
Effect of Rotor Spacing and Duct Diffusion Angle on the Aerodynamic
Performances of a Counter-Rotating Ducted Fan in Hover Mode

Authors: 

Woo-Yul Kim, Santhosh Senguttuvan, Sung-Min Kim

Date Submitted: 2021-05-04

Keywords: UAV, frozen rotor, figure of merit, power coefficient, thrust coefficient

Abstract: 

The aerodynamic performance of a counter-rotating ducted fan in hover mode is numerically analyzed for different rotor spacings and
duct diffusion angles. The design of the counter-rotating fan is inspired by a custom-designed single rotor ducted fan used in a
previous study. The numerical model to predict the aerodynamic performance of the counter-rotating ducted fan is developed by
adopting the frozen rotor approach for steady-state incompressible flow conditions. The relative angle between the front and the rear
rotor is examined due to the usage of the frozen rotor model. The results show that the variation of thrust for the different relative
angles is extremely low. The aerodynamic performances are evaluated by comparing the thrust, thrust coefficient, power coefficient,
and figure of merit (FOM). The thrust, thrust coefficient, and FOM slightly increase with increasing rotor spacing up to 200 mm,
regardless of the duct diffusion angle, and reduce on further increase in the rotor spacing. The duct diffusion angle of 0° generates
about 9% higher thrust and increases the FOM by 6.7%, compared with the 6° duct diffusion angle. The duct diffusion angle is highly
effective in improving the thrust and FOM of the counter-rotating ducted fan, rather than the rotor spacing.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2021.0339
Citation (this specific file, latest version): LAPSE:2021.0339-1
Citation (this specific file, this version): LAPSE:2021.0339-1v1

DOI of Published Version:  https://doi.org/10.3390/pr8111338

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



processes

Article

Effect of Rotor Spacing and Duct Diffusion Angle on
the Aerodynamic Performances of a Counter-Rotating
Ducted Fan in Hover Mode

Woo-Yul Kim, Santhosh Senguttuvan and Sung-Min Kim *

School of Mechanical Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon 16419, Korea;
samsun215@skku.edu (W.-Y.K.); santhosh@skku.edu (S.S.)
* Correspondence: smkim@skku.edu; Tel.: +82-31-290-7433

Received: 21 August 2020; Accepted: 20 October 2020; Published: 23 October 2020
����������
�������

Abstract: The aerodynamic performance of a counter-rotating ducted fan in hover mode is numerically
analyzed for different rotor spacings and duct diffusion angles. The design of the counter-rotating fan
is inspired by a custom-designed single rotor ducted fan used in a previous study. The numerical
model to predict the aerodynamic performance of the counter-rotating ducted fan is developed by
adopting the frozen rotor approach for steady-state incompressible flow conditions. The relative angle
between the front and the rear rotor is examined due to the usage of the frozen rotor model. The results
show that the variation of thrust for the different relative angles is extremely low. The aerodynamic
performances are evaluated by comparing the thrust, thrust coefficient, power coefficient, and figure
of merit (FOM). The thrust, thrust coefficient, and FOM slightly increase with increasing rotor spacing
up to 200 mm, regardless of the duct diffusion angle, and reduce on further increase in the rotor
spacing. The duct diffusion angle of 0◦ generates about 9% higher thrust and increases the FOM
by 6.7%, compared with the 6◦ duct diffusion angle. The duct diffusion angle is highly effective in
improving the thrust and FOM of the counter-rotating ducted fan, rather than the rotor spacing.

Keywords: thrust coefficient; power coefficient; figure of merit; frozen rotor; UAV

1. Introduction

Unmanned aerial vehicles (UAV) are of global interest, since they can perform versatile tasks
in the military, search and rescue, agriculture, and transportation fields. Particularly, rotary wing
UAVs with vertical take-off and landing (VTOL) propulsion systems are highly desired due to high
maneuverability and the ability to take-off and land vertically. In rotary wing UAVs, a ducted fan where
a duct surrounds the rotors is more efficient in producing thrust than an open rotor [1]. According to
actuator disk theory, the duct reduces the blade tip loss, enabling the ducted fan to double the thrust [2].
The duct also reduces the rotor noise and protects the high-speed rotors from the external environment.

The design of the duct plays a vital role in improving the aerodynamic performance of the ducted
fan. One of the key considerations in the design of the ducted fan is the duct profile. The duct profile
is usually based on airfoil shapes, due to aerodynamical advantage. Yilmaz et al. [3] experimentally
studied the aerodynamic performance of a ducted fan in hover mode for five different duct profiles,
based on National Advisory Committee for Aeronautics (NACA) airfoils. Pressure distributions on the
inner surface of the duct and velocity profiles at both the duct inlet and outlet planes were investigated
for the five different duct profiles. It was found that the propulsive efficiency was significantly affected
by the duct profile. Bontempo and Manna [4] numerically investigated the effect of the camber
and thickness of the duct profile on the aerodynamic performance of ducted fans. They found that
the propulsive efficiency of the duct increased with the increase in the camber and thickness of the
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duct profile. Xu et al. [5] developed an asymmetrical duct with a rounded and enlarged leading
edge. The leading edge is designed as inflatable so that it can inflate and retract when needed [6,7].
The inflated leading edge is designed to encounter the flow separation that typically occurs around the
inner surface of the duct when the ducted fan transits from forward flight (crosswind) to hovering,
or from hovering to forward flight. The developed duct model eliminates the flow separation at the
crosswind conditions of a 30 m/s velocity at a 50◦ angle of attack. Although the proposed duct model
was suitable to deal with the flow separation, it involved certain complications concerned with the
practical implementation of the inflatable material in ducted-fan UAVs. Graf et al. [8] conducted
experiments to examine the aerodynamic characteristics of a ducted fan for five duct profiles with
different leading edge radius of curvatures and duct wall thicknesses, both in hover and forward flight
conditions. As a result, the characteristics of the flow separation on the leading edge of the duct in
hover and forward flight modes were found to be different. The duct profile that produced the best
performance was different for the hover and forward flight modes.

Apart from duct design, a counter-rotating system, where two rotors rotate in the opposite
direction on the same axis, can increase the thrust and aerodynamic performance of a ducted
fan. The counter-rotating system has been successfully applied to wind turbines [9,10], axial flow
pumps [11,12], axial fans [13,14], and propellers [15,16]. A key advantage of this system is that it can
produce a higher thrust than a single rotor, and the torque produced by the two rotors is canceled by
each other. The essential parameters affecting the aerodynamic performance in the counter-rotating fan
are tip clearance and rotor spacing. Ryu et al. [17] examined the effect of the tip clearance of the front
and rear rotors on the aerodynamic performances of the counter-rotating ducted fan in hover mode.
In the counter-rotating ducted system, the thrust is affected by relative tip clearances of the front and
rear rotors. It was found that, in order to improve the aerodynamic performance of the counter-rotating
ducted fan, the tip clearance need not be a minimum for both the front and rear rotors. Among various
tip clearance configurations in the study, the configuration with a small tip clearance in the front rotor
and a large tip clearance in the rear rotor produced the highest thrust coefficient. Moreover, the total
thrust of the counter-rotating ducted fan was significantly affected by the tip clearance of the rear rotor.
Han et al. [18] conducted experiments and simulations to investigate the aerodynamic performances of
a counter-rotating fan with and without ducts for different blade pitch angles, rotor spacings, and tip
clearances in hover mode. The results showed that the counter-rotating fan with a duct generated
more thrust than the open counter-rotating fan because of the negative pressure region around the
duct’s leading edge created by the duct. They also found that as the rotor spacing increased, the thrust
coefficient and figure of merit of the counter-rotating fan, both with and without the duct, increased.
However, when the rotor spacing became higher than the rotor radius, both the thrust coefficient and
figure of merit became constant.

Numerical modeling of the counter-rotating fan necessitates the consideration of the relative
motion between the two rotors. This relative motion can be modeled by either a mixing plane, a frozen
rotor, or a moving mesh approach. Of the three methods, the moving mesh method produces accurate,
realistic flow physics by employing the unsteady coupling of the rotors. However, the moving mesh
approach requires high computational effort, resulting in researchers and industrial fan designers opting
for either the mixing plane or the frozen rotor approach. Besides that, for steady-state simulations,
the mixing plane and frozen rotor methods produce reasonably accurate results. A major disadvantage
of the mixing plane approach is that it is not capable of predicting the effect of wakes from the top rotor
on the downstream rotor of the counter-rotating fan system. Compared to the mixing plane approach,
the frozen rotor approach calculates the non-uniform circumferential velocity and pressure distributions
to accurately predict the wake mixing in the downstream rotor and rotor-to-rotor flow physics [19].

Despite several studies conducted to enhance the aerodynamic performance of UAVs, there is
still scope for improvement. It is highly important to further study and improve the aerodynamic
performance of UAVs. In the present study, the effects of rotor spacing and the duct diffusion angle on
the aerodynamic performances of a counter-rotating ducted fan in hover mode are investigated
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numerically using the frozen rotor approach. A ducted fan model, designed by Akturk and
Camci [20], is used for the present numerical study due to readily available detailed experimental data.
Three essential aerodynamic performance parameters—thrust coefficient, power coefficient, and figure
of merit—are examined for different rotor spacings and duct diffusion angles.

2. Numerical Model

2.1. Model Description

Figure 1 shows the schematic of the three-dimensional counter-rotating ducted fan based on the
fan and duct models of Akturk and Camci [20], where they studied a single ducted fan. The design of
both of the fans in the present study was identical to the single fan used by Akturk and Camci [20].
The duct diameter was 559 mm, and the fan had eight blades. The two rotors (fans) had the same tip
clearance of 1.71% and rotated in opposite directions. Table 1 summarizes the detailed dimensions
of the counter-rotating ducted fan. The rotor spacing (s) was changed from 120 mm to 240 mm in
increments of 40 mm. While changing the rotor spacing, the length of duct was also equally changed
to maintain the length of the duct diffuser at 117.85 mm. Two duct diffusion angles (θ) of 0◦ and 6◦

were considered.
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Table 1. Counter-rotating ducted fan dimensions.

Parameter Value

Duct diameter, D 559.0 mm
Rotor diameter, Dr 558.8 mm

Tip clearance, t 1.71%
Hub diameter, Dh 127 mm

Length of the duct diffuser, Ld 117.85 mm

2.2. Governing Equation

The three-dimensional numerical model to predict the aerodynamic performances of the
counter-rotating ducted fan in hover mode was developed using the commercial Computational
Fluid Dynamics (CFD) software Ansys CFX 19.1 [21]. The Reynolds-averaged Navier–Stokes (RANS)
equations for steady-state, turbulent, and incompressible flow conditions with constant properties were
used as the governing equations. The time-averaged continuity and momentum [21] are expressed
as follows:

Continuity equation:
∂
(
ρu j

)
∂xi

= 0 (1)



Processes 2020, 8, 1338 4 of 14

Momentum equation for the stationary domain:

∂
(
ρu j

)
∂xi

= −
∂P
∂xi

+ µ
∂2ui

∂x2
j

+ ρgi (2)

Momentum equation for the rotating domain:

∂
(
ρu j

)
∂xi

= −
∂P
∂xi

+ µ
∂2ui

∂x2
j

+ ρgi + SM (3)

where the source term, SM, includes the centrifugal force and Coriolis force for the rotating reference
frame, which is expressed as

SM = −ρ
[
2
→
ωR ×

→
u +

→
ωR ×

(
→
ωR ×

→
r
)]

(4)

In the present study, the shear stress transport (SST) k-ω turbulent model developed by
Menter [22,23] was used to solve the turbulent flow field. As per the SST k-ω turbulence model,
the boundary layer was calculated by the standard k-ω turbulence model, and the freestream region
was calculated by the k-ε turbulence model, which was incorporated by applying a blending function.
The SST k-ω turbulence model accurately predicts the adverse pressure gradient and flow separation
at the wall [22,23]. The turbulent kinetic energy and dissipation rate are expressed as follows:

Turbulent kinetic energy equation:

∂
(
ρu jk

)
∂xk

= P− β∗ρωk +
∂
∂x j

[
(µ+ σkµt)

∂k
∂x j

]
(5)

Dissipation rate equation:

∂
(
ρu jω

)
∂x j

=
γ

vt
P− βρω2 +

∂
∂x j

[
(µ+ωωµt)

∂k
∂x j

]
+ 2(1− F1)

ρσω2

ω
∂k
∂x j

∂ω
∂x j

(6)

The production limiter (P) in Equation (5) is expressed as

P = τi j
∂ui
∂x j

(7)

where

τi j = µt

(
2Si j −

2
3
∂uk
∂xk

δi j

)
−

2
3
ρkδi j (8)

Si j =
1
2

(
∂ui
∂x j

+
∂u j

∂xi

)
(9)

and the turbulent eddy viscosity is expressed as

µt =
ρa1k

max(a1ω, ΩF2)
(10)

Let φ1 represent the constants σk1, σω1, and β1 in the k-ω turbulence model, φ2 represent the
constants σk2, σω2, and β2 in k-ε turbulence model, and φ represent the constants σk, σω, and β in the
k-ω SST turbulence model, respectively. The relationship between φ, ]φ1, and φ2 is expressed as

φ = F1φ1 + (1− F1)φ2 (11)
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The additional functions in the SST k-ω turbulence model are as follows:

F1 = tanh
(
arg4

1

)
(12)

arg1 = min

max

 √k
β∗ωd

,
500v
d2ω

,
4ρσω2k
CDkωd2

 (13)

CDkω = max
(
2ρσω2

1
ω
∂k
∂x j

∂ω
∂x j

, 10−20
)

(14)

F2 = tanh
(
arg2

2

)
(15)

arg2 = max

2

√
k

β∗ωd
,

500v
d2ω

 (16)

where d is the distance from the field point to the nearest wall and Ω =
√

2Wi jWi j, with

Wi j =
1
2

(
∂ui
∂x j
−
∂u j

∂xi

)
(17)

All the constants are as follows:

γ1 =
β1
β∗ −

σω1κ
2

√
β∗

, γ2 =
β2
β∗ −

σω2κ
2

√
β∗

, σk1 = 0.85, σω1 = 0.5, β1 = 0.075, σk2 = 1.0,

σω2 = 0.856, β2 = 0.0828, β∗ = 0.09, κ = 0.41, a1 = 0.31.
(18)

2.3. Numerical Method

The numerical simulations were performed as three-dimensional with steady-state and
incompressible flow assumptions. Figure 2 shows the grid system, boundary, and interface conditions
of the counter-rotating ducted fan. The computational domain consisted of a stationary domain,
surrounding the duct and part of the hub, and two rotating domains surrounding each rotor and the
remaining part of the hub. The unstructured grid was used for both the stationary and the rotating
domain, and the structured hexahedral grid was used for the external fluid domain. The dimensionless
distance from the wall to the first node of the mesh, defined as y+, is crucial in the SST k-ω turbulence
model. The inflation layers were used to achieve a y+ value less than 2.5 along all the walls to capture
fluid interactions in the viscous sublayer. The axial length of the computational domain was 3.0 D
and 6.0 D from the origin, located at the center of the front rotor, and the radial length was 2.5 D
from the y-axis. The multiple reference frame (MRF) method was used to simulate the rotation of
the rotors. The rotating domain was considered to rotate relative to the stationary domain by adding
the centrifugal force and Coriolis force (see Equations (2) and (3)). The frozen rotor, mixing plane
(stage), and sliding mesh methods were the available methods to model the interface between rotating
and stationary domains in the MRF method. In the present study, the frozen rotor method was used
for the interface between the rotating and stationary domains, as well as the interface between the
two rotating domains. When using the frozen rotor, the rotor in the rotating domain is considered
to be in a frozen state; this means the rotor position is fixed relative to the stationary domain. In the
frozen rotor method, the results may vary depending on the rotor position. Hence, in the present
study, the positions of the front and rear rotors were tested for four relative angles: 0◦, 11.25◦, 22.5◦,
and 33.75◦. The opening boundary condition with zero-gauge pressure was applied to the external
surfaces of the fluid domain to allow inward or outward airflow in hover mode. The no-slip condition
was applied to the walls of the duct, hub, and rotors, except for the inner wall, the duct adjacent to
the rotating domains. The counter-rotating wall boundary condition with an equal velocity in the
opposite direction corresponding to the rotating domain was applied to the inner wall of the duct.
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To reduce the computational cost, only one-eighth of the counter-rotating ducted fan was modeled in
the computational domain by applying the periodic boundary conditions to the side surfaces.Processes 2020, 8, x FOR PEER REVIEW 6 of 14 
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Figure 2. The grid system, boundary, and interface conditions of the counter-rotating ducted fan.

2.4. Grid Independence Test and Validation

The aerodynamic performance parameters, thrust coefficient, power coefficient, and figure of
merit are expressed as follows:

Thrust coefficient:
CT =

Thrust
ρN2D4

(19)

Power coefficient:
CP =

Power
ρN3D5 (20)

Figure of merit (FOM):

FOM =
C3/2

T
√

2CP
(21)

The single ducted fan model of Akturk and Camci [20] was simulated to conduct grid independence
testing and validation. The grid independence test was conducted using four different grid systems
comprising 3.98, 4.79, 5.87, and 7.02 million cells at 1500 rpm. The thrust coefficient of the different
grid systems is compared in Figure 3a. The discrepancy in the thrust coefficient among the 4.79, 5.87,
and 7.02 million cell grids was less than 1.0%, and, thus, the grid system with 4.79 million cells was
selected. The total simulation time for the selected mesh size was about 10 h in a machine with an
Intel Core i7 6700 (4 physical cores and 8 threads). For validation, the single ducted fan was simulated
under six different rotational speeds, corresponding to the experiments of Akturk and Camci [20].
Figure 3b compares the thrust generated for the six different rotational speeds in the present numerical
study with the experiment and numerical results of Akturk and Camci [20]. The present numerical
results show good agreement with the results of Akturk and Camci [20].
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Figure 3. (a) The thrust coefficient for different grid systems, and (b) comparison of thrust on single
rotor ducted fan of the present numerical study with the experiment and numerical results of Akturk
and Camci [20].

3. Results and Discussion

3.1. Effect of Relative Angle between Front and Rear Rotor

Initially, the effect of the relative angle between the front and rear rotor was tested for four
relative angles: 0◦, 11.25◦, 22.5◦, and 33.75◦. Each relative angle configuration was simulated for three
rotational speeds—1500 rpm, 2100 rpm, and 2700 rpm—and two rotor spacings of 120 mm, and 200 mm.
The diffusion angle of the duct for all of the relative angle configurations was 6◦. Figure 4 shows
the thrust generated at each relative angle configuration for the different rotational speeds and rotor
spacings. The thrust was not significantly affected by the relative angle at 1500 rpm for both rotor
spacings. However, minor variations in the thrust were observed as the rotational speed increased for
both rotor spacings.
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Figure 4. Thrust generated at four relative angles between the front and rear rotors for different
rotational speeds and rotor spacings.

Figure 5a–d shows the total pressure contours at Plane 3 for the different relative angles under
the conditions of a 2700 rpm rotational speed and 200 mm rotor spacing. Refer to Figure 6 for the
location of Plane 3 in the domain. The pressure contours of the 2700 rpm rotational speed and
200 mm rotor spacing cases were compared since the thrust was slightly affected by the relative
angles as the rotational speed increased. The high-pressure region, widely distributed across the
center of the interface, shifted periodically with the change in relative angle. The difference in the
pressure distribution for the different relative angles was negligible. Hence, the effect of the relative
angle between the front and rear rotor was negligible, and the 0◦ relative angle was considered for
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further simulations to evaluate the aerodynamic performance of the counter-rotating ducted fan.
Similar relative angle studies conducted in a gas turbine pre-swirl system [24], an axial turbine [25],
and a centrifugal pump [26] also concluded that the effect of the relative angle is negligible.
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3.2. Aerodynamic Performance Analysis of Counter-Rotating Ducted Fan

Numerical simulations were done for different rotor spacings and duct diffusion angles
(see Section 2.1) under five rotating speeds of 1500 rpm, 1800 rpm, 2100 rpm, 2400 rpm, and 2700 rpm
in hover mode. Figure 7 shows the thrust for the different rotor spacings and duct diffusion angles.
The cases with a 0◦ duct diffusion angle generated about 9% higher thrust than the cases with a
6◦ duct diffusion angle. The rotor spacing variation had a minimal effect on improving the thrust.
The maximum thrust for both duct diffusion angles was observed for the rotor spacing of 200 mm,
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which can also be verified quantitatively from Table 2, where the thrust, thrust coefficient, and the
power coefficient are shown for all cases. The thrust increased with increasing rotor spacing up to
200 mm, and then it started to reduce upon further increase of the rotor spacing. The most substantial
thrust increment occurred when the rotor spacing increased from 120 mm to 160 mm. The thrust of the
200 mm rotor spacing increased by about 1.3–1.5% compared with that of the 120 mm rotor spacing.
Like the tendency of the thrust results, the maximum thrust coefficient was observed when the rotor
spacing was 200 mm. Moreover, the thrust coefficient was higher when the duct diffusion angle was 0◦

rather than 6◦. However, the power coefficient was at a minimum when the rotor spacing was 120 mm
and, in terms of the diffusion angle, the minimum power coefficient was attained for a 6◦ diffusion
angle. In summary, from Table 2, it can be observed that the thrust, thrust coefficient, and power
coefficient became higher either when the duct diffusion angle decreased from 6◦ to 0◦ or when the
rotor spacing increased to 200 mm. Figure 8 shows the figure of merit for different rotor spacings
and duct diffusion angles. The trend of FOM is similar to the thrust results. The FOM increased by
about 1% with increasing rotor spacing up to 200 mm from 120 mm, and it reduced gradually upon a
further increase of rotor spacing. The duct diffusion angle was more effective than the rotor spacing for
improving the FOM. The FOM increased by about 6.7% when the duct diffusion angle decreased from
6◦ to 0◦.

Table 2. Thrust, thrust coefficient, and power coefficient of all the counter-rotating ducted fan cases.

Duct Diffusion Angle [◦] Rotor Spacing [mm]
Thrust [N]

Rotating Speed [rpm]

6

120 49.49 71.30 97.09 126.86 160.62
160 50.18 72.27 98.40 128.58 162.72
200 50.38 72.56 98.84 129.15 163.52
240 50.22 72.34 98.54 128.75 162.99

0

120 53.96 77.76 105.90 138.38 175.21
160 54.78 78.93 107.49 140.46 177.80
200 54.95 79.17 107.84 140.89 178.36
240 54.81 78.98 107.58 140.55 177.91

Duct Diffusion Angle [◦] Rotor Spacing [mm]
Thrust Coefficient

Rotating Speed [rpm]

6

120 0.017335 0.017343 0.017350 0.017357 0.017364
160 0.017576 0.017579 0.017584 0.017592 0.017591
200 0.017646 0.017650 0.017664 0.017671 0.017678
240 0.017589 0.017595 0.017609 0.017616 0.017620

0

120 0.018902 0.018914 0.018924 0.018933 0.018942
160 0.019193 0.019199 0.019208 0.019218 0.019221
200 0.019247 0.019256 0.019272 0.019277 0.019281
240 0.019199 0.019212 0.019226 0.019231 0.019234

Duct Diffusion Angle [◦] Rotor Spacing [mm]
Power Coefficient

Rotating Speed [rpm]

6

120 0.003112 0.003103 0.003096 0.003090 0.003085
160 0.003152 0.003143 0.003135 0.003130 0.003125
200 0.003160 0.003151 0.003143 0.003138 0.003133
240 0.003148 0.003139 0.003132 0.003126 0.003122

0

120 0.003327 0.003318 0.003311 0.003305 0.003301
160 0.003371 0.003361 0.003354 0.003349 0.003344
200 0.003372 0.003363 0.003356 0.003351 0.003347
240 0.003362 0.003353 0.003347 0.003341 0.003337
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Since the rotor spacing had a minimal effect on improving the aerodynamic performance of the
counter-rotating ducted fan, henceforth, only the results of the cases with rotor spacings of 120 mm and
200 mm for θ= 0◦, 6◦ simulated at the maximum rotational speed of 2700 rpm are discussed. Figure 9a–d
displays the total pressure contour in Plane 3. See Figure 6 for the location of Plane 3. The negative
pressure region close to the duct shows rotor tip leakage loss. As the rotor spacing increases, the thrust
increases by about 1%, and, hence, the positive pressure area is extended marginally. The change in
the positive pressure area as the rotor spacing increases is not significant. However, when the duct
diffusion angle reduces from 6◦ to 0◦, the magnitude of the positive pressure increases significantly.

Figure 10a–d shows the axial velocity contours in Plane 4. See Figure 6 for the location of Plane 4.
The axial velocity near the hub increases in the radial direction due to the 9% thrust increase as the duct
diffusion angle reduces from 6◦ to 0◦. As the duct diffusion angle is increased to 6◦, the cross-sectional
area of the duct is also increased, resulting in a lower axial velocity. The high axial velocity region is
widened for an increase in the rotor spacing and a decrease in the duct diffusion angle.

Figure 11a–d shows the axial velocity profiles in the radial direction at different planes. See Figure 6
for the location of the planes. The radial length is normalized with the duct radius. In Figure 11a,
the magnitude and profile of the axial velocities located at Plane 1 for all cases are fairly similar.
Figure 11b indicates that the axial velocity increases at Plane 2 when the rotor spacing is narrow, which
is caused by the influence of the rear rotor. The axial velocities in Plane 3 show variation only after
the normalized radial length of about 0.7 (see Figure 11c). Moreover, at Plane 3, the magnitude of the
axial velocity is higher when s = 200 mm, due to high thrust. In Figure 11d, the magnitude of the axial
velocity at Plane 5 for θ = 6◦ is reduced, resulting from the increased cross-sectional area of the duct.
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Processes 2020, 8, x FOR PEER REVIEW 11 of 14 

 

The negative pressure region close to the duct shows rotor tip leakage loss. As the rotor spacing 
increases, the thrust increases by about 1%, and, hence, the positive pressure area is extended 
marginally. The change in the positive pressure area as the rotor spacing increases is not significant. 
However, when the duct diffusion angle reduces from 6° to 0°, the magnitude of the positive pressure 
increases significantly. 

Figure 10a–d shows the axial velocity contours in Plane 4. See Figure 6 for the location of Plane 
4. The axial velocity near the hub increases in the radial direction due to the 9% thrust increase as the 
duct diffusion angle reduces from 6° to 0°. As the duct diffusion angle is increased to 6°, the cross-
sectional area of the duct is also increased, resulting in a lower axial velocity. The high axial velocity 
region is widened for an increase in the rotor spacing and a decrease in the duct diffusion angle. 

Figure 11a–d shows the axial velocity profiles in the radial direction at different planes. See 
Figure 6 for the location of the planes. The radial length is normalized with the duct radius. In Figure 
11a, the magnitude and profile of the axial velocities located at Plane 1 for all cases are fairly similar. 
Figure 11b indicates that the axial velocity increases at Plane 2 when the rotor spacing is narrow, 
which is caused by the influence of the rear rotor. The axial velocities in Plane 3 show variation only 
after the normalized radial length of about 0.7 (see Figure 11c). Moreover, at Plane 3, the magnitude 
of the axial velocity is higher when s = 200 mm, due to high thrust. In Figure 11d, the magnitude of 
the axial velocity at Plane 5 for θ = 6° is reduced, resulting from the increased cross-sectional area of 
the duct. 

  

  

 

Figure 10. Axial velocity contour in Plane 4 at 2700 rpm for (a) 𝜃 = 6°, s = 120 mm; (b) 𝜃 = 6°, s = 200 
mm; (c) 𝜃 = 0°, s = 120 mm; and (d) 𝜃 = 0°, s = 200 mm. See Figure 6 for the location of Plane 4. 

Figure 10. Axial velocity contour in Plane 4 at 2700 rpm for (a) θ = 6◦, s = 120 mm; (b) θ = 6◦,
s = 200 mm; (c) θ = 0◦, s = 120 mm; and (d) θ = 0◦, s = 200 mm. See Figure 6 for the location of Plane 4.



Processes 2020, 8, 1338 12 of 14
Processes 2020, 8, x FOR PEER REVIEW 12 of 14 

 

  

  

Figure 11. Axial velocity profile along the radial direction at 2700 rpm in (a) Plane 1; (b) Plane 2; (c) 
Plane 3; and (d) Plane 5. See Figure 6 for the location of the planes. 

4. Conclusions 

The present study explores the aerodynamic performances of a counter-rotating ducted fan in 
hover mode numerically. The effect of different rotor spacings and duct diffusion angles on the 
aerodynamic performances is examined. Key findings from this study are as follows: 

1. The effect of the relative angle between the front and the rear rotor, due to the usage of the frozen 
rotor model, is negligible since the variation of thrust for the different relative angles is extremely 
low. 

2. Comparison of the aerodynamic performance parameters for different rotor spacings revealed 
that the thrust, thrust coefficient, and FOM slightly increases with an increasing rotor spacing 
up to 200 mm, regardless of the duct diffusion angle. However, the thrust, thrust coefficient, and 
FOM start to reduce on further increases in the rotor spacing. Conversely, the power coefficient 
is at a minimum when the rotor spacing is 120 mm. 

3. The maximum thrust coefficient is observed when the rotor spacing is 200 mm, and the thrust 
of the 200 mm rotor spacing increases by about 1.3–1.5% compared with the 120 mm rotor 
spacing. 

4. The duct diffusion angle of 0° generates about 9% higher thrust and increases the FOM by 6.7%, 
compared with the 6° duct diffusion angle. 

5. However, the increase in thrust also increases the power coefficient, which results in increased 
power consumption. The minimum power coefficient is attained for a 6° diffusion angle. 

6. The duct diffusion angle is highly effective in improving the thrust and FOM of the counter-
rotating ducted fan, rather than the rotor spacing. 

  

Axial velocity [m/s]

0.0

0.2

0.4

0.8

1.2

5 10 15 200 30

z/
R 

[-]

25 35

1.0

0.6

(a)

s = 120 mm, θ = 6°
s = 120 mm, θ = 0°
s = 200 mm, θ = 6°
s = 200 mm, θ = 0°

s = 120 mm, θ = 6°
s = 120 mm, θ = 0°
s = 200 mm, θ = 6°
s = 200 mm, θ = 0°

Axial velocity [m/s]

0.0

0.2

0.4

0.8

1.2

5 10 15 200 30

z/
R 

[-]

25 35

1.0

0.6

(b)

s = 120 mm, θ = 6°
s = 120 mm, θ = 0°
s = 200 mm, θ = 6°
s = 200 mm, θ = 0°

Axial velocity [m/s]

0.0

0.2

0.4

0.8

1.2

5 10 15 200 30

z/
R 

[-]

25 35

1.0

0.6

(c)

s = 120 mm, θ = 6°
s = 120 mm, θ = 0°
s = 200 mm, θ = 6°
s = 200 mm, θ = 0°

Axial velocity [m/s]

0.0

0.2

0.4

0.8

1.2

5 10 15 200 30

z/
R 

[-]

25 35

1.0

0.6

(d)

Figure 11. Axial velocity profile along the radial direction at 2700 rpm in (a) Plane 1; (b) Plane 2;
(c) Plane 3; and (d) Plane 5. See Figure 6 for the location of the planes.

4. Conclusions

The present study explores the aerodynamic performances of a counter-rotating ducted fan in
hover mode numerically. The effect of different rotor spacings and duct diffusion angles on the
aerodynamic performances is examined. Key findings from this study are as follows:

1. The effect of the relative angle between the front and the rear rotor, due to the usage of the
frozen rotor model, is negligible since the variation of thrust for the different relative angles is
extremely low.

2. Comparison of the aerodynamic performance parameters for different rotor spacings revealed
that the thrust, thrust coefficient, and FOM slightly increases with an increasing rotor spacing up
to 200 mm, regardless of the duct diffusion angle. However, the thrust, thrust coefficient, and
FOM start to reduce on further increases in the rotor spacing. Conversely, the power coefficient is
at a minimum when the rotor spacing is 120 mm.

3. The maximum thrust coefficient is observed when the rotor spacing is 200 mm, and the thrust of
the 200 mm rotor spacing increases by about 1.3–1.5% compared with the 120 mm rotor spacing.

4. The duct diffusion angle of 0◦ generates about 9% higher thrust and increases the FOM by 6.7%,
compared with the 6◦ duct diffusion angle.

5. However, the increase in thrust also increases the power coefficient, which results in increased
power consumption. The minimum power coefficient is attained for a 6◦ diffusion angle.

6. The duct diffusion angle is highly effective in improving the thrust and FOM of the counter-rotating
ducted fan, rather than the rotor spacing.
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5. Future Work

The present study discussed the effects of rotor spacing and the duct diffusion angle on the
aerodynamic performances of a counter-rotating ducted fan in hover mode. However, to enhance the
aerodynamic performance of the UAV, there are still several other design parameters to be considered.
Different duct lip shapes and tip clearances could be considered to optimize the counter-rotating
ducted fan toward the development of high-performance, efficient UAVs. Moreover, apart from the
frozen rotor approach, it is critical to explore various other numerical approaches, such as harmonic
analysis techniques, to numerically model the counter-rotating ducted fan.
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