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Abstract: The dynamic vibration of the gear coupling-rotor system (GCRS) caused by misalignment
is an important factor of low frequency vibration and noise radiation of the naval marine. The axial
misalignment of gear coupling is inevitable owing to mass eccentricity, and is unconstrained in axial
direction at high-speed operation. Therefore, the dynamic model of GCRS is proposed, considering
gear-coupling misalignment and contact force in this paper. The whole motion differential equation of
GCRS is established based on the finite element method. Moreover, the numerical calculation method
of meshing force, considering the uniform distribution load on contact surface, is presented, and the
mathematical predictive time–frequency characteristics are analyzed by the Newmark stepwise
integral approach. Finally, a reduced-scale application of the propulsion shaft system is utilized
to validate the effectiveness of the proposed dynamic model. For the sensibility to low-frequency
vibration, the natural frequencies and vibration modes of GCRS are analyzed through the processing
and analysis of acceleration signal. The experimental dynamic response and main components of
vibration are respectively consistent with mathematical results, which demonstrate the effectiveness
of the proposed dynamic model of GCRS with misalignment. Furthermore, it also shows that the
proposed finite element analysis and calculation method are suitable for complex shafting, providing a
novel thought for dynamic analysis of the propeller–shaft–hull coupled system of marine.

Keywords: gear coupling-rotor system; misalignment; dynamic characteristics; finite element analysis;
low-frequency vibration

1. Introduction

The gear coupling-rotor system (GCRS) is a common mechanical component used extensively
to transfer motion and torsion in drive systems. For its higher load carrying capacity than other
forms of flexible couplings, the GCRS is applied in a wide range of applications, including marine,
aerospace, manufacturing, and wind power. Figure 1a shows gear coupling, which is used as a kind of
aircraft emergency power system to drive the turbine and turn generator by ram air. As shown in
Figure 1b, the propulsion shaft system, which uses the rotation of the GCRS to output the power by
the generator to the propeller–shaft–hull, is an important power system of the naval marine. To ensure
stable and smooth running of the GCRS during sailing, the low-frequency vibration acoustic radiation
and dynamic response of the GCRS are essential to study.
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Figure 1. The industry application of gear coupling-rotor system (GCRS). (a) Application in the ram 
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angular misalignment using the finite element method only. Besides the finite element method, Al-

Hussain [5] proposed the motion differential equation of gear coupling by the Lagrange method, 
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Figure 1. The industry application of gear coupling-rotor system (GCRS). (a) Application in the ram air
turbine of aerospace. (b) Application in the propulsion shaft system.

However, the dynamic characteristics of GCRS (an important power transmission system in
propulsion shaft system) are critically influenced by the misalignment of gear coupling. Gear coupling
consists of two key components: internal gear sleeve and external gear hub. The hub is an external gear
that has longitude involute and tip sphere teeth and the sleeve has internal teeth. The two components
compose a special gear pair. The difference compared to other types of internal gear pairs is that the
number of external gear hub teeth is the same as the number of internal gear sleeve teeth. The rotational
motion and torsional moment can be transmitted from the generator to the propeller by the engagement
of gear coupling. Due to the manufacturing and assembly error, deformation of shaft body, thrust and
vibration disturbance, and the change of environment and temperature, the perfect alignment condition
of the two axes will inevitably worsen. The misalignment condition accounts for approximately 20%
of the known failures of GCRS. Therefore, to optimize performance of the propulsion shaft system,
it is important to investigate tooth contact analysis under load distribution and study the dynamic
characteristics of the GCRS when the involute gear coupling is working with misalignment.

Numerous researches have been performed for meshing tooth contact analysis with misalignment.
Cuffaro [1] found that the stiffness may affect both load and pressure distribution along tooth surface.
Zhao [2] established the three dimensional (3D) model and conducted the finite element analysis of ship
gear coupling with misalignment, and finally drew the conclusion that the contact pressure can vary in
the different meshing area of tooth. Guan [3] developed a computational contact analysis finite element
model to determine the contact points for gear coupling. Tan [4] made research about the distribution
of contact pressure of teeth under the circumstance of radial and angular misalignment using the
finite element method only. Besides the finite element method, Al-Hussain [5] proposed the motion
differential equation of gear coupling by the Lagrange method, which takes into account the parallel
misalignment and angle misalignment separately in the potential energy equation. Barrot [6] indicated
that the correct approximation of tooth stiffness is essential to analyze the pressure distribution,
and even a little difference in the determination of meshing force may cause a significant variation in
the dynamics. Hong [7] established a hybrid analytical-computational model. The tooth compliance
caused by bending, shear, contact, and torsion was solved computationally, which can inspire us in the
contact stiffness analysis.

For the dynamic analysis of whole GCRS, the research has two kinds of main paradigms:
transfer matrix method [8] and finite element method. Tian [9] investigated the mode shapes,
dynamic response, and critical speed of revolution of the whole shaft system. The study results
indicate that the severe vibration of GCRS can be motivated with the offset of the axes of rotational
components, and the vibration frequency is equivalent to the lateral natural frequency. Kim [10]
and Huang [11] used the transfer matrix to establish the dynamic model and conduct the natural
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characteristics analysis. The characteristics of the harmonic component were reviewed through the
steady-state response and mode shape type. The transfer matrix is more suitable for the simplified
structure model. Guo [12] presented a meshing force model by finite element method and studied the
evolution rule of the meshing force with different misalignment. M.L. [13] and Lei [14] derived the
dynamic model of the rotor-gear coupling system by the finite element method. They found that the
second harmonic component is more prominent, and the radial force can cause the lateral vibration
with multiple frequency components.

Although many scholars have extensive research for the dynamics of GCRS, the existing study is
still inadequate. The contact state between sleeve and hub is normally simplified as point contact or
line contact, nevertheless, the actual meshing process is surface contact, the variation and distribution
of meshing pressure on the contact area with misalignment warrants more research. Moreover, most of
the researches mainly focus on the parallel offset of the two axes of the external gear hub and internal
gear sleeve, the GCRS is affected by both parallel and angular misalignment. The dynamic response of
GCRS influenced by comprehensive factors, such as misalignment and bearing stiffness, need to be
further analyzed.

This paper is organized as follows: Section 2 presents the modeling and analysis of GCRS.
The motion differential equation of GCRS is established by the finite element method. The local
meshing force and global induced loads of gear coupling are analyzed, considering both parallel
and angular misalignment. The motion differential equation of GCRS is solved by the subspace
iteration method and Newmark stepwise integration method in Section 3. Furthermore, the effects of
misalignment of gear coupling and bearing stiffness on the time–frequency dynamic response of GCRS
are analyzed. In Section 4, the dynamic characteristics test experiment is carried out, whose software
system is developed based on Virtual Instrument Technology. The dynamic response and first four
natural frequency are detected and analyzed. Besides, the effectiveness of comprehensive meshing
force for gear coupling and dynamic model for GCRS is verified through comparing the result of the
mathematical analysis model and experimental test. Conclusions are drawn in Section 5.

2. Modeling and Analysis of GCRS

In this section, the dynamic differential equation of GCRS is proposed by using the finite element
method. Then, the generating principles, geometries, and dynamics of gear coupling are investigated.
Moreover, the mathematical meshing force model with misalignment for contact dynamic response
analysis is proposed, as well as the contact force model, considering bearing stiffness.

2.1. Finite Element Model of GCRS

The configuration of the GCRS is shown in Figure 2a. The involute tooth coupling which is
mounted to connect the motor and shaft, is designed to contain allowable misalignment and backlash.
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Based on the finite element numerical analysis method, the GCRS can be discretized into
non-uniform cantilever elements as shown in Figure 2b. Assuming that the GCRS contains n nodes,
Fiz and Miz are the force and moment of the ith node in z-axis, and Fiy and Miy are the force and
moment of the ith node in y-axis, respectively. Fzb, Mzb, Fyb, and Myb are the force and moment in
z-axis and y-axis of the node where gear coupling located. m and J are the mass and inertia of the
flywheel. K and C are the stiffness and damp of bearings. Fzb, Mzb, Fyb, and Myb are the force and
moment in z-axis and y-axis of the node where bearing located, respectively.

For any node of the GCRS, the translational and angular displacement will be generated in both
the y-axis and z-axis direction. The displacement vectors of each node of GCRS are defined as:

u =
[

yi zi −θyi θzi

]T
(1)

where yi and zi are the translational displacements of ith node in the horizontal and vertical direction.
θyi andθzi are the angular displacements of ith node in the horizontal and vertical direction, respectively.

According to the Euler–Bernoulli beam model, the dynamic differential equation of GCRS can be
expressed as [15]:

[M]
{ ..
u
}
+ ([C] − [J]Ω)

{ .
u
}
+ [K]{u} = Q(t) + G + F

(
u,

.
u, t

)
+ F(u, t) (2)

where M and J are the equivalent mass and rotational inertia matrices, C and K are the damp and
stiffness matrices, Q(t) and G are the unbalance force and gravity. F

(
u,

.
u, t

)
and F(u, t) are the force

vector of bearing supports and comprehensive force of gear coupling.
The GCRS can be divided into several nodes and elements. The equivalent concentrated external

force on each node is defined as nodal force. The virtual work of equivalent nodal force of node e can
be expressed as:

∆V = ({δ∗}e)T
{F}e (3)

where {δ∗}e is the virtual displacement of node e.
The virtual strain energy caused by internal strain of node e can be expressed as:

∆U = ({δ∗}e)T
y

[B]
T
{σ}dxdydz (4)

where [B] is the strain matrix.
Since the virtual strain energy is equal to the virtual work induced by external force, the following

equation can be obtained:

({δ∗}e)T
{F}e = ({δ∗}e)T

y
[B]

T
{σ}dxdydz (5)

Then, the nodal force can be obtained:

{F}e =
y

[B]
T
{σ}dxdydz (6)

where {σ} = [D][B]{δ}e is the stress. (6) can be rewritten as:

{F}e = {δ}e
y

[B]
T
[D][B]dxdydz (7)

Hence, the stiffness matrix of each element can be obtained:

[k]e =
y

[B]
T
[D][B]dxdydz (8)

Similarly, the mass matrix of each element can be obtained by virtual work principle:

[m]e =
y

[N]
T
ρ[N]dxdydz (9)
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For the linear elastic shaft element, the shape function can be defined as [16]:

[N] =


1− 3ς2 + 2ς3

l
(
ς− 2ς2 + ς3

)
3ς2
− 2ς3

l
(
−ς2 + ς3

)


T

(10)

where ς is the ratio of the position x to the length l of the shaft element.
Furthermore, the mass matrix can be expressed as:

[Mi] =
mi
420


156 22Li 54 −13Li
22Li 4L2

i 13Li −3L2
i

54 13Li 156 −22Li
−13Li −3L2

i −22Li 4L2
i

 (11)

where mi is the mass of the ith element of the shaft.
According to the stress–strain relationship of materials, the strain matrix of the ith element can be

obtained by taking the derivative of the shape function. The stiffness matrix of the ith shaft element
can be obtained by numerical integration from (8).

[Ki] =
EIi

L3
i


12 6Li −12 6Li
6Li 4L2

i −6Li 2L2
i

−12 −6Li 12 −6Li
6Li 2L2

i −6Li 4L2
i

 (12)

The gyroscopic matrix can be expressed as:

[Ji] =
µκ

15Li


36 3Li −36 3Li
3Li 4L2

i −3Li −L2
i

−36 −3Li 36 −3Li
3Li −L2

i −3Li 4L2
i

 (13)

In (2), the total stiffness matrix of GCRS is made up of the stiffness of all corresponding discrete
nodes. For the node in which the bearing is located on, the node stiffness can be added to the
correspondent diagonal elements of stiffness matrix K. However, the node in which the gear coupling
is located on will be affected by the dynamic and unbalanced excitation force (the frequency is almost
two times the rotational frequency of GCRS) due to the misalignment. The unbalanced exaction force
can be expressed as [1]: {

Fyc = Fy + 2mceω2 sin(2ωt− 2ϕ0)

Fzc = Fz + 2mceω2 cos(2ωt− 2ϕ0)
(14)

where mc is the mass of the sleeve, ω is the rotational frequency of GCRS. Fy and Fz are the component
force of comprehensive meshing force of the gear coupling in y-axis and z-axis, which is distinctly
affected by the misalignment. Therefore, the dynamic meshing state and comprehensive meshing force
of GCRS with misalignment need to be analyzed.

2.2. Meshing Model of Parallel Misalignment Gear Coupling (PMGC)

To proceed with the analysis of gear coupling with misalignment, two sets of coordinates
are established:

1. {So : Oo
−XoYoZo

}: the coordinate of the external gear hub as shown in Figure 2, the z-axis is in
the horizontal direction, namely the centerline of the ith teeth, the Y-axis is coincident with the
vertical direction, and the origin point O0 denotes the center point of hub.
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2.
{
Si : Oi

−XiYiZi
}
: the coordinate of the internal gear sleeve with parallel misalignment, the z-axis

and x-axis are in the same direction of S0, the origin point Oi denotes the center point of sleeve
with offset.

As can be seen in Figure 3, the dotted line is the initial position of the ith internal involute teeth
when the internal gear sleeve is not offset. Cf is the intersection of the addendum circle of internal gear

sleeve with offset and the involute profile of external gear hub. l
AC f

i is the actual mesh arc length in the

ith teeth of both hub and sleeve, and l
AC f

i is subdivided into n parts with equal arc length, consequently.
A is the point of addendum circle of the external gear hub located on the involute line of the ith internal
gear sleeve teeth, and B is the point of addendum circle of the internal gear sleeve located on the
involute line of the ith external involute teeth. The arc lPB

ij denotes the arc length between the random

point Pij located in the meshing arc lAC
i and the root point B. Rij denotes the radius of point Pij. Ra is

the distance between point Cf and origin point Oi, namely, the radius of addendum circle of the ith
involute teeth of internal gear sleeve. R f

c is the distance between point Cf and origin point O0, namely,
the radius of point Cf in the ith involute teeth profile of external gear hub.
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Figure 3. The meshing model of equal division for involute teeth with parallel misalignment.

When the axis of the internal gear sleeve and external gear hub is offset, lAB
i (the length of total arc

length for the ith involute teeth) and lAC
i (the length of actual meshing line for the ith involute teeth)

can be obtained by principle of involute generation: lAB
i =

Rb
2

(
tan2 αA − tan2 αB

)
lAC
i =

Rb
2

(
tan2 αA − tan2 αC f

) (15)

where Rb is the radius of base circle of external hub, αA = arccos(Rb/RA) is the pressure angle at point
A (locate on the addendum circle of external gear hub), αB = arccos(Rb/RB) is the pressure angle at
point B. (locate on the root circle of external gear hub).

To the jth point which is located on the random position of actual meshing arc lAC
i , the geometrical

relationship of PMGC can be deduced as:
lPC
ij = j∆l− lCB

ij

αi j = arctan

√(
2lPC

ij
Rb

+ tan2 αC f

)
Ri j =

Rb
cosαi j

( j = 1, · · · , n) (16)
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Then, the corresponding teeth thickness and teeth angle of Pij can be expressed as:
Si j =

πmRi j
2Rb
− 2Ri j

(
invαi j − invα

)
βi j = arcsin

(
Si j

2Ri j

) (17)

where Sij is the tooth thickness of point Pij.

R f
c is the distance between point Cf and origin point O0, namely, the radius of point Cf in the ith

involute teeth profile of external gear hub, which can be obtained by the law of cosine: R f
C =

(
Ri2

a + u2 + v2
− 2Ri2

a
√

u2 + v2 cosλi
)0.5

λi =
π
2 − arctan

(
v
u

)
− βi

(18)

where βi j is the angle between Rij and the center line of the ith teeth of hub, and it can be obtained from
cosine law:

βi = arctan

 Si
mz

+ invα− inv

arccos
Rb

R f
C


 (19)

With the solution of the radius of point Ci considering angular misalignment, the regenerative
meshing line lAC

i , pressure angle αi j and tooth thickness Si j can be obtained.

2.3. Meshing Model of Angular Misaligned Gear Coupling (AMGC)

When the gear coupling tilts because of angular misalignment, the contact areas on each tooth shift
away from the center of the tooth flank. As can be seen in Figure 4, the area O, I, and H are represented
the tooth surface of hub, sleeve, and the meshing area without misalignment. The origin point O0

is located on the intersection of x-axis and end surface of hub, and the origin point Oi is located on
the intersection of x-axis and the central vertical line of sleeve. Ro

a and Ro
f are the addendum radius

and root radius of hub. Ri
a and Ri

f are the addendum radius and root radius of sleeve, respectively.
B denotes the length of meshing area along with the x-axis.Processes 2020, 8, x FOR PEER REVIEW 8 of 24 
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The meshing models of gear coupling in the initial state and with angular misalignment are
shown in Figure 5. The divergence of meshing area and contact length will vary with the angular



Processes 2020, 8, 1336 8 of 23

misalignment. Assuming that there’s a micro misaligned rotational angle θ around y-axis, and the
angle vertex is located at a distance of Lm away from the Zi-axis in sleeve coordinate. Simultaneously,
the contact tooth surface of the internal hub and external sleeve is also changed. It is clear that the
contact tooth surface has become the largest area in the positive direction of Zi-axis, while it is reduced
to the smallest area in the negative direction of Zi-axis. The contact area of other meshing teeth is a
range between them. To facilitate the discussion, the largest contact area in the positive direction of
Zi-axis can be divided into two parts: H1 and H2.
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To facilitate the analysis of numerical relationship between angular misalignment and meshing
force, the contact model is shown in Figure 6, in detail. Owing to the small misaligned angle, point C
and Er are the intersection of the addendum circle of sleeve and involute tooth of hub. In the actual
meshing situation, the intersection of the sleeve and the involute tooth moves from point A to point C
at the right end surface of the hub. D is the point that has equal radius with the point Er, and bD is the
contact width in the Xi-axis. Then, the projection length of the radius of C and D on Zi-axis can be
deduced as: 

rC =
ri
a

cosθ − (L + ∆d) tanθ

rD =
ri
a

cosθ − 2
(
L + ri

a tanϑ
)

tan θ
2

bD = (L + ∆d) tanθ− 2
(
L + ri

a tanθ
)

tan θ
2

(20)

where ri
a is the radius of addendum circle of internal gear sleeve.
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where 
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where R is the radius of pitch circle of involute tooth. f
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The projection length of the radius of C and D on Z0-axis on random teeth can be expressed as: riC = rb + (rC − rb)
∣∣∣sinϕi

∣∣∣
riD = rb + (rD − rb)

∣∣∣sinϕi
∣∣∣ (21)

where sinϕi is presented to compensate the contact error for insufficient contact.

bi j =


(
ri j − rC

)
tanθ Pi j located in H1(

ri j − rC
)

tanθ−
2(ri j−rD)

sin(2θ) Pi jlocated in H2

(22)

The following equations can be obtained by transform the coordinate XOZ into coordinate YOZ:
R f

C = rc
cos βc

βc = arcsin
[
πm
2R + invα− inv

(
arccos

( Rb
RC

))]
ϕi =

π
2 + arctan

(
v
u

)
+ λa + βa

(23)

where R is the radius of pitch circle of involute tooth. R f
c is the radius of point C located in the

coordinate of external gear hub, which can be calculated by substituting (20) and (21) in (23) based on
Newton iteration method.

2.4. The Comprehensive Meshing Force Model of Gear Coupling with Misalignment

Considering the basal-deformation and shearing-deformation transmitted to the driveline, the load
induced elastic deformation of individual tooth can be divided into the following three categories
based on the Weber Energy method as shown in Figure 7: (1) the deformation δs caused by bending,
shear, and axial compression at involute tooth; (2) deformation δb at the round corners and basal body;
(3) local contact deformation δc caused by contact stress. The deformation caused by contact stress in
the jth part is equal to the deformation caused by forces when q is big enough.
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Figure 7. The contact deformation of involute teeth.

In the contact surface, with the variation of load position, the meshing parameters, such as pressure
angle, tooth thickness, and misaligned characteristics, are different, although, in the same contact load
and stress, the elastic deformation of the above mentioned three types are different. As shown in
Figure 8, the uniform distributed load is defined as q, Li is the length of the cantilever, Lij is the distance
between the load point Pij and the supporting point of cantilever, Lkj is the distance between Pij and
the kth element.
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Figure 8. The model of equal division for meshing deformation.

Approximately, the kth tiny arc of meshing tooth profile can be presumed as the length of ∆L,
the geometrics can be obtained: 

∆L = ∆l

Li = Ra cos βa −R f cos β f

Li j = Ri j cos βi j −R f cos β f

Lkj = Ri j cos βi j −Rik cos βik − ∆L

(24)

where β is the angle between the radius of some point located on the tooth profile and Z-axis.
The total deformation δ of the jth part in the ith involute teeth can be expressed as [17]:

δi j =

j=n∑
j=m

k= j∑
k=m

(
δs

jk + δb
jk + δc

jk

)
(25)

where

δs
jk =

12q∆L(1+ν) cos2(αi j−βi j)
5EeAk

δb
jk =

q∆L sin2(αi j−βi j)
EeAk

δc
jk =

q∆L cos(αi j−βi j)
20EeIk

[
4
(
∆L2 + 3L jk∆L + 3L2

jk

)
cos

(
αi j − βi j

)
− 5Si j

(
∆L + 2L jk

)
sin

(
αi j − βi j

)] (26)

where Ee and v are elasticity modulus and Poisson ratio, Ik and Ak are the inertia moment and
cross-section area of kth element.

The theoretical tooth stiffness has been calculated by the ratio between the applied uniform
load and the load induced deformation of the jth part for the ith teeth by considering the tooth as a
cantilever beam.

K j =
q

δb
j + δs

j + δc
j

(27)

Therefore, the comprehensive meshing stiffness of the tooth pair obtained can be expressed as:

K =

∑
q

δb + δs + δc
(28)
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The comprehensive meshing force model consists of torsional force and dynamic force. During the
meshing process, the torque load transmitted by the engaged teeth is called torsional force, and the
force caused by the vibration displacement is called dynamic force. Hence, the normal force between a
pair of involute teeth can be obtained as:

T =
i=Z∑
i=1

Ti =
i=Z∑
i=1

j=n∑
j=m′

Ti j =
i=Z∑
i=1

j=n∑
j=m′

[
qi jRi j cos

(
αi j − βi j

)]
(29)

where T is the transmitted torque, and Ti j is the transmitted torque of jth part in the ith teeth.
The load on each tooth is distributed into n slices along the face width direction. Since the torsional

angular displacement of each tooth relative to the root is equal, the meshing force caused by torsion of
jth slice in the ith teeth is expressed as:

qi j = Ki jχi j =
φKi j

(
Ri j −R f

)
cos

(
αi j − βi j

) (30)

Substitute (29) into (30), the torsional angular displacement can be obtained:

φ =
T

i=Z∑
i=1

j=n∑
j=m′

Ki jRi j
(
Ri j −R f

) (31)

The meshing force caused by torsion of the jth slice for the ith teeth can be rewritten as:

qi j =
TKi j

(
Ri j −R f

)
cos

(
αi j − βi j

)i=Z∑
i=1

j=n∑
j=m′

Ki j
(
Ri j −R f

)
Ri j

(32)

The meshing force caused by the vibration displacement of the jth slice for the ith teeth is
defined as:

fi j =
Ki j

√
u2

y + v2
z sinθi

cos
(
αi j − βi j

) (33)

Hence, the comprehensive meshing force on each slice can be obtained as:

Fi j = qi j + fi j

=
Ki j

cos(αi j−βi j)

 T(Ri j−R f )
i=Z∑
i=1

j=n∑
j=m′

Ki j(Ri j−R f )Ri j

+
√

u2
y + v2

z sinϕi

 (34)

The comprehensive meshing force is variable in the different slice of the teeth, and the individual
teeth force cannot be calculated by the sum of each slice. According to the four quadrants in the
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coordinate of external gear hub, the comprehensive meshing force can be decomposed in the y and
z-axis. The comprehensive meshing force of individual teeth can be expressed as:

Fiy =
j=n∑
j=m

Fi j cosψi j =
j=n∑
j=m

Ki j cosψi j

cos(αi j−βi j)

 T(Ri j−R f )
i=Z∑
i=1

j=n∑
j=m′

Ki j(Ri j−R f )Ri j

+
√

u2
y + v2

z sinθi


Fiz =

j=n∑
j=m

Fi j sinψi j =
j=n∑
j=m

Ki j sinψi j

cos(αi j−βi j)

 T(Ri j−R f )
i=Z∑
i=1

j=n∑
j=m′

Ki j(Ri j−R f )Ri j

+
√

u2
y + v2

z sinθi


(35)

where ψi j is the angle between the normal direction of the jth tooth profile and the positive direction
of z-axis.

The (35) can be rewritten as:
Fy =

i=Z∑
i=1

Fiy =
i=Z∑
i=1

j=n∑
j=m

Fi j cosψi j

Fz =
i=Z∑
i=1

Fiz =
i=Z∑
i=1

j=n∑
j=m

Fi j sinψi j

(36)

2.5. The Dynamic Model of Ball Bearing

According to the Hertz contact theory, the contact force between ball and raceway of both inner
and outer rings is considered to be the point contact. The contact model of the individual point contact
between jth ball and groove is shown in Figure 9. dm/2 is the distance between the jth ball and center
point of bearing. δ ji is the contact deformation of jth ball. Rb is the radius of the ball. Ri is the radius
of the raceway of inner ring. Oc is the center point of the actual contact ellipse, and ai and bi are the
length of long and short axis.
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The normal contact load of ball bearing can be expressed as [18]:
Q ji = K jiδ

1.5
ji

K ji =
πκEave

3F

(
2E

F
∑
ρ

)0.5

δ ji =
∣∣∣∣(ri − rb) − l f

jibr

∣∣∣∣
(37)
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where K ji is the deformation coefficient of the jth ball, Eave is the average elastic modulus, κ and
∑
ρ are

the eccentricity ratio and curvature.
The contact force of the whole bearing can be obtained by integration:

Fyb = −Cb
.
y +

j=Z∑
j=1

(
Qi

jiy

)
Fzb = −Cb

.
z +

j=Z∑
j=1

(
Qi

jiz

) (38)

where Cb = 1.0× 10−5K jiδ
0.5
ji is the contact damp [19].

By Substituting (36) and (38) into (9) and (2), the unbalanced exaction force can be obtained.
Moreover, the dynamic response of GCRS is analyzed by solving the motion differential equation in
Section 3.

3. Dynamic Response Analysis and Test of GCRS

3.1. Numerical Calculation Method of GCRS

To investigate the influence of gear coupling misalignment and rotor speed on the time–frequency
response of gear coupling-rotor system, the subspace iterative method is used to divide and analyze
the GCRS units, and the Newmark stepwise integral approach is adopted to solve the differential
equation of GCRS

As can be seen in Figure 10a, the simplified GCRS is mainly composed of the motor, gear-coupling,
bearings, shaft, and propeller. The shaft is supported by four bearings, which are installed in a
specified location. For the infinite degrees of freedom of GCRS, the equivalent mass and moment
of inertia are concentrated on the left and right nodes along the shaft axis (the nodes are generally
set at the location of sudden change of shaft radius or special parts). Then, each shaft element can
be simplified as a massless uniform elastic shaft, and the GCRS is resolved into a limited degree of
freedom system. All nodes and elements are numbered consecutively from motor to the propeller,
as shown in Figure 10b. The gear coupling is located on node 3, and the bearings are spread on nodes
6, 9, 13, 16, respectively. The parameters of the adopted gear coupling are shown in Table 1, and the
node and element parameters are listed in Table 2.
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Table 1. Basic structure parameters of adopted gear coupling.

Components Modulus Number
of Teeth

Tooth
Width
(mm)

Inner
Diameter

(mm)

Outer
Diameter

(mm)

Pressure
Angle (◦)

External gear hub 1.25 20 25 16 27.49 20
Internal gear sleeve 1.25 20 30 23.44 34 20

Table 2. Nodes and elements of GCRS.

Parameters of Elements Parameters of Nodes

Number Length
(mm)

Diameter
(mm) Mass(kg) Number

Additional
Diameter

(mm)

Additional
Mass (kg)

1
1 100 26 0.419 2
2 40 24 0.143 3
3 50 20 0.124 4
4 43 22 0.129 5 200 5.879
5 51 24 0.182 6
6 132 28 0.642 7
7 120 28 0.583 8
8 31 30 0.173 9
9 114 34 0.817 10

10 105 34 0.753 11
11 105 34 0.753 12
12 114 34 0.817 13
13 31 30 0.173 14
14 120 28 0.583 15
15 132 28 0.642 16
16 51 24 0.182 17 100 2.561
17 43 22 0.129 18

The numerical calculation process is achieved by using the Newmark stepwise integration method.
The initial rotational speed is set to 1000 r/min. The acceleration in next ∆t is set to 1 m/s2. The iterative
formula of the classical Newmark method to solve the dynamic response in this paper:{ .

xk+1

}
t+∆t

=
{ .
x
}
t
+ ∆t[(1− γ)

{ ..
xt
}
+ γ

..
xt+∆t]{

xk+1
}
t+∆t = {x}t + ∆t2[( 1

2 − β)
{ ..
xt
}
+ β

..
xt+∆t]

(39)

where h is the time step, β = 0.25 and γ = 0.5 are the initial control parameter. The greater the value of
β, the more stability the system is. When β > 0.125 and ∆t

T ≤
1

2π
√
β
, the system converges to a stable

state. The calculation process is achieved by MATLAB. The initial velocity and acceleration are set to
1000 r/min and 1 m/s2, respectively.

The continuous time domain is divided into several discrete time intervals ∆t. The initial ti denotes
that the first contact point can be obtained. Then, the meshing points that satisfy the constraints of
dynamic Equation (9) can be solved by using the Newmark numerical method. After that, the dynamic
response has been calculated in one subdivision angular displacement. Assume that the support of the
motor shaft is rigid. To proceed with the numerical computation and experimental test of dynamic
response, the key node numbers 7, 11, and 15 are adopted to analyze.

3.2. Mathematical Solution and Analysis of the Dynamic Response of GCRS

For the initial state, the GCRS is set to operate without misalignment. In Figure 11, the time–frequency
domain dynamic response of the key nodes in y-axis and z-axis is shown in Figure 11a,b. The steady state
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dynamic responses of adopted nodes in the y-axis are ±0.25× 10−4 m, ±0.55× 10−4 m, ±0.8× 10−4 m,
and ±1.0× 10−4m. Meanwhile, the steady state dynamic responses of adopted nodes in the z-axis are
±0.85× 10−4 m, ±0.75× 10−4 m, ±0.65× 10−4 m, ±0.74× 10−4 m. The comparative results indicate that
the steady value of dynamic response in the y-axis is larger than in the z-axis, which means that the
system has higher stability in the z-axis than in the y-axis. Moreover, the bearing stiffness is set to
5 Nm in Figure 10, and 2 Nm in Figure 12. The amplitude of steady value is extended both in the z-axis
and y-axis as the bearing stiffness decreases, while the stability time is not changed, which means that
improving the bearing stiffness can effectively reduce the transient response of vibration.
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domain dynamic response in the z-axis. (d) The time domain dynamic response in the z-axis.
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From Figures 13 and 14, the effects of parallel and angular misalignment on the dynamic response
of GCRS are investigated by mathematical model. The angular misalignment between the hub and
sleeve is denoted by θ, and the parallel misalignment is denoted by a. Figure 13 shows the dynamic
response of node 7, 11, and 15 in y-axis and z-axis with θ = 0.5◦ and a = 0.4 mm misalignment. As can
be seen from Figure 13a–f, the second harmonic generation is motivated in both the y-axis and z-axis of
the number 7, 11, and 15 nodes. The vibration amplitude is gradually reduced as the distance between
nodes and gear coupling increasing. Figure 14 shows the dynamic response of nodes 7, 11, and 15 in the
y-axis and z-axis with θ = 0.5◦ and a = 0.8 mm misalignment. As the parallel misalignment increases,
the first and second harmonic vibration amplitude becomes higher, the third and fourth harmonic
generation components also emerge. Figure 15 shows the dynamic response of nodes 7, 11, and 15 in
the y-axis and z-axis with θ = 0.2◦ and a = 0.4 mm misalignment. The second harmonic generation
can be dramatically reduced by the decrease of angular misalignment. Moreover, from Figures 13–15,
the mathematical simulated results show that the parallel and angular misalignment have implications
on the damp and inertia force, which will give rise to the second harmonic components and amplify
the vibration amplitude in both the y-axis and z-axis.
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Figure 13. The mathematical simulated dynamic response with 0.4 mm parallel misalignment and 0.5◦

angular misalignment of nodes 7, 11, and 15 in the y-axis and z-axis. (a) Node 7 in the y-axis. (b) Node
7 in the z-axis. (c) Node 11 in the y-axis. (d) Node 11 in the y-axis. (e) Node 15 in the y-axis. (f) Node 15
in the z-axis.
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Figure 14. The mathematical simulated dynamic response with 0.8 mm parallel misalignment and 0.5◦

angular misalignment of nodes 7, 11, and 15 in the y-axis and z-axis. (a) Node 7 in the y-axis. (b) Node
7 in the z-axis. (c) Node 11 in the y-axis. (d) Node 11 in the y-axis. (e) Node 15 in the y-axis. (f) Node 15
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the tri-axial acceleration sensor is selected to collect the vibration signal, and the dynamic 

performance test of GCRS was conducted by the eddy current sensor and National Instruments (NI) 

vibration monitoring analyzer as shown in Figure 16. The hammer is used to simulate with a 3 Hz 

test bandwidth. A data acquisition (DAQ) card inserted in a PC is used to receive the analog signal. 

All of the AD/DA conversion, system memory allocation, and accessing modules are executed by the 

controller of NI. The detection data is analyzed by the LabVIEW frequency response analyzer code. 

Figure 15. The mathematical simulated dynamic response with 0.4 mm parallel misalignment and 0.2◦

angular misalignment of nodes 7, 11, and 15 in the y-axis and z-axis. (a) Node 7 in the y-axis. (b) Node
7 in the z-axis. (c) Node 11 in the y-axis. (d) Node 11 in the y-axis. (e) Node 15 in the y-axis. (f) Node 15
in the z-axis.



Processes 2020, 8, 1336 18 of 23

4. Experimental Dynamic Characteristics Analysis of GCRS

In order to verify the proposed comprehensive meshing force model, the comparison experiments
are carried out on the industry rotational shaft system in this section. In the experiment, the tri-axial
acceleration sensor is selected to collect the vibration signal, and the dynamic performance test of
GCRS was conducted by the eddy current sensor and National Instruments (NI) vibration monitoring
analyzer as shown in Figure 16. The hammer is used to simulate with a 3 Hz test bandwidth. A data
acquisition (DAQ) card inserted in a PC is used to receive the analog signal. All of the AD/DA
conversion, system memory allocation, and accessing modules are executed by the controller of NI.
The detection data is analyzed by the LabVIEW frequency response analyzer code.
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Figure 16. The dynamic response experiment setup of GCRS.

The rotational speed can be set from 0 to 3000 r/min. The dynamic response signal of nodes 7, 11,
15 can be obtained by tri-axial acceleration and vibration detection. According to sampling theorem
fs > 2 fm, the sampling frequency is 1000 Hz in order to ensure the reliability of the experimental data.
The vibration voltage signal

{
a(k)

}
(k = 0, 1, 2,..., N), where N is the number of samples) collected by

acceleration sensor is converted into acceleration signal with unit conversion, then the time domain
signal in Figure 17a can be obtained. After the separation of trend term and noise signal by Infinite
Impulse Response (IIR) digital filter, the time characteristic curve can be obtained in Figure 17b.
In order to obtain displacement signals, the acceleration signal needs to be integrated through twice
trapezoidal integral formula y(k) = ∆t

∑k
i=1

[
a(i−1) + a(i)

]
/2. Finally, the frequency characteristic curve

can be obtained by Discrete Fourier Transform (DFT) Y(k) =
∑N−1

r=0 y(r)e− j2πkr/N. Figure 17b shows the
original time domain signal curve and time domain characteristic curve after trend term elimination,
respectively. Figure 18c shows the first four natural frequencies by DFT of GCRS.
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(b) The frequency characteristic curve.
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supports, which is ensured by the measurement of dial indicator. The sample frequency is set to 300 

Hz, and the dynamic response of nodes 7, 11, and 15 are obtained from Figures 18–20. 

Figure 18. The experimental dynamic response with 0.4 mm parallel misalignment and 0.5◦ angular
misalignment of nodes 7, 11, and 15 in the y-axis and z-axis. (a) Node 7 in the y-axis. (b) Node 7 in the
z-axis. (c) Node 11 in the y-axis. (d) Node 11 in the y-axis. (e) Node 15 in the y-axis. (f) Node 15 in
the z-axis.

To proceed with the experimental test of parallel and angular misalignment of gear coupling,
the standard feeler gauges with different thicknesses are placed under the bearing supports. The value
of angular misalignment is determined by the distance and height difference of bearing supports,
which is ensured by the measurement of dial indicator. The sample frequency is set to 300 Hz, and the
dynamic response of nodes 7, 11, and 15 are obtained from Figures 18–20.
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Figure 19. The experimental dynamic response with 0.8 mm parallel misalignment and 0.5◦ angular
misalignment of nodes 7, 11, and 15 in the y-axis and z-axis. (a) Node 7 in the y-axis. (b) Node 7 in the
z-axis. (c) Node 11 in the y-axis. (d) Node 11 in the y-axis. (e) Node 15 in the y-axis. (f) Node 15 in
the z-axis.
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Figure 20. The experimental dynamic response with 0.4 mm parallel misalignment and 0.2◦ angular
misalignment of nodes 7, 11, and 15 in y-axis and z-axis. (a) Node 7 in y-axis. (b) Node 7 in z-axis.
(c) Node 11 in y-axis. (d) Node 11 in y-axis. (e) Node 15 in y-axis. (f) Node 15 in z-axis.

From the experimental results of the dynamic response curves from Figures 18–20, it can be seen
that, the variation trend and rule of each order harmonic generations are consistent with that in the
mathematical model. In comparison to the z-axis, the experimental results indicate that the magnitude
of dynamic response in the y-axis is larger than that in the z-axis, which confirms that the GCRS is
more stable in vertical direction than in horizon direction. In Figure 18, the GCRS is operated with
0.4 mm parallel misalignment and 0.5◦ angular misalignment. The second harmonic generation can
be obviously detected in nodes 7, 11, and 15 in both the y-axis and z-axis. The amplitude of second
harmonic generation of the nodes which is closer to the gear coupling is much higher, which means the
influence of misalignment is reduced as the distance away from gear coupling increases. Besides the
second harmonic generation, the third and fourth harmonic generation components emerge, as well as
some low amplitude high order integer harmonic generations. The experimental dynamic response
curves with 0.8 mm parallel misalignment and 0.5◦ angular misalignment of nodes 7, 11, and 15 are
shown in Figure 19. The second harmonic generations become more obvious as the parallel offset
increases, and the third, fourth, and even some high order harmonic generations have been generated in
the location close to the gear coupling. Figure 20 shows dynamic response curves with 0.4 mm parallel
misalignment and 0.2◦ angular misalignment of nodes 7, 11, and 15. The first harmonic generation
is the major component of the frequency dynamic responses. The second harmonic generation is
significantly reduced comparing to the experimental scheme of 0.4 mm parallel misalignment and 0.5◦

angular misalignment.
In comparison to the mathematical model, the experimental dynamic response curves have an

oscillating behavior, especially in the first two dominant harmonic generations. That can be related to
the simplified model and non-linear friction, which presents small variations all along the meshing
process. The effects of these variations are considered negligible with respect to the effects induced by
the torsional and dynamic vibration of the meshing process, and that can be the subject of future papers.
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5. Conclusions

The dynamic characteristics of misalignment and contact tooth analysis are studied in this paper,
combining theoretical and experimental approaches. Firstly, a dynamic analysis for propulsion shaft
system of marine is carried out, and the motion differential equation is developed by Euler–Bernoulli
beam model. Then, the meshing state, geometrics, and contact tooth analysis considering parallel and
angular misalignment of gear coupling are analyzed, and the comprehensive meshing force model of
gear coupling is presented. In combination with the contact force modeling of bearing, the complete
dynamic equation can be obtained. Furthermore, the GCRS is divided into several nodes and elements
by the structural analysis, and the dynamic equation of GCRS can be solved based on Newmark
integration method. The dynamic characteristics and vibration shapes are analyzed with variation
bearing stiffness and misalignment. The mathematical simulation results show that both parallel
and angular misalignment can induce the second harmonic generation, and the influence of angular
misalignment is more significant than that of parallel misalignment.

Finally, the experimental test of dynamic characteristics for GCRS is carried out by a reduced-scale
propulsion shaft system, and the first four natural frequencies and dynamic responses are analyzed by
vibration monitoring analyzer. In comparison to the mathematical simulation results, the experimental
results validate the similarity of variation trend and rule of each order harmonic generations,
which demonstrate the meshing model and dynamic equation, can represent the actual operation
of GCRS.

The main contribution of this paper is the dynamic characteristics analysis scheme for GCRS.
The modeling method and experimental test have been validated by the vibration detection system,
which can be used to the industry machine tools. The proposed analysis method of dynamic
characteristics is suitable for complex shafting and can be further extended to the propeller–shaft–hull
coupled system of marine.
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