i.e., water-soluble
organic carbon (WSOC), elemental carbon (EC), organic carbon (OC), black carbon, quinones and
hydroxyquinones). OPCRAT could react to trace metals Fe or Cu and quinones too [42,43]. OPAA-only

was almost exclusively related with Cu(II) [44]. In the RTLF assay, OPAA and OPGSH responded to
different components of PMs as they were not significantly correlated with one another [45]. OPGSH
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was uniquely correlated with water-soluble Cu [19] and OPAA had a strong positive correlation with
Fe and Cu, the main elements that track non-exhaust traffic emissions [46]. Interestingly, OPAA-only

had a much stronger correlation with Cu(II) than OPAA in the RTLF assay [44]. The OPESR was highly
correlated with the traffic-related PMs components (i.e., Fe, Cu). OPESR and OPAA showed the most
similar results due to their large metal dependences [42].

3.2. PMs Size Distribution

Generally, redox active species with PMs size indicate that the OP of PMs is size determined [24].
OPDTT in PM2.5 was significantly higher than that in PM10 on a per mass basis [42] and per volume
unit [47]. But sometimes, it was the reverse case for OPESR [42]. The OPESR in PM10 was 4.6 times
greater than that in PM2.5 when expressed per volume unit, and 3.1 times greater when expressed per
mass unit showing higher OP in larger PMs size fractions. OPAA was also more affected by components
in coarse PMs as its responses were significantly higher for PM10 than that for PM2.5 [48].

However, for a more refined division of particle size, OPDTT was unimodal (Figure 8).
Volume-normalized OPDTT and mass-normalized OPDTT peaked at submicron 0.56−1 µm and 0.1−0.32
µm respectively [24]. OPDTT and OPDCFH were similar in distribution, peaking at 0.32–1.8 µm, but AA
assay was completely different. OPAA was almost exclusively sensitive to PMs in the coarse mode
(3.2–5.6 µm) [49]. The particles from brake/tire wear containing very high concentrations of Cu, Fe
and Mn also belonged to the coarse fraction in the range of 3.2–5.6 µm. The similar distribution sizes
indicated that OPAA was significantly sensitive to PMs in the coarse mode produced by vehicular
traffic, such as brake wear and re-suspended road dust. OPDTT and OPDCFH were more sensitive to fine
PMs generated by combustion processes [49]. In the study of Fang et al., (2017), water-soluble OPDTT

peaked near 1−2.5 µm whereas water-insoluble OPDTT was bimodal with both fine and coarse fractions
due to the absorbed reactive species on the surfaces of PMs [50]. Overall, it seems that ultrafine and
fine PMs are more important to OPDTT value, but more work is required to reach precise conclusions.
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3.3. OP Related with the Chemical Composition of PMs Collected in Different Seasons

Generally, significantly higher OP response could be measured in winter than that in summer
for DTT and AA assays. The volume- and mass-based DTT (DTTv and DTTm) values of PM2.5 were
significantly higher in the cold season possibly driven by biomass burning emission seasonality [51–53].
Average OPDTT was 1.5 times and OPAA was 2.3 times higher in the cold season than in the warm
season [48]. However, OPAA reached highest values near heavily trafficked highways and OPDTT was
more spatially homogeneous [44]. Calas et al., (2018) reported seasonal variations of the OP value by
using four acellular assays (DTT, AA, RTLF and ESR) over a 1-year period, and showed only OPESR did
not show seasonality and showed weaker relationships with other assays and chemical species [54].
But sometimes the OP data are different. In an urban background area of Athens, Greece, the OP value
that used the DCFH assay was higher in summer, mainly as a result of higher concentrations of EC and
WSOC during the warm season [55]. In Beijing, the seasonal averages of OPDTT exhibited peak values
in summer. This was correlated with the higher concentration of water-soluble organic components in
summer produced by the photochemical formation of secondary organic aerosols [56].

3.4. Correlation with Health Impacts

Among the studies about the relationship between epidemiology and OP of PMs, the OPDTT assay
was a main method. OPDTT has been found to be linked with several biological end points, such as,
fraction of nitric oxide (FeNO) in exhaled breath [57], and mammalian cell cytotoxicity of PM2.5 [58],
increased relative risk for asthma [5] and congestive heart failure [59]. A study in the Netherlands
found that asthma and rhinitis were positively related with OPDTT, but not significantly associated
with OPESR [60]. Maikawa et al., (2016) investigated the relationship between airway inflammation in
asthmatic children (FeNO) and oxidative potential of PM2.5 using RTLF assay. A positive correlation
was found between FeNO and OPGSH but not found between PMmass or OPAA [61]. OPDTT and OPGSH

are the most relevant to health among several OP assays [9,13].
From the above, the DTT assay tends to be the preferred method to evaluate the oxidative potential,

providing a more comprehensive measurement due to its high sensitivity to transition metals and
organic compounds, which are mainly accumulated in fine PMs fractions (Table 1) [10]. DTT assay is
highly correlated with health effects to better understand the link between PMs and human health.
The DTT approach is the major point of discussion in the next section in this review in terms of
driving forces.
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Table 1. Comparison of acellular assays to assess the oxidative potential.

Assay Requirements Estimated Way Sensitivity Sources Characteristic Reference

DTT

fast, inexpensive, easy to
perform and suitable for

automation

the depletion rate of chemical
proxies for cellular reductants

organic compounds;
traffic-related metals;

inorganic ions

biomass burning; brake/tire wear;
traffic/fossil fuel combustion;

photochemical aging
associated with fine fraction [24,42,47,50]

AA the antioxidant loss rate metals non-exhaust traffic emissions associated with coarse particles [48,49]

GSH the antioxidant loss rate Cu non-exhaust traffic emissions not a strong marker for traffic [43]

DCFH the increase in fluorescence
intensity over time

organic compounds; inorganic
ions

anthropic combustion; secondary
aerosol associated with fine fraction [49]

CRAT has not been widely used the chemiluminescence
reaction transition metals, quinones ambient particles highly correlated with PM

mass concentration [21]

ESR relatively little material,
inexpensive

the ability of PMs to generate
•OH

transition metals; organic
components ambient particles associated with coarse/fine

particles [42]
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4. Drivers of Oxidative Potential

Considering that the PMs is consisted of organic and inorganic matters, these components
could exacerbate free radical reaction and contribute to the measured OP response, and therefore the
relationship between the OP and the main chemical components would play a key role in understanding
the health risk (Table 2). In general, these following inorganic and organic species in the PMs showed
the closest relationships with the OP.

4.1. Trace Metals

Metals, constituted 6–13% of the PMs mass [62], have been characterized in detail such as Ca, Mg,
Ba, Al which originate from resuspension of soil dust emissions [49,63,64], while Fe, Cu, Zn, Cr, Cd
are the transition metals associated with non-exhaust traffic emissions [62]. K could be considered as
tracers of the biomass burning [33,48]

Mn+1 + R(SH)2 = Mn + RSHS• + H+ (10)

RSHS• + O2 = RSS + H++O2
•− (11)

2O2
•− + 2H+ = H2O2 + O2 (12)

Mn + H2O2 = Mn+1 + HO•+ OH− (13)

Mn+1 + O2
•− = Mn + O2 (14)

Transition metals (M, above) which have a certain amount of oxidative potential can catalyze
the oxidation of DTT easily in Equation (10) [65]. The superoxide anion is formatted by the reaction
between electron donors (DTT) and molecular oxygen (Equation (11)) [66]. Taking transition metals Cu
and Fe for example, Cu(I) and Fe(II) can generate the highly reactive oxidant hydroxyl radical via the
Fenton reaction (Equation (13)). And Cu(II) can be reduced to Cu(I), and Fe(III) to Fe(II)) to complete a
redox cycle (Equation (14)).
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Table 2. Summary of driving species of oxidative potential (OP) mainly measured by DTT assay reported in literatures.

Location Particles Seasons Sampling Period Assay Driving Species Reference

Atlanta PM2.5 One year Jan–Dec, 2017 DTT BrC, EC, K, Fe, Cu [51]

Central Mediterranean Sea PM10,
PM2.5

One year 2014-2015 DTT, AA K+, NO3
−, Ba, Cd, Cu, Fe, Mn,
P, V, OC, EC [48]

Atlanta PM2.5 One year 2017 DTT, RTLF WSOC, OC, EC, Fe, Cu, Mn [19]

the University of Illinois,
Urbana−Champaign Ambient PM2.5 Spring Feb–Apr, 2017 DTT HULIS, Fe, Cu, Mn [67]

the Central Mediterranean basin PM10 One year Dec 2014–Oct 2015 DTT AA Ba, Cd, Ce, Cr, Cu, Fe, EC, OC [68]

Indo-Gangetic Plain PM2.5 Winter 2014 DTT OC, EC, WSOC, [64]

Beijing PM2.5 One year 2012 DTT HULIS [69]

Italy PM10 One year Feb–Nov 2015
Apr–May 2016 DTT, AA

SO4
2−, NH4

+, K+, Mg2+, Ca2+,
Ca, Mg, K, Mn, Cu, Rb, Zn,

WSOC
[70]

the littoral zone of the Bohai Sea PM2.5 One year 2016 DTT WSOC, EC, Mn, Co, Fe, Cr, Cd,
SO4

2−, NH4
+, NO3

− [52]

Italy Size-segregated PMs spring Feb–Mar, 2017 AA, DTT, DCFH Cu, Fe, Mn, As, B, Cd, Cr, Mo,
Se, Ni, Pb, K, Rb [49]

the Los Angeles Basin PM2.5 winter Oct 2014–Jan 2015;
Nov 2015–Jan 2016 DTT Ba, Cr, Cu, Mn, Ni, Pb, Sb and

Zn, EC, OC [71]

Abbreviations: BrC: brown carbon; EC: elemental carbon; OC: organic carbon; HULIS: Humic-like Substances, WSOC: water-soluble organic carbon.
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Numerous studies have assessed the intrinsic OP induced by metals [24,27,72,73]. A summary of
studies is presented in Figure 9. In this review, we followed the procedure of Lu et al., (2019) for the DTT
assay [74]. Interestingly, the units of this review are different from other literatures, but the underlying
trends of the intrinsic OP of quinones and metals are the same. As shown in Figure 9, Cu(II) and Mn(II)
were the most active metals in the DTT assay and Co was the third most reactive metal. The reactivity of
other transition metals followed the pattern V(V) ≈ Ni(II) > Pb(II) ≈ Fe(II) > Fe(III). In Figure 10, Cu(II)
and Mn(II) were well fitted by power functions, but the concentration responses for Fe(II) and Fe(III)
were linear [24]. Even though the intrinsic OP of metals have been quantified by using inorganic salt
solutions, the importance for OP assessment of ambient PMs also depends upon the mass concentration
of each metal. For example, Fe which made a modest contribution on OPDTT values accounted for the
majority of DTT loss from typical ambient PM2.5 due to its abundant concentrations [24,73]. Therefore,
Fe was responsible for the DTT assumption. However, the solubility of metal ions can be enhanced by
the presence of organic ligands in the PMs. For example, the solubility of Fe was strongly correlated
with the concentration of oxalate [75]. Sulfate was an important proxy for Fe solubility by affecting
aerosol pH [62].
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Figure 9. Intrinsic OP of individual (a) metals and (b) quinones [24,67,73]. The concentration of
each species was 1 µM. The data in this paper are in nM·min−1 while in other literatures they are in
µM·min−1.
The concentration of H+ could easily destroy the mineral structures to release the structural

or interlayer Fe [76]. The dissolved Fe from minerals (e.g., pyrite, illite, chlorite or kaolinite) had
considerable oxidative potential [76]. Moreover, minerals could induce ROS formation as a “carrier”
of more toxic species such as metals and surface-absorbed polycyclic aromatic hydrocarbons (PAHs).
Besides, Fe and Cu were very efficient in forming complexes with Suwanee river fulvic acid (SRFA),
making them unlikely to exist in free ionic forms and significantly altering their OP [72].
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The correlations between OPDTT and metal concentration in ambient PMs do not indicate causation,
since particle species tend to be highly covariate. In winter, the strong correlation with non-redox active
metal K should be analyzed carefully because this association may be due to a similar increase in K
and quinones concentrations, rather than establishing an inevitable causal relationship [77]. The redox
inert ions (i.e., Zn, Cd, Pb) also contribute to the oxidative stress of PMs exposure by interacting
with cysteinyl thiols on glutathione and key regulatory proteins [66,78]. And Ca2+, Mg2+, potentially
presenting in large quantities in PM2.5, can strongly modulate PMs acidity [79].

4.2. Carbonaceous Species

Carbonaceous species include elemental carbon (EC), organic carbon (OC) and water soluble
organic carbon (WSOC). OC may be widely used as a tracer of biomass burning [80]; polycyclic aromatic
hydrocarbons (PAHs) are emitted during incomplete combustion processes including traffic [55];
and quinones are the markers of photochemical formation of secondary organic aerosols (SOA) [33].

Quinones are capable of destroying the proximal thiol of DTT [65,81]. Taking the reaction
between DTT and 14NQ for example in the Figure 11, DTT has two thiol groups in close
proximity that readily form a stable six membered ring with 14NQ reduced (Reaction 1).
And then 14NQ rearranges to form the 1,4-naphthoquinol (Reaction 2). Quinols form a free
radical-semiquinone through two ways (Reaction 3a, 3b). Then the semiquinone is transformed
to the original quinone by reacting with O2 to complete a redox cycle (Reaction 4). Similarly, many
researchers started with the standard solutions of known quinones (9,10-phenanthraquinone,
1,2-naphthoquinone, 1,4-naphthoquinone, 2hydroxy-1,4-naphthoquinone, 9,10-anthracenequinone,
benz(a)anthracene-7,12-quinone and 5-hydroxy-1,4-naphthoquinone) measuring the oxidation potential
of quinones (Figure 9) [67]. As shown in Figure 10, the rates of DTT consumption from quinones
were proportional to their concentration [24]. PQ was the most reactive specie, followed by 12NQ,
5H-14NQ, 14NQ, 2H-14NQ, AQ, and BAQ. On a concentration normalized basis, quinones, especially
PQ, could be much more reactive than other species, but their concentrations were generally low [73].
Quinones in traffic-related PMs, especially NQ and AQ, had considerable pro-inflammatory and
genotoxic potential which could cause lung impairment. As the secondary derivates of PAHs in the
air, quinones made a great contribution to the toxicity of airborne PMs [82]. There exists correlation
between mass level of PAHs, quinones and DTT consumption [73]. Quinones in the atmosphere are
formed by tropospheric conversions of precursors PAHs via photochemical reactions and reactions
with •OH, nitrate radicals and ozone (O3) [24,83,84]. Many studies showed a correlation between OC
and/or WSOC and OPDTT of PMs collected during different seasons [63,64,74,85]. Besides, Chen et al.,
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(2019) found that the light absorbing substance BrC3 and the fluorescent substance C7 were important
contributors to the DTT activity of water-soluble PMs [8].
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Biomass burning which could release high levels of particulate matter with PAHs and volatile
organic compounds (VOCs) played a primary role in PMs capability to generate ROS [49,86]. And there
was also a large amount of quinones in fresh wood smoke organic aerosols, which could well explain
the DTT consumption [87]. In the meantime, OPDTT caused by vehicle emission particles was high
because of the semivolatile organic species [85].

There could be both synergistic and antagonistic interactions among PMs components, which could
cause different OP responses [88]. Humic-like substances (HULIS) are water soluble compounds [89].
HULIS, consisting of powerful chelating functional groups (i.e., carboxyl (-COOH), hydroxyl (-CH2OH)
and carbonyl (-COCH3), can chelate the transition metals in aerosols and are capable of participating in
redox cycling. Higher OPDTT value was been found in HULIS-Fe(II) complexes than Fe(II) alone [74].
Fe(II) itself can produce ROS species through Fenton reactions (Equation (13)), and Fenton-based
HULIS-Fe(II) complex system can be expressed through Equations (15)–(17). Quinones could catalyze
the generation of H2O2 and •OH [27]. And the interactions between quinones and Fe were additive in
OPDTT but synergistically in forming •OH. Magnesium could have synergistic effects with quinones,
but Cu were different in the OPDTT assay [67]. When mixing with Cu, the OPDTT value of AQ decreased
significantly [88]. And there could be synergistic effects on •OH generation for the mixtures of
Cu(II) + Fe(II), PQ + Fe(II), and Cu(II) + Fe(II) +1,2-NQ, Cu(II) + Fe(II) + PQ [90]. Fe(II) should be
rapidly oxidized to Fe(III) (Equation (13) (18)), and Cu(I) can also readily reduce Fe(III) (Equation (19)).
Cu(II) is continuously reduced by O2

•−, providing a steady source of reduced iron (Equation (14)) [91].
Thist may explain the synergistic effect of Fe(II) and Cu(II).

Fe(II) + HULIS = HULIS-Fe(II) (15)
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HULIS-Fe(II) + O2 = HULIS-Fe(III) + O2
•− (16)

HULIS-Fe(II) + H2O2 = HULIS-Fe(III) + HO•+ HO− (17)

Fe(II) + O2 = Fe(III) + O2
•− (18)

Fe(III) + Cu(I) = Fe(II) + Cu(II) (19)

4.3. Ionic Species

K+, Cl−, Na+, SO4
2−, NO3

−, NH4
+ are the main ions in the PMs [63,92]. These ions also played

roles in assessment of the OP. According to Patel et al., (2018), there was a significant negative correlation
(p < 0.05) with SO4

2−, NO3
−, NH4

+ which indicated that they do not affect DTT activity [64]. But SO2

and NO2 which are the main precursors of secondary inorganic aerosols showed strong correlations
with DTT [63]. Secondary acids, such as ammonium sulfate, can have an indirect effect on OP through
reducing pH in the assay of OPDTT [62,76].

4.4. Water-Insoluble Components

It was noted that insoluble fraction of PMs had a relationship with the OP. The OPDTT values
of ambient particles without filtration were higher than that of water-soluble fraction [93]. In the
studies of Gao et al., (2020) and Fang et al., (2017), water-insoluble OP (OPWI-DTT) was determined
by the difference between the water-soluble (OPWS-DTT) and total OP (OPTotal-DTT). The OPWI-DTT

comprised 20% of total PMs OP on average [50,51]. However, the main drives of OPWS-DTT and
OPWI-DTT appeared to be the same, implying that there is a connection between OPWI-DTT and dust
surface property.

5. Conclusions

Acellular assays including the RTLF, AA, GSH, DTT, CRAT, DCFH and ESR for measurement of OP
were reviewed. We compared sensitivity to different PMs species composition, PMs size distribution
and seasonality of different assays and concluded that the DTT assay could be the preferred method due
to its sensitivity to tracers of combustion derived transition metals and aromatic organic compounds.
Specific transition metals (i.e., Mn, Cu, Fe) and quinones made a great contribution to OPDTT value.
However, the interactions among PMs components which may change the redox properties of PMs
species cannot be ignored, and also insoluble fraction of PMs could not be ignored in assessment of the
oxidative potential of PMs.

Additionally, considering that the OP has several dimensions, a combination of two or more OP
measures may be needed to create an accurate predictor for health effects.
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28. Zomer, B.; Collé, L.; Jedyńska, A.; Pasterkamp, G.; Kooter, I.; Bloemen, H. Chemiluminescent reductive
acridinium triggering (CRAT)—Mechanism and applications. Anal. Bioanal. Chem. 2011, 401, 2945–2954.
[CrossRef]

29. Venkatachari, P.; Hopke, P.K.; Grover, B.D.; Eatough, D.J. Measurement of Particle-Bound Reactive Oxygen
Species in Rubidoux Aerosols. J. Atmos. Chem. 2005, 50, 49–58. [CrossRef]

30. Perrone, M.G.; Zhou, J.; Malandrino, M.; Sangiorgi, G.; Rizzi, C.; Ferrero, L.; Dommen, J.; Bolzacchini, E. PM
chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban
area of Milan, Northern Italy. Atmos. Environ. 2016, 128, 104–113. [CrossRef]

31. Fuller, S.; Wragg, F.; Nutter, J.; Kalberer, M. Comparison of on-line and off-line methods to quantify reactive
oxygen species (ROS) in atmospheric aerosols. Atmos. Environ. 2014, 92, 97–103. [CrossRef]

32. Venkatachari, P.; Hopke, P.K.; Brune, W.H.; Ren, X.; Lesher, R.; Mao, J.; Mitchell, M. Characterization of
Wintertime Reactive Oxygen Species Concentrations in Flushing, New York. Aerosol Sci. Technol. 2007, 41,
97–111. [CrossRef]

33. Pietrogrande, M.C.; Russo, M.; Zagatti, E. Review of PM Oxidative Potential Measured with Acellular Assays
in Urban and Rural Sites across Italy. Atmosphere 2019, 10, 626. [CrossRef]

34. Lu, S.; Duffin, R.; Poland, C.; Daly, P.; Murphy, F.; Drost, E.; MacNee, W.; Stone, V.; Donaldson, K. Efficacy
of Simple Short-Term in Vitro Assays for Predicting the Potential of Metal Oxide Nanoparticles to Cause
Pulmonary Inflammation. Environ. Health Perspect. 2009, 117, 241–247. [CrossRef]

35. Senlin, L.; Zhang, W.; Zhang, R.; Liu, P.; Wang, Q.; Shang, Y.; Wu, M.; Donaldson, K.; Wang, Q. Comparison
of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles. Part. Fibre
Toxicol. 2015, 12, 5. [CrossRef]

36. Shi, T.; Schins, R.P.F.; Knaapen, A.M.; Kuhlbusch, T.; Pitz, M.; Heinrich, J.; Borm, P.J.A. Hydroxyl radical
generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter
composition. J. Environ. Monit. 2003, 5, 550–556. [CrossRef]

37. Shi, T.; Knaapen, A.; Begerow, J.; Birmili, W.; Borm, P.; Schins, R.P.F. Temporal variation of hydroxyl radical
generation and 8-hydroxy-2′-deoxyguanosine formation by coarse and fine particulate matter. Occup. Environ.
Med. 2003, 60, 315–321. [CrossRef]

38. Boogaard, H.; Janssen, N.A.; Fischer, P.H.; Kos, G.P.; Weijers, E.P.; Cassee, F.R.; Van Der Zee, S.C.; De Hartog, J.J.;
Brunekreef, B.; Hoek, G. Contrasts in Oxidative Potential and Other Particulate Matter Characteristics
Collected Near Major Streets and Background Locations. Environ. Health Perspect. 2012, 120, 185–191.
[CrossRef]

39. Yang, A.; Hellack, B.; Leseman, D.; Brunekreef, B.; Kuhlbusch, T.A.; Cassee, F.; Hoek, G.; Janssen, N.A.
Temporal and spatial variation of the metal-related oxidative potential of PM 2.5 and its relation to PM 2.5
mass and elemental composition. Atmos. Environ. 2015, 102, 62–69. [CrossRef]



Processes 2020, 8, 1410 18 of 21

40. Tong, H.; Lakey, P.S.J.; Arangio, A.M.; Socorro, J.; Shen, F.; Lucas, K.; Brune, W.H.; Pöschl, U.; Shiraiwa, M.
Reactive Oxygen Species Formed by Secondary Organic Aerosols in Water and Surrogate Lung Fluid.
Environ. Sci. Technol. 2018, 52, 11642–11651. [CrossRef]

41. Dikalov, S.; Skatchkov, M.; Bassenge, E. Quantification of Peroxynitrite, Superoxide, and Peroxyl Radicals
by a New Spin Trap Hydroxylamine 1-Hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine. Biochem. Biophys.
Res. Commun. 1997, 230, 54–57. [CrossRef] [PubMed]

42. Janssen, N.A.; Yang, A.; Strak, M.; Steenhof, M.; Hellack, B.; Gerlofs-Nijland, M.E.; Kuhlbusch, T.; Kelly, F.;
Harrison, R.; Brunekreef, B.; et al. Oxidative potential of particulate matter collected at sites with different
source characteristics. Sci. Total. Environ. 2014, 472, 572–581. [CrossRef]

43. Weichenthal, S.; Shekarrizfard, M.; Traub, A.; Kulka, R.; Al-Rijleh, K.; Anowar, S.; Evans, G.J.; Hatzopoulou, M.
Within-City Spatial Variations in Multiple Measures of PM2.5 Oxidative Potential in Toronto, Canada.
Environ. Sci. Technol. 2019, 53, 2799–2810. [CrossRef] [PubMed]

44. Fang, T.; Verma, V.; Bates, J.T.; Abrams, J.; Klein, M.; Strickland, M.J.; Sarnat, S.E.; Chang, H.H.;
Mulholland, J.A.; Tolbert, P.E.; et al. Oxidative potential of ambient water-soluble PM2.5 in the southeastern
United States: Contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol
(DTT) assays. Atmos. Chem. Phys. Discuss. 2016, 16, 3865–3879. [CrossRef]

45. Godri, K.J.; Harrison, R.M.; Evans, T.; Baker, T.; Dunster, C.; Mudway, I.S.; Kelly, F.J. Increased Oxidative
Burden Associated with Traffic Component of Ambient Particulate Matter at Roadside and Urban Background
Schools Sites in London. PLoS ONE 2011, 6, e21961. [CrossRef]

46. Molina, C.; Toro, R.; Manzano, C.A.; Canepari, S.; Massimi, L.; Leiva-Guzmán, M.A. Airborne Aerosols and
Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. Atmosphere 2020, 11, 917.
[CrossRef]

47. Chirizzi, D.; Cesari, D.; Guascito, M.R.; Dinoi, A.; Giotta, L.; Donateo, A.; Contini, D. Influence of Saharan
dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10.
Atmos. Environ. 2017, 163, 1–8. [CrossRef]

48. Perrone, M.R.; Bertoli, I.; Romano, S.; Russo, M.; Rispoli, G.; Pietrogrande, M.C. PM2.5 and PM10 oxidative
potential at a Central Mediterranean Site: Contrasts between dithiothreitol- and ascorbic acid-measured
values in relation with particle size and chemical composition. Atmos. Environ. 2019, 210, 143–155. [CrossRef]

49. Simonetti, G.; Conte, E.; Perrino, C.; Canepari, S. Oxidative potential of size-segregated PM in an urban and
an industrial area of Italy. Atmos. Environ. 2018, 187, 292–300. [CrossRef]

50. Fang, T.; Zeng, L.; Gao, D.; Verma, V.; Stefaniak, A.B.; Weber, R.J. Ambient Size Distributions and Lung
Deposition of Aerosol Dithiothreitol-Measured Oxidative Potential: Contrast between Soluble and Insoluble
Particles. Environ. Sci. Technol. 2017, 51, 6802–6811. [CrossRef]

51. Gao, D.; Mulholland, J.A.; Russell, A.G.; Weber, R.J. Characterization of water-insoluble oxidative potential
of PM2.5 using the dithiothreitol assay. Atmos. Environ. 2020, 224, 117327. [CrossRef]

52. Liu, W.; Xu, Y.; Liu, W.; Liu, Q.; Yu, S.; Liu, Y.; Wang, X.; Tao, S. Oxidative potential of ambient PM2.5 in the
coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment. Environ. Pollut.
2018, 236, 514–528. [CrossRef] [PubMed]

53. Cesari, D.; Merico, E.; Grasso, F.M.; Decesari, S.; Belosi, F.; Manarini, F.; De Nuntiis, P.; Rinaldi, M.; Volpi, F.;
Gambaro, A.; et al. Source Apportionment of PM2.5 and of its Oxidative Potential in an Industrial Suburban
Site in South Italy. Atmosphere 2019, 10, 758. [CrossRef]

54. Calas, A.; Uzu, G.; Kelly, F.J.; Houdier, S.; Martins, J.M.F.; Thomas, F.; Molton, F.; Charron, A.; Dunster, C.;
Oliete, A.; et al. Comparison between five acellular oxidative potential measurement assays performed with
detailed chemistry on PM10 samples from the city of Chamonix (France). Atmos. Chem. Phys. Discuss. 2018,
18, 7863–7875. [CrossRef]

55. Taghvaee, S.; Sowlat, M.H.; Diapouli, E.; Manousakas, M.I.; Vasilatou, V.; Eleftheriadis, K.; Sioutas, C. Source
apportionment of the oxidative potential of fine ambient particulate matter (PM2.5) in Athens, Greece.
Sci. Total. Environ. 2019, 653, 1407–1416. [CrossRef]

56. Yu, S.; Liu, W.; Xu, Y.; Yi, K.; Zhou, M.; Tao, S.; Liu, W. Characteristics and oxidative potential of atmospheric
PM2.5 in Beijing: Source apportionment and seasonal variation. Sci. Total. Environ. 2019, 650, 277–287.
[CrossRef]



Processes 2020, 8, 1410 19 of 21

57. Janssen, N.A.; Strak, M.; Yang, A.; Hellack, B.; Kelly, F.J.; Kuhlbusch, T.A.J.; Harrison, R.M.; Brunekreef, B.;
Cassee, F.R.; Steenhof, M.; et al. Associations between three specific a-cellular measures of the oxidative
potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers.
Occup. Environ. Med. 2014, 72, 49–56. [CrossRef]

58. Wang, Y.; Plewa, M.J.; Mukherjee, U.K.; Verma, V. Assessing the cytotoxicity of ambient particulate matter
(PM) using Chinese hamster ovary (CHO) cells and its relationship with the PM chemical composition and
oxidative potential. Atmos. Environ. 2018, 179, 132–141. [CrossRef]

59. Bates, J.T.; Weber, R.J.; Abrams, J.; Verma, V.; Fang, T.; Klein, M.; Strickland, M.J.; Sarnat, S.E.; Chang, H.H.;
Mulholland, J.A.; et al. Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate
Matter and Cardiorespiratory Effects. Environ. Sci. Technol. 2015, 49, 13605–13612. [CrossRef]

60. Yang, A.; Janssen, N.A.H.; Brunekreef, B.; Cassee, F.R.; Hoek, G.; Gehring, U. Children’s respiratory health
and oxidative potential of PM2.5: The PIAMA birth cohort study. Occup. Environ. Med. 2016, 73, 154–160.
[CrossRef]

61. Maikawa, C.L.; Weichenthal, S.; Wheeler, A.J.; Dobbin, N.A.; Smargiassi, A.; Evans, G.; Liu, L.; Goldberg, M.S.;
Pollitt, K.J.G. Particulate Oxidative Burden as a Predictor of Exhaled Nitric Oxide in Children with Asthma.
Environ. Health Perspect. 2016, 124, 1616–1622. [CrossRef]

62. Fang, T.; Guo, H.; Verma, V.; Peltier, R.E.; Weber, R.J. PM2.5 water-soluble elements in the southeastern United
States: Automated analytical method development, spatiotemporal distributions, source apportionment,
and implications for heath studies. Atmos. Chem. Phys. Discuss. 2015, 15, 17189–17227. [CrossRef]

63. Wang, Y.; Wang, M.; Li, S.; Sun, H.; Mu, Z.; Zhang, L.; Li, Y.; Chen, Q. Study on the oxidation potential of the
water-soluble components of ambient PM2.5 over Xi’an, China: Pollution levels, source apportionment and
transport pathways. Environ. Int. 2020, 136, 105515. [CrossRef]

64. Patel, A.; Rastogi, N. Oxidative potential of ambient fine aerosol over a semi-urban site in the Indo-Gangetic
Plain. Atmos. Environ. 2018, 175, 127–134. [CrossRef]

65. Forman, H.J.; Finch, C.E. A critical review of assays for hazardous components of air pollution. Free. Radic.
Biol. Med. 2018, 117, 202–217. [CrossRef]
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