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Abstract: Grid turbulence is considered to be a canonical case of turbulent flow. In the presented
paper, the flow structure is analyzed from the point of view of mixing properties, where vortical
structures and their properties play a significant role. That is why the effect of various length-scales
in turbulence is studied separately. The experimental study uses the Particle Image Velocimetry (PIV)
method. The original method for spatial spectrum evaluation is applied. Results on vortex spatial
spectrum and isotropy are presented. The scaling of turbulent kinetic energy (TKE) is measured;
furthermore, the TKE is decomposed according to the length-scales of the fluctuations. By this
method, we found that the decay of TKE associated with the smallest length-scales is more sensitive
to the Reynolds number than that at larger length-scales. The TKE at the largest investigated
length-scales decays more slowly. The turbulence decay-law is studied for various Reynolds numbers.
The second and fourth statistical moments of vorticity are evaluated at various Reynolds numbers
and distances from the grid. The isotropy is investigated in the sense of ratio of fluctuations in
stream-wise to span-wise directions as the used data are captured using the planar PIV method.
The full 3D fluctuation invariants were investigated in a representative position by means of the
Stereo-PIV method.

Keywords: grid turbulence; mixing; particle image velocimetry; Agrawal decomposition; turbulent kinetic
energy; 3D scanning

1. Introduction

Turbulence is the most common form of moving fluid behavior in nature and technology.
This complex phenomenon could be characterized by number of attributes, among them randomness
and multi-scale structure. The turbulent flow consists of a complex system of vortices with small
random eddies being embedded in larger ones. One of the most important turbulence properties
used in technological applications is its ability to substantially enhance mixing process. However,
the turbulence mixing efficiency depends strongly on its structure, namely on vortices sizes and other
parameters [1].

Grid turbulence is a widely studied prototype of almost ideal Kolmogorov-style homogeneous and
isotropic turbulence. In reality, grid turbulence provides only a rough approximation to homogenous
isotropic turbulence. While the small scales satisfy isotropy to a close approximation, larger scales
exhibit a non-negligible departure from isotropy, [2]. The statistical characterization of the passive
scalar field in turbulent conditions also reveals a strong small scale intermittency, with important and
uneven fluctuations of the scalar dissipation [3]. The origins of this intermittency and its connection to
the intermittency of the carrier flow remain open questions.
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In spite of long-time systematical research performed experimentally of this type of flow, there are
still attempts to clarify the details of turbulence behavior. For example, there is a recent unique study
on this subject using large scale experiment, see [4].

A closer look shows the system of wakes and jets in the near-grid region; wakes form past the
grid rods, while jets for past the grid holes. When the growing wakes meet (or the narrowing jet
cores disappear), the turbulence start to homogenize forming vortices even larger than the mesh size
(e.g., distance of the neighboring rods; here denoted M) via the inverse cascade. In the developed
region, the homogenization is completed, while the isotropy condition seems not to be fulfilled.
The Richardson cascade transfers energy mainly from large scales to smaller scales, where it converges
into heat via molecular viscosity. A consequence is that the turbulence decays from the bottom,
meaning that the small vortices disappear first, leaving the larger vortices there. In other words,
the Kolmogorov dissipative scale η grows in time, or in space in the case of continuous flow through
a channel.

From the mixing point of view, the grid turbulence offers a relatively low-pressure-loss possibility
of intensifying mixing inside a channel (or pipe). On the other hand, the mixing scales are not ideally
distributed. —First, in the near region of distinguished wakes and jets, there is intense mixing over
small scales inside the wakes but the large-scale volumes stay separated; later, there are vortices larger
than the mesh parameter M, which mix the distant volumes well, but the growing Kolmogorov scale
leaves a gap between the smallest turbulent scale and the scale of molecular diffusivity.

The presented study is a contribution to clarify the behavior of various scales, i.e., vortices with
various sizes, in turbulence. This aspect is essential for effectivity of mixing.

In the Section 2 the used materials and methods are addressed. There is description of employed
experimental facility and methods. Special attention is devoted to the grid geometry, as this forms an
important part of boundary conditions for the flow. The Section 3 is about results. The Turbulent kinetic
energy and its decay is addressed with special attention to theirs scales. Then vorticity development is
studied and isotropy of the turbulence as the last analysis. In the Appendix A, the method of turbulent
kinetic energy from 2 velocity components is discussed. The conclusions sum-up the results.

2. Materials and Methods

2.1. The Grid

The grid used for generating turbulence has a square symmetry of square holes divided by rods of
square cross-section, see Figure 1, with a cylinder fitted into this corner and with a radius of 0.45 mm,
(although a sharp corner was intended here), in part (b). The distance of the rods is the mesh parameter
M = 15.625 mm, which is a base length unit used in grid-turbulence studies. The side of the rods is
denoted d = 2.0 mm = 0.128M. The porosity defined as the ratio of free area to the total area is

β =
(M− d)2

M2 = 0.76. (1)

The grid is placed in the inlet of the wind tunnel test-section. The geometry has been prepared
within the language OpenSCAD, whose applicability for scientific modeling has been explored in more
detail, e.g., in [5]. The grid was manufactured by using 3D printer Prusa Mk2.5 and it was made from
polymerized lactic acid (PLA) [6].
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Figure 1. (a) Scan of the entire grid produced by using a 3D printer. (b) Zoomed-in image of one of the
corners. Blue arrow shows the stream-wise direction.

The majority of studies just state the planed geometry, but, in reality, the actual shape differs from
the projected one due to the finite precision of manufacturing processes. In this study we measure the
actual geometry.

2.2. Optical Scanning

The method of 3D optical scanning is based on stereo capture of multiple photos of a given
object, which has to be scanned. We use a commercially available 3D optical scanner Gom Atos Core,
which allows us to scan volumes up to 300 cm3 with micrometer resolution. It projects a blue-light
pattern to the measured surface, the deformation of a such pattern is measured by using a pair of
high-resolution cameras reconstructing the 3D shape of the object. As the entire shape cannot be
covered, multiple scans from different directions are applied. In order to match these scans well,
small printed points are used and identified uniquely by comparing triangles made up of these points.

The scan of the grid shows various relevant deviations to the projected geometry. The most relevant
is the test of the main length-unit M. It was found by measuring the distance between neighboring rods
fitted by cylinders displayed in Figure 2a. The actual mesh parameter (i.e., the distance of neighboring
cylinders) M∗ = 15.580± 0.032 mm, which is 99.7% of the expected value. The standard deviation of
such an ensemble is only 0.2%, which means that the 3D printer prints inaccurately, but stably.

The largest deviation is found in the structure of individual rods, which is shown in Figure 2b.
The shape of these rods significantly differs from the square. By fitting rectangles into the sections
displayed in Figure 2b (only a few of the sections are displayed), we find the real value of
d∗x = 1.941± 0.061 mm in the stream-wise direction, which is 97% of d with relatively large standard
deviation of 3.1% of d. In the span-wise direction, the actual rods are larger than projected
d∗yz = 2.128± 0.047 mm, i.e., 106.4± 2.4% of d. However, the more relevant value of d∗ is the blocked
width, i.e., the widest part of a section. This value is not fitted exactly from the data (authors are not
familiar enough with the scan-analyzing software yet), but, from the Figure 2b, we can estimate this
value to be around 2.4 mm, which is 20% higher than d. Figure 2c shows the deviation of grid to the
plane perpendicular to the stream-wise direction. It falls within the range of ±0.1 mm.

This geometry testing shows that even the well-looking products can significantly deviate from
the expectations, which has to be taken into account when comparing results obtained at different
experimental facilities. Principally, the roundness of the corners can significantly affect the critical
Reynolds numbers of transition into turbulence.
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Figure 2. (a) Cylinders fitted into the rods. (b) Multiple sections of the rods in comparison with the
nominal geometry (red square). (c) Deviation from the plane perpendicular to the stream-wise direction.

2.3. Wind Tunnel

The small open-loop low-speed wind tunnel was used. The tunnel consists of a blower,
diffuser settling chamber and contraction, see Figure 3. The test-section 400 mm in length was
attached to the contraction outlet. The test-section has square cross-section of side 125.0 mm = 8M.
The background intensity of turbulence is about 0.5 percent in the working velocity range between 2
and 26 m/s.

Figure 3. Sketch of the used open low speed wind tunnel.

2.4. Particle Image Velocimetry

The flow past the grid described above is studied by using a standard tool of Particle Image
Velocimetry (PIV) [7]. Small droplets of micrometer size are carried by the fluid. It is generally thought
that they follow the flow well, when they are small enough. We used the commercial fog generator
SAFEX producing droplets of oil of sizes from 0.5–3 microns. The particles are illuminated by a
solid-state laser defocused by using a cylindrical diverging lens creating a laser-sheet. The image of
illuminated particles is captured by a camera. In this experiment, we use the double-pulse system based
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on a pair of laser pulses separated by a short delay. The delay varied according to the flow velocity from
13 to 200 microseconds. The camera can distinguish both pulses into separated images. The advantage
of this system is the possibility of measuring relatively high velocities with reasonable spatial resolution.
On the other hand, the maximum frequency of such pulse pairs is only 7.4 Hz, which does not allow
to study the temporal development of flow, only the statistical study of independent snapshots is
possible. We recorded at least 360 snapshots in each run, the exact value varies.

The images are preprocessed by subtracting the minimal pixel values and then the method
Adaptive PIV in the commercial software Dantec Dynamic Studio is used. The resolution of the
vector grid is 0.5 mm = 0.032M. The field of view covers 64× 64 vectors, but we remove the boundary
lines, thus the field of view has a size of only 62× 62 vectors corresponding to 31.1× 31.1 mm2 or
1.99× 1.99M2. The resulting ensemble of vector fields is filtered according to the energy of the lowest
length-scale as described in our article [8]. The key is applied to the entire vector field, thus if it does
not pass, the entire snapshot is removed from the ensemble. We avoid modifying individual vectors.

We capture the flow field in 7 areas in stream-wise × span-wise direction starting at positions
21, 76, 133, 200, 250, 300 and 352 mm from the grid, in multiplies of M, these values correspond to
1.34, 4.86, 8.51, 12.8, 16.0, 19.2 and 22.5M. In addition, we captured single field of view oriented
perpendicularly to the stream-wise direction with using the Stereo PIV approach. This method
is enhanced by using a pair of cameras looking to the studied area (which is still two-dimensional)
under two different angles allowing the reconstruction of the third velocity component. This field of
view is located 366 mm = 23.42M from the grid.

3. Results

The development of ensemble-averaged stream-wise velocity u is plotted in Figure 4. It is
normalized by the average of all ensembles U, which somehow represents the velocity in front of the
grid, which is not measured as that area lies inside a metallic part of the wind tunnel without optical
access. The average velocity is shown as a function of distance from the grid x normalized by the mesh
parameter M. In the near region, the flow field is dominated by the system of wakes and jets, but the
measured section cannot be a representative one, as there are not only sections like this (i.e., past the
holes and rods oriented perpendicularly), but also sections past the in-plane rods. Therefore, the mass
flow in the studied section is larger than the total one containing also sections past rods only. When the
pattern of jets and wakes disappears, the velocity corresponds to the total mass flux. However, in later
stages, another effect starts to play a role: the boundary layers of the channel slowly grow accelerating
the fluid in the center of the channel in order to maintain the total mass flux.

Figure 4. Ensemble average stream-wise normalized velocity u. The number in the legend is the
mesh-based Reynolds number, where k stands for ×103.
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3.1. Turbulent Kinetic Energy and Its Decay

Turbulent kinetic energy (TKE) of velocity field is calculated as the energy of fluctuating part

e (~x) =
1
2

〈
(u (~x)− 〈u (~x)〉T)

2 + (v (~x)− 〈v (~x)〉T)
2
〉

T
, (2)

where u (~x) and v (~x) are the in-plane velocity components, here u is the stream-wise component, v is
one of the span-wise components. Note that true TKE has to be calculated by using all three velocity
components, but here we use only the two measured velocity components. Angle brackets 〈·〉T denote
averaging over time.

In in Figure 5, the left panel shows the development of turbulent kinetic energy with distance from
the grid. Note that the turbulent kinetic energy is calculated only based on the in-plane fluctuations;
therefore, it is underestimated by the third component. The number in the legend is the mesh-based
Reynolds number, where k plays for ·103. The right panel displays the same data normalized by the
average stream-wise velocity U. The function e(x) = 0.3x−1.95 fits the dependence in the far stages.
Experimentally, we have found that the turbulent kinetic energy e decays with distance from the grid
x as e(x)/U2 = a (x/M)−n (see black line in Figure 5). Some authors, e.g., [9], use a little bit more
complicated function with virtual origin x0; we prefer to keep the function as simple as possible not
introducing too many fitting parameters, because, as John von Neumman said, With four parameters I
can fit an elephant, and with five I can make him wiggle his trunk [10]. In any case, it converges reasonably
well within the experimental noise. We can use this function e(x) to estimate the energy dissipation
rate ε. The definition of the turbulent kinetic energy dissipation rate ε is

ε =
de
dt

, (3)

by using the Taylor hypothesis of frozen turbulence, we can transform it into the x-dependence as

ε = U
de
dx

(4)

Thus, inserting the function e(x) from Figure 5 we get

ε = aU3 d
( x

M
)−n

dx
= − an

M
U3 ·

( x
M

)−n−1
. (5)

Then, by using the general estimation of the Kolmogorov scale η

η =

(
ν3

ε

) 1
4

, (6)

we can estimate the value of the Kolmogorov length η as

η =

(
Mν3

−an

) 1
4

·U−
3
4 ·
( x

M

) n+1
4 (7)

with experimentally obtained values of a = 0.3 and n = 1.95. The real values of η are illustrated in the
Table 1 at the position x = 10M, where the mentioned theory starts to be applicable, and at x = 25M,
where our experimental data end.
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Figure 5. (a): development of turbulent kinetic energy with distance from the grid. (b): the same data
normalized by the average stream-wise velocity U.

Table 1. Example of Kolmogorov lengths η at two positions x = 10M = 156 mm and x = 25M = 391 mm
for the velocities explored in this experiment.

ReM 〈u〉 η at x = 10M η at x = 25M
[1] [m/s] [mm] [mm]

1169 1.13 0.49 0.96
1499 1.45 0.41 0.80
3156 3.05 0.23 0.46
4829 4.67 0.17 0.33
6399 6.19 0.14 0.27

12,850 12.43 0.081 0.16
26,769 25.89 0.047 0.092

3.2. Length-Scale Dependent TKE

The effect of vicinity of the Kolmogorov scale to the turbulent kinetic energy is best apparent
when we separate turbulent kinetic energy by the length-scale of fluctuations producing it. This is
achieved by using the Agrawal decomposition [11,12], which means the convolution of velocity ~u with
band pass filter consisting of two Gauss functions with standard deviations σl and σh:

~ulh (~x) = ~u (~x) ∗
(

1
2πσ2

l
e
− x2

2σ2
l − 1

2πσ2
h

e
− x2

2σ2
h

)
. (8)

The effect of a such convolution on the velocity field is displayed in Figure 6 for three intervals of
length-scales. There is an example of length-scale dependent decomposition also referred as a Agrawal
decomposition [11,12]. A single instantaneous snapshot at ReM = 6.4× 103 and x0 = 4.86M is chosen
for this visualization. The scale denoted small corresponds to fluctuations of size 0.032− 0.048M or
0.25− 0.38d, middle scale means 0.096− 0.128M or 0.75− 1.00d and the large scale does 0.26− 0.39M
or 2.0− 3.0d. Inst. mag. abbreviates instantaneous magnitude. The velocities are represented in multiples
of the mean velocity U.

The decay of length-scale dependent TKE is displayed in Figure 7. Turbulent kinetic energies of
fluctuations (TKE) of different length-scales are shown, which are visualized in Figure 6. The energy
among these scales is not normalized. Therefore, do not compare numbers in these plots, just the
shape of curves! Among different velocities, it is normalized by U2. We can see that the turbulent
kinetic energy decays at all scales, but at larger scale, it decays with exponent −1.8, while the exponent
−1.95 (previously found in the total TKE, Figure 5) is valid for larger Reynolds numbers at small- and
middle- scales. For smallest Reynolds number ReM = 1.2× 103, the decay is faster with exponent
−3.27 at small scale and −2.75 at middle scale respectively. We can see, that the decay of TKE at larger
Reynolds numbers follow the previously found power law. However, at smaller Reynolds number,
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it deviates, mainly at small scales (Panel (a) of Figure 7) and it decays significantly faster; therefore,
the scaling U2 does not collapse the curves. This effect repeats less strongly at middle scales (Panel (b)
of Figure 7), where only the smallest Reynolds number deviates; additionally, the power of faster decay
is slightly lower than at small scale. On the other hand, the decay at largest probed scale is slower for
all explored velocities. This issue can be physically interpreted as the effect of inverse processes in the
Richardson cascade, which pump energy into the larger scales, where it does not originates from the
beginning. This partly masks the decay at this largest scale.

Figure 6. Example of length-scale dependent (Agrawal) decomposition.
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Figure 7. Turbulent kinetic energy (TKE) of different length-scales, (a) small scales, (b) middle scales
and (c) large scales.
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To see how the length-scale dependent TKE develops, we have to normalize its values among
different length-scales by the wavevector length k and the width of the band ∆k. Thus, as in the plots
of power spectral density we can get the energy content e(k) associated with a wavevector k

e(k) = e (~ulh)
k

(∆k)2 , (9)

where e (~ulh) is the turbulent kinetic energy of velocity field convoluted with band pass filter of σl and
σh (Equation (8)), k is the mean wavevector length

k =
2

σl + σh
(10)

and ∆k is the width of the wave vector interval

∆k =
1
σl
− 1

σh
=

σh − σl
σh · σl

. (11)

Additionally, we normalize the value of e(k) by the famous Kolmogorov scaling k−5/3, because we
consider it a priory, that the turbulence might follow this scaling. Therefore, the normalized
e′(k) = e(k) · k5/3 of different length scales should collapse in the case of Kolmogorov turbulence.

Figure 8 shows such a development of TKE of different length-scales with distance from the grid.
Similar to Figure 7 this figure compares the decay of different scale TKE at two selected Reynolds
numbers: ReM = 3.2× 103 (a) and ReM = 1.24× 104 (b). The energy is normalized by wavevector
length k and the width of the band pass filter ∆k, additionally, it is divided by the famous Kolmogorov
dependence k−5/3 in order to collapse points, which follow this scaling. This attempt did not succeed;
the curves do not collapse even in far regions. It is shown for two velocities only. At the beginning,
there is less energy at large scale than that which would correspond to the Kolmogorov scaling, while
the middle- and small- scales display intensities comparable within the noise. As the turbulence decays,
the energy at all scales decreases, but the large scale TKE decays more slowly approaching the other
scales. Within our range of parameters, the curves does not collapse, and thus we pose an interesting
question: What happens, when they approach the normalized energy of other scales? (Would they
continue decaying with the same power law, or adapt to the decay rate of the other scales?).

10-6

10-5

10-4

10-3

1 10
small midle large

10-7

10-6

10-5

10-4

10-3

1 10
small midle large

x/M [1] x/M [1]

(a) Re = 3.2k (b) Re = 12.4k

Figure 8. Comparison of the decay of different scale TKE at two selected Reynolds numbers:
ReM = 3.2× 103 (a) and ReM = 1.24× 104 (b).

The small scale turbulence decays faster than the middle scale at low Reynolds number, but,
at large Reynolds number, it decays in the same way as middle scale turbulence does. This relates to
the vicinity of the Kolmogorov dissipative length-scale η, which has been estimated in the previous
paragraph. In Figure 9, the Spatial power spectral density of turbulent kinetic energy e(k) at three
distances from the grid: x/M = 5.9 (left), x/M = 13.8 (center) and X/M = 23.5 (right) are shown.
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The method of spatial spectrum from non-time-resolved data is described in our article [8]. The e(k) is
normalized by the velocity square and grid parameter M, wavevector length k is normalized by M.
The solid black line represents the Kolmogorov scaling k−5/3. The spatial spectra in Figure 9 show a
similar conclusion: a clear viscosity damping effect at smaller Reynolds numbers visible as a deviation
from Kolmogorov scaling depicted in Figure 9 as a solid black line. The method of obtaining a spatial
spectrum by using spatially resolved data with poor temporal resolution (note that our equipment
allow a maximum sampling frequency only 7.4 Hz) as described in detail in our article [8] and it is
based on the energies of Agrawal decompositions of different bands, as described above.

Figure 9. Spatial power spectral density of turbulent kinetic energy e(k) at three distances from the
grid: x/M = 5.9 (left), x/M = 13.8 (center) and X/M = 23.5 (right).

3.3. Vorticity

Vorticity is an important quantity influencing mixing at the small flow scale. Vorticity is defined
as rotation of the vector field ~u

~ω = ∇× ~u (12)

The name of this quantity can be a little misleading in referring to vortices. However, vortices
are responsible only partly for the vorticity signal [13]. The second important source is the local shear.
The third is the strain rate. Definition (12) is not applicable for experimental data for two main reasons:
first, we measure velocities only in a two dimensional section of the 3D flow, therefore, we can calculate
only the z component of vorticity; second, we measure at finite resolution. Thus, we approximate
partial derivatives in the nabla operator by symmetric differentiation:

ωcalc =
u (x, y + ∆y)− u (x, y− ∆y)

2∆y
− v (x + ∆x, y)− v (x− ∆x, y)

2∆x
, (13)

where the vector grid resolution ∆x and ∆y is determined by the experimental setup, not by the
Kolmogorov scale, as it should be in ideal case. The measurement of full velocity gradient tensor
(and thus determining full vector of vorticity) is possible with a much more complicated setup with a
pair of illumination sheets used by Regunath et al. [14].

In Figure 10, panel (a), we show an example of instantaneous in-plane vorticity in the 7
studied areas in stream-wise × span-wise direction past the grid at mesh-based Reynolds number
ReM = 3.2× 103. In the top row, the colorscale of vorticity is adapted to that field, while the bottom
row, where the vorticity intensity changes not so rapidly, and has a common scale from−200 to 200 s−1.
Even by the naked eye we can note the smoothing of structures and (in the bottom row only) the
decrease of intensity. In panel (b) of Figure 10, there is an example of instantaneous vorticity obtained
by the Stereo PIV technique in a plane perpendicular to the stream-wise direction in distance from
the grid 23.4M. For esthetic purposes, these fields are smoothed by convoluting with Gauss function
of σ = 1 grid point. This smoothing is not applied for the plots of statistical moments of vorticity
shown later.
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Figure 10. (a) Example of instantaneous in-plane vorticity. (b) Example of instantaneous vorticity
obtained by the Stereo PIV technique in a plane perpendicular to the stream-wise direction.

The ensemble average of vorticity has no sense, as it results into ± zero, except in the near-grid
region, it may show the shear layers between wakes and jets. More interesting is the standard deviation
of vorticity:

σ[ω](x, y) =
〈
(ω(x, y)− 〈ω(x, y)〉T)

2
〉 1

2

T
(14)

The stream-wise dependence of σ[ω] is plotted in Figure 11 as a function of distance x/M.
The data are normalized by using the the ratio of distance from the grid x and average stream-wise
velocity U, i.e., a time needed to pass there (note the unit of vorticity being

[
s−1], which can be seen

as the time needed for turnover). This normalization to a dimensionless quantity does not work
as well as for TKE, because it depends on velocity stronger than linearly. This issue can be fixed
partially by multiplying by Re−1/3

M , which is plotted in the right panel. This exponent has been found
experimentally and to our knowledge it has no support in the literature. Anyway, the curves still do
not collapse. We see that the data at various Reynolds numbers do not collapse. These data collapse
little bit better when multiplying by Re−1/3

M , which is displayed in Figure 11b. In any case, this quantity
is much more sensitive to noise, as it is a derivative quantity.

The flatness, i.e., the fourth statistical moment is usually used as a probe of intermittency [15].
The flatness of Gaussian distribution is calculable analytically and it is equal to 3, which then plays
a role of a reference value. High signal means that there is some level of fluctuations (described by
standard deviation) disturbed by strong rare events, this behavior is typical for, e.g., neighboring shear
layers. The flatness of the vorticity is calculated as

F[ω] =

〈
(ω− 〈ω〉T)

4
〉

T
σ4[ω]

(15)

and its stream-wise development is shown in Figure 12 as a function of distance x/M. The flatness
of Gaussian distribution is equal to three, which is depicted by the grey line. Flatness larger than
3 signifies appearance of stronger events and large flatness is typical for intermittent effects, which can
be found on the edges of shear layers, where the flow is generally quiet, but from time-to-time there
comes some turbulent patch; this is the reason for large values of F(ω) in the near-grid region. In the
far region, F(ω) stays between 3.5 and 4.5 with an unprovable weak dependence on Reynolds number.
In the near-grid region, the flatness is large, signifying a strong intermittency effect in the pattern of jets
and wakes. When we focus to the far-grid region (Figure 12b), we see that the flatness stays between
3.5 and 4.5, which reports the homogeneous appearance of stronger events.
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Figure 11. Normalized standard deviation of in-plane vorticity as a function of distance x/M.
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Figure 12. Flatness of vorticity as a function of distance x/M.

3.4. Isotropy

The isotropy, i.e., the independence on the direction, can be best studied by comparing the
Reynolds stress tensor components, or its invariants respectively. This can be done only for the stereo
PIV data, which we have only at single x. Elsewhere, we can compare at least the ratio of standard
deviations of velocity in stream-wise and span-wise directions, [16]. This is shown in Figure 13 as a
function of x. Left panel (a) shows the development of the ratio of fluctuations in span-wise direction
(σ(u)) to stream-wise direction (σ(v)) with distance from the grid. The right panel (b) shows one
example of the spatial distribution at ReM = 3.2× 103 and at x from 1.34 to 2.39M, i.e., in a near grid
region, where some spatial distribution related to the shear layers occurs. Green color signifies the
same intensity of fluctuations in both investigated directions; red color means prevailing span-wise
fluctuations, while blue color shows stronger stream-wise fluctuations. In the near-grid region we see
again the effect of regular pattern of jets and wakes.

In the case of Stereo PIV we have got all three velocity components in a two-dimensional field;
therefore, we can determine the full Reynolds stress tensor τij = −ρ

〈
u′iu
′
j

〉
. This tensor can be

analyzed in the light of its invariants [17–19].
Jovanovič [20] claims that the anisotropy could be linked to streak patterns appearance in the

flow. Those patterns are responsible for primary instability of the flow representing the first stage
of turbulence development. The final stage of the fully turbulent flow tends to isotropy (the origin
in the AIM graph). The streak patterns are statistically axisymmetric and correspond to a system
which is invariant under rotation about the streamwise axis. The sudden appearance of small-scale
random motion implies that rapid decrease in anisotropy provokes heavy growth of the dissipation
which significantly reduces the smallest scale of motion defined by Kolmogorov’s length-scale. In this
way, an energy cascade is initiated, which promotes the spectral separation. This is the essential
feature of turbulence and determines its mixing properties. Our results confirm the published finding.
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The mean flow is significantly non-homogeneous close to the grid (it presents periodic features) and
the inhomogeneity in the Reynolds stresses persists well downstream. The inhomogeneity observed in
the Reynolds stresses at larger distances downstream of the grid is, in essence, the reminiscence of the
initial nonhomogeneity of the mean flow because the turbulence production becomes ineffective at
mixing the large-scale structures. Thus, any remaining non-homogeneity existing in the flow when
the turbulent production becomes negligible is convected with the flow. The space-averaged data
showed that turbulence generated by the grid exhibits a relatively high level of anisotropy which,
as the distance behind the grid increases, tends toward one-component turbulence before quickly
decreasing. Then, it is followed by a perfect axisymmetric expansion, the turbulence shows a prolate
spheroid (rod-like) structure during this decay period.

Figure 13. (a) development of the ratio of fluctuations in span-wise to stream-wise directions with
distance from the grid. (b) example of the spatial distribution at ReM = 3.2× 103 and at x from 1.34
to 2.39M.

Indeed, we see that in the far-grid region, there prevail fluctuations in stream-wise direction over
those in span-wise one.

The anisotropy coefficient analysis is based on the Reynolds stress tensor τij

τij = −ρ
〈

u′iu
′
j

〉
, (16)

whose anisotropic part is normalized by its trace:

bij =
τA

ij

τkk
=

τij

τkk
−

δij

3
(17)

The eigenvalues of tensor bij are the invariants I, II and III, which are consequently [21] defined as

I = bkk, II = −1
2

bijbji, III =
1
3

bijbjkbki = det
(
bij
)

(18)

The possible values of invariants II and III are bounded by the lines depicted in Figure 14 [17].
Figure 14 shows the spatial average of the values of those invariant over the field of view.
The anisotropy invariant map is shown in the coordinates of minus second (-II) and third (III)
invariant of the Reynolds stress tensor τij = −ρ

〈
u′iu
′
j

〉
. These invariants can be calculated only

for 3D velocity data, which are obtained by using the Streo PIV, which has been measured at a fixed
distance x/M = 23.4. The so-called Lumley triangle [17] of mathematically accessible values is
bounded by black lines. The bottom corner at coordinates [0, 0] signifies full isotropy—i.e., fluctuation
intensity same in all directions. In the top right corner, there would be turbulence with fluctuations in
one direction only, while the left corner is associated with 2D turbulence, see [21] for more details.
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The level of isotropy is represented by another parameter F

F = 1 + 9 · II + 27 · III, (19)

whose dependence on Reynolds number at the distance x/M = 23.4 is plotted in Figure 15.
The errorbars represent the standard deviation of this property within the field of view. We see
that the flow is almost isotropic (F → 1 [17,22]) according to this parameter and an interesting behavior
is that it has a maximum at finite Reynolds number 4.8× 103. The reason of anisotropy could be
appearance of streaky structures. The character of increasing and later decreasing value of F is
unknown for us at this moment, but note that it might be an artifact of the PIV method, which is unable
to resolve too small turbulent scales (and Reynolds number is closely related to the ratio of smallest to
largest scale).

Figure 14. Anisotropy invariant map.

Figure 15. Anisotropy coefficient F as a function of Reynolds number at distance x/M = 23.4.

4. Conclusions

We manufactured a regular grid of square rods by a 3D printer. By means of 3D optical scanning,
we found that the grid is neither as regular or as square as we planned. We venture to believe that
other studies also suffer from this deviation between the planed and the actual geometry, although it is
usually not reported. The grid geometry forms the boundary condition for the flow, so it is of high
importance to be defined as precisely as possible.

We measured the flow velocity past the grid by using a commercially available PIV (Particle
Image Velocimetry) system. We focus our analysis to the decay rate of turbulent kinetic energy and we
found the decay exponent of −1.95 for all Reynolds numbers from 1.2k to 26.8k. In classical literature,
a smaller absolute value of this exponent is reported very often. Comte-Bellot and Corrsin [23] found
this exponent within the range −1.29 and −1.15, Warhaft and Lumley [24] estimated the exponent
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−1.34, to mention just a few. However some other authors dealing with similar grid geometry as used
in our case (e.g., [25,26] evaluated this coefficient in broader range from −2.0 up to −0.9).

The most important results presented in the paper deal with evaluation of TKE connected with
various fluctuation scales. For this purpose we have decomposed the turbulent velocity field into
three parts according to coherent structure scales by means of the Agrawal decomposition method [12].
The obtained small scale, middle scale and large scale turbulent contents were analyzed separately.
The decay laws were evaluated for each component. Gentle decay was found for the large scales,
the exponent was about −1.8 only, independent on the Reynolds number. However for the middle and
small scales steeper decays were detected characterized by the exponents in range between −1.95 to
−3.27. The exponent value −1.95 applies for high Reynolds numbers, while small Reynolds number
1.2k shows steeper decay, exponent−3.27 for small scales and−2.75 for middle scales. Hence, we could
conclude that small scale fluctuations decay faster than the large scales especially at low Reynolds
numbers. This effect could be related to the fact that the small scales are approaching the Kolmogorov
scale at low Reynolds numbers. At larger Reynolds numbers, the decay rate is close to that of the total
TKE. The studied effect has consequences in the turbulence spectrum development in stream-wise
direction and mixing properties.

The isotropy is analyzed by using the ratio of standard deviations in stream-wise and span-wise
directions. It shows stronger contribution from the stream-wise direction. The analysis of Reynolds
stress tensor invariants shows a nearly 3D isotropy of the turbulence weakly shifted towards the
2D isotropy. This result is expected and in accordance with the results reported in the literature
(see, e.g., [2,27]).

The next step in our research will be a deeper analysis of the decomposed turbulent flow-field.
Standard analysis methods are to be applied separately on specific turbulent components. In the
future we also would like to study the effect of the grid-generator quality on the generated turbulence.
We will concentrate on details of its geometry, e.g., curvature of corners, and namely on the grid surface
roughness. The mixing properties are to be evaluated and optimized.
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Abbreviations

The following abbreviations are used in this manuscript:

PIV Particle Image Velocimetry

TKE, e Turbulent kinetic energy based on the 2D velocity data, e = 1
2

〈
(u− 〈u〉)2 + (v− 〈v〉)2

〉
Re, ReM Mesh-based Reynolds number, ReM = UM

ν

u, v stream-wise and span-wise velocity components
k length of the wavevector, unit is inverse millimeter, mm−1

M Mesh parameter of the grid, in this experiment M = 15.625 mm
d Size of the grid rod, in this experiment d = 2.0 mm

Appendix A. Discussion the TKE Calculation Method

We calculated the turbulent kinetic energy by using the two measured velocity components,
see Equation (2). This way underestimates the result, as the contribution from the third velocity
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component is missing (and it is always a positive number). Some authors solve this issue by
incorporating the second (span-wise) velocity component twice:

e2v =
1
2

〈
(u− 〈u〉T)

2 + 2 · (v− 〈v〉T)
2
〉

T
. (A1)

The argument stays, that due to symmetry, the invisible component may fluctuate with same
intensity, thus we can estimate the real value better. We prefer to not use any a priory consideration
about the symmetry or isotropy of the flow, even when the isotropy level is a subject of research.
However, the TKE manipulated in this way is closer to the values obtained by using all three velocity
components, which is possible with the Stereo PIV setup. Figure A1 shows the comparison at
x ≈ 23.4M, where the Stereo PIV data are acquired. There is the comparison of TKE measured
by using the classical PIV with 2 velocity components (blue down triangles) and that measured by
using Stereo PIV returning three velocity components (brown up triangles). The red circles represent
the TKE calculated from the 2D data with contributing the span-wise velocity component twice.
Panel (a) shows the measured value in m2s−2, while panel (b) shows the value normalized by average
stream-wise velocity.

The evaluated TKE is used in the paper for determination either decay law or to compare energy
content of various scales. Thus we insist on the first definition of the TKE, as only relative changes are
relevant and not the TKE absolute value.

Figure A1. Comparison of TKE measured by using the classical PIV with 2 velocity components
(blue down triangles) and that measured by using Stereo PIV returning three velocity components
(brown up triangles). (a) shows the measured values, while in (b), the values are normalized by the
velocity in order to see the difference.
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