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Abstract: For the simulation of a trickle-bed reactor (TBR) in coal and oil refining, modeling the
liquid maldistribution of the gas-liquid distributor incurs enormous pre-processing work and bears
a huge computational cost. A closed-loop optimized system with computational fluid dynamic
(CFD) data is therefore proposed for the first time in this paper. A fast prediction model based on
support vector regression (SVR) is developed to simplify the modeling of the liquid flow rate in TBRs.
The model uses CFD simulation results to determine an optimized set of structural parameters for the
gas-liquid distributor in TBRs. In order to obtain an accurate SVR model quickly, the particle swarm
optimization (PSO) algorithm is employed to optimize the SVR parameters. Then, the structural
parameters corresponding to the minimum liquid maldistribution factor are calculated using the
response surface methodology (RSM) based on the hybrid PSO-SVR model. The CFD validation
results show a good agreement with the values predicted by RSM, with liquid maldistribution factors
of 0.159 and 0.162, respectively.

Keywords: support vector regression (SVR); particle swarm optimization (PSO); computational fluid
dynamic (CFD) simulation; liquid maldistribution model; gas-liquid distributor; response surface
method (RSM)

1. Introduction

Trickle-bed reactors (TBRs) are widely used in the chemical and oil industries. TBR efficiency
relies on the good distribution of liquid feed over the catalyst bed cross section, so predicting liquid
maldistribution is one of the critical issues in the efficient use of TBRs [1].

Several approaches have been developed to estimate liquid maldistribution. Cold model
experiments are easy to implement and relatively simple to perform in laboratory-scale devices
using a collector at the catalyst bed outlet. However, there is a possibility of flow redistribution at
the exit of the bed [2—4]. To overcome this disadvantage, several groups have focuses on the use
of tomographic measurements using photon attenuation (x-ray and y-ray tomography), magnetic
resonance imagining, and electric tomographic techniques, which provide more quantitative flow
distribution information [5-9]. With the drawback of a high cost and unsafety, the performance of
these techniques depends on the complexity of the reconstruction algorithms. Compared to these
approaches, computational fluid dynamics (CFD) modeling has a relatively low cost and can simulate
both realistic and ideal conditions [10-14]. However, a CFD simulation of the full geometry of a
gas-liquid distributor may be time-consuming, depending on the domain size and the mesh number.
Hence, a time-saving and reliable surrogate model is needed for CFD simulation.

The support vector regression (SVR) method is such a tool generally preferred for solving problems
requiring high computational resources [15-18]. Recently, the applicability of SVR-based models in the
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field of chemical engineering has been well demonstrated. SVR models have already been applied in
predicting the behavior of the gas-liquid interface area (a), kr,, and kg, in TBRs [19] by Bansal et al.
Jalalifar et al. proposed an SVR-particle swarm optimization (PSO) model and combined it with a CFD
dataset to predict the best operating parameters of a pyrolysis reactor [20]. Zaidi used an SVR-based
modeling technique to predict the cycle rates in a thermosiphon reboiler for different pure components
with large variations in thermophysical properties and operating parameters [21].

In this paper, we propose a methodology for obtaining an optimized solution of the gas-liquid
distributor in TBRs on the basis of limited data generated using CFD simulation in order to reduce
the simulation time significantly. The flow chart for obtaining an optimized solution of the gas-liquid
distributor in TBRs is shown in Figure 1. In step 1, CFD data is used as the input to develop an SVR
model, and then PSO is used to accelerate the training speed to find the optimum parameter set for
the SVR model. In step 2, the response surface method (RSM) is used to optimize the structure of the
gas-liquid distributor according to the PSO-SVR model, and then the optimum structure is validated
through CFD simulation.

Step 1: Development of Step 2: RSM optimization &
PSO-SVR model CFD validation
Read CFD data, Designing the
Input training and combination of
test sets structural
‘ Initialize particle ‘ L paramters

¢ ‘ Normalization method ‘
Calculate initial fitness values W v
>

—> Development of RSM model

Calculate individual optimal Training the model with SVR‘
values and group optimal

values

Anti-normalization v
processing,output prediction
results
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Optimal structural
parameters

Recalculate the fitness values
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Calculate the MSE and R’

A

Update individual optimal
value and group optimal
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CFD validation
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Is end condition met?

Acting as the CFD proxy

model
vt it SR
P r ! maldistribution factor

Figure 1. The flow chart for obtaining an optimized solution of the gas-liquid distributor in trickle-bed
reactors (TBRs).

The remainder of this paper is organized as follows. In Section 2, a hybrid modeling method
of PSO-SVR based on CFD simulation data is proposed. In Section 3, the optimal structure of the
gas-liquid distributor is obtained via RSM on the basis of the data from the PSO-SVR model. In Section 4,
a comparison is carried out to evaluate the universality, accuracy, and rapidity of PSO-SVR model,
and the optimization result is verified by CFD simulation. Finally, we draw conclusions and describe
the future research directions in Section 5.
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2. SVR Modeling Hybrid PSO Based on CFD Simulation

The present study aims to predict the liquid flow rate by training an SVR model of the TBR
gas-liquid distributor with data obtained from CFD simulations. In order to accelerate the training
speed of the SVR, PSO then is employed to optimize the parameters of the SVR, due to its efficiency in
solving multidimensional problems.

2.1. Data from CFD Simulations

114 CFD simulation datasets extracted from previously published articles [22] were utilized in
this study. The structure of the Venturi suction-type gas-liquid distributor [22] is shown in Figure 2,
with a throat diameter D, a throat height H, and a throat length L. To accurately show the uniformity
of liquid distribution quantitatively, the liquid maldistribution factor o is defined according to the

following Equation [2]:
N = \2
. 1 ur,; —ur
"‘JN(NH)Z( = g

i=1

where up ; is the liquid flow rate in zone 7, N is the number of zones (11 in this case), and u7, is the mean
flow rate of all zones. As defined, the liquid maldistribution factor varies from 0 (representing the
ideal distribution) to 1 (where all liquid flows into a certain region). Thus, a small maldistribution
factor value qualifies a better distribution. The liquid flow rate is associated with the sampling plane
position and the radial position of the trickle bed. In this paper, we assume that the catalyst bed is
located 300 mm below the gas-liquid distributor plane (i.e., the sampling plane). Velocity sampling is
performed at the center of the sampling plane, located at 0 mm, and 5 radius positions (30 mm, 50 mm,
70 mm, 90 mm, and 110 mm), for a total of 6 positions. Hence, the radial radius is also used as an input
variable of SVR.
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Figure 2. Structure of Venturi suction-type gas-liquid distributor.

In summary, there are four input variables: the throat diameter (D), the throat height (H), the throat
length (L), and radial radius (R). The liquid flow rate through zone i (1 ;) is used as the output variable,
and the maldistribution factor o as the indirect output variable. The input and output variables of the
SVR model and part of the corresponding simulation data from the CFD are summarized in Table 1.
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Table 1. Input and output variables of the support vector regression (SVR) model.

Input Variables Output Variables

%1 x2 x3 x4 %1 y

D (mm) H (mm) L(mm) R (mm) ur i o
40 75 15 90 0.05168 0.307
60 75 15 0 0.78804 0.281
20 75 15 50 0.68672 0.187
50 100 15 70 0.15530 0.276
30 50 0 0 0.89510 0.283
30 25 15 50 0.59876 0.253
30 75 15 0 0.95211 0.239
50 75 15 110 0.05073 0.270
30 50 5 110 0.02788 0.301
30 50 20 30 0.62597 0.295

The operating parameters for CFD simulations and the properties of oil are shown in Table 2.
The Euler gas-liquid two-phase flow model was used for the simulation, and the Schiller-Naumann
drag force model was used between the two phases. The time step was 0.005 s, and the total number of
meshes was 173,800.

Table 2. Properties of oil materials and operating parameters used.

Operating Parameters/Physical Parameter Value
Pressure, MPa 5

Hydrogen—oil ratio, Nm? - m~3 706
Operating temperature, °C 350
Liquid density, kg - m~3 694

Liquid viscosity, kg - m™! - 57! 0.00038
Liquid phase velocity, m - s 0.23
Gas phase density, kg - m™3 30.6

Gas phase viscosity, kg - m™! - s71 0.000015
Vapor velocity, m - g1 0.24

In the previous work [22] by Zhao, often only one factor was considered for each experiment
or calculation, which ignores the interaction among factors. It is essential to consider the correlation
between structural parameters of the gas-liquid distributor.

2.2. Support Vector Regression and Particle Swarm Optimization

Support vector regression (SVR) is a machine learning algorithm based on statistical theory,
specifically, the principle of structural risk minimization to better solve polynomial regression
problems [23,24]. In SVR, the objective function is convex, meaning that the global optimum is
always reached. An abstraction of an SVR model with some kernel functions K(x;, x) is shown in
Equation (2).

1
flx) = Z wi X K(x;,x) + b @)

When solving a nonlinear regression problem, we actually solve for the weights w; and the
threshold b. Our objective is to use the estimated values of w; and b to minimize the regression risk by
considering Equations (3) and (4).

min] =1/l +C )" (& +&) ®
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yi—(wp(x))-b<e+&
st (wdp(x))+b-yi<e+ & 4)
£,E20
where w is the weight vector, 1/2]|w||? is the model complexity, and C is the penalty factor, ¢ is insensitive
loss, &;, & is the relaxation variable.

The Lagrange equation is used to solve this quadratic programming problem, and it is converted
into the dual optimization corresponding to Equations (5) and (6).

max/ (@) = max —% Zmz- -1 (al- - a§>~(aj - a;)K(xi,xj) —¢€ Zil(ai + a?) + Zil yi(ozi - a;)} 5)

j=1

1=

i:1(ai - a’lf) =0
s.t. 0<a;<C (6)
O<a;<C

where «;, a;, aj and a; are Lagrangian operators and K(xl-, x j) is a kernel function, for which the
following holds:

l
flx) = Z‘izl(a,- — af) K(xi, xj) + b. %)
The nonlinear regression function f(x) is obtained through the calculation of the kernel function.
The selection of the kernel function affects the non-linear mapping of the samples directly, and so
choosing an appropriate kernel function is very important for SVR [25]. The Radial Basis Function

(RBF) function [26] is used as the kernel function in this paper because of its excellent generalization
and nonlinear regression ability. Its description is showed as below:

K(xi,xj) = exp(—gllx - xillz) (8)

where g is a kernel function parameter.
In this study, the input and output variables of SVR model is described as Equation (9):

up; = f(D,H,L,R). )

The prediction performance of SVR is closely related to the RBF kernel parameter g, the penalty
factor C, and the insensitive loss € [27]. In order to obtain a support vector regression machine with
better performance, particle swarm optimization (PSO) is adopted for parameter optimization in
this paper. Five-fold cross-validation [28] is used to evaluate the fitness of each particle in the PSO
algorithm to improve the model prediction performance. It is essential to set a lower limit for the root
mean square error (RMSE) in the PSO optimization process to prevent the SVR model from overfitting.
When the RMSE is less than the lower limit, the optimization process is ended. The calculation formula
of RMSE is as follows:

n
RMSE = J %i;(yi ~ f(xi))* (10)
where 7 is the number of samples; y; is the true value and f(x;) is the predicted value of the model.
The PSO algorithm aims to minimize the overall error of the model.

After 60 iterations, the RMSE of the training set after 5-fold cross-validation is 1.215 x 1073, and the
optimization results of c, g, and ¢ are 163, 0.737, and 0.241, respectively. The training set and the
optimized C, g, and ¢ values were then applied to the SVR model for training. Then, the test set was
input to the trained SVR model to obtain the corresponding predicted value. Finally, the performance
of the model was evaluated by comparing the prediction values and the real values.
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2.3. Evaluation Index

The validity of the PSO-SVR model was evaluated by comparing the accuracy and rapidity of the
algorithm. For comparison purposes, the normalized mean square error (MSE) and the coefficient of
determination (R?) were used as performance indicators.

MSE =2 Y (- () an

n

n —\2

Yie1(yi=9)
where 1 is the number of samples; y; is the true value; f(x;) is the value predicted by the model; and i
is the average of the true values. A smaller MSE is indicative of higher model prediction accuracy.

R? ranges from 0 to 1 and is the degree of correlation between the experimental and predictive values.
A higher R? value corresponds to better agreement between observed and simulated results. Here,
a higher R? value and a lower MSE value indicate a better prediction performance.

3. Optimal Structure Obtained from RSM Based on the PSO-SVR Model

The data obtained using the PSO-SVR hybrid model were applied as the input for the response
surface methodology (RSM) to obtain the optimal structural parameters of the distributor.

Response Surface Methodology

RSM is a simple model-based mathematical tool with a low computational burden for predicting
and optimizing engineering problems [29]. It mainly uses a reasonable experimental design method
and obtains a polynomial equation to describe the behavior of a dataset with the objective of making
statistical previsions, while a neural network and PSO cannot be used for such a formulation.

In this article, three structural parameters, namely throat diameter D, throat height H, and throat
length L in a Venturi gas-liquid distributor, were selected as influencing factors. The domain
of the three structural parameters was determined according to the structure of hydrogenation
reactor [22]. The maximum and minimum values of the three factors were input to the Design-Expert
design software. 53 structural combinations of the three factors and five levels were obtained by
user-defined experimental design. The PSO-SVR model was used as the proxy model to obtain the liquid
maldistribution factor o corresponding to various structural combinations of the Venturi gas-liquid
distributor, as shown in Table 3.

Table 3. Experimental plan designed by response surface methodology (RSM) and corresponding responses.

Response (Liquid

Sample No.  Throat Diameter, D  Throat Height, H  Throat Length, L Maldistribution Factor, o)

1 40 100 20 0.3767
2 20 100 10 0.2729
3 40 62.5 15 0.2502
4 60 25 20 0.3629
5 50 43.75 15 0.2499
6 30 81.25 5 0.3113
7 20 62.5 0 0.2621
49 40 25 0 0.3082
50 60 62.5 10 0.3656
51 50 43.75 10 0.3376
52 30 62.5 15 0.2355

53 20 100 20 0.2663
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The quartic regression, Equation (13), was applied to find the interaction relationship between the
three structural parameters and the liquid maldistribution factor as follows:

6=+4034+ 0.088xD+0.069xH-014xL+01xDxH-011xD x L
—0.056 xH x L-0.13xL?-0.059 x D> x H-0.015x D? X L
—0.037 x D x H? = 0.031 x D> - 0.038 x H® + 0.15 x L? (13)
+0.027xD?x L2 - 0.072xD*xH+0.1xD?*x L
+0.049 x H3 X L — 0.018 x D* + 0.026 x H* 4+ 0.12 x L*

Normally, the analysis of variance (ANOVA) is considered a very important tool in finding the
best fitting mathematical regression model. Table 4 shows a valid model obtained from ANOVA.
The p-value of the model obtained in this experiment was far less than 0.05, which indicates that the
obtained regression equation is statistically significant.

Table 4. Analysis of variance (ANOVA) for liquid maldistribution by quartic modeling.

-Value
Source Sum of Squares df  Mean Square F Value I”,rob S F
Model 0.17 20 8.482 x 1073 43.41 <0.0001
D 0.019 1 0.019 98.37 <0.0001
H 0.012 1 0.012 60.36 <0.0001
L 0.049 1 0.049 250.70 <0.0001
DxH 4524 x 1073 1 4524 x 1073 23.15 <0.0001
DxL 5.073 x 1073 1 5.073 x 1073 25.96 <0.0001
HxL 1.341 x 1073 1 1.341 x 1073 6.86 0.0133
12 4157 x 1073 1 4157 x 1073 21.28 <0.0001
D? xH 0.014 1 0.014 73.31 <0.0001
D?xL 9.267 x 1074 1 9.267 x 1074 4.74 0.0369
D x H? 5.669 x 1073 1 5.669 x 1073 29.01 <0.0001
D3 1.549 x 1073 1 1.549 x 1073 7.93 0.0083
H3 2.348 x 1073 1 2.348 x 1073 12.01 0.0015
L3 0.035 1 0.035 180.89 <0.0001
D? x 12 1.281 x 1073 1 1.281 x 1073 6.55 0.0154
D3 x H 2.071 x 1073 1 2.071 x 1073 10.60 0.0027
D3 xL 4,035 x 1073 1 4,035 x 1073 20.65 <0.0001
H®xL 9.451 x 1074 1 9.451 x 1074 484 0.0352
D* 1.013 x 1073 1 1.013 x 1072 5.19 0.0296

Table 5 shows the statistical analysis of the regression equation’s error. R? = 0.9644 indicates that
there is a statistical goodness of fit between the model and the experimental data. The good agreement
between the predicted R? value of 0.8981 and the adjusted R? value of 0.9422 indicates that the model
gives a good estimation of response in the studied range. The coefficient of variation (CV) was 4.22%,
i.e., less than 10%, which is indicative of the high reliability and accuracy of the regression equation.
As a ratio of signal effectiveness, our Adeq Precision of 27.651 was greater than 4, which demonstrates
the high rationality of the regression equation.

Table 5. Statistical analysis of regression equation errors.

Statistics Project Value
Std. Dev. 0.014
Mean 0.33
CV % 422
PRESS 0.018
R-Squared 0.9644

Adj R-Squared 0.9422
Pred R-Squared 0.8981
Adeq Precision 27.651
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The 3D response surface plots for the liquid maldistribution factor illustrate the influence of
structural parameters and the interactions on the response, as shown in Figure 3. The combined
effects of D and H, D and L, H and L on liquid maldistribution factor o were depicted in Figure 3a—c,
respectively. Liquid maldistribution factor o decreases with the increase of throat length L and the
decrease of throat diameter D. The response surface results show that the longer throat length L and
the smaller throat diameter D, the better it is to reduce liquid maldistribution o, while the impact of
throat height H is less significant.

=
=2 e
A T 7

= e,

(c)

Figure 3. 3D plot of response surface for liquid maldistribution factor o. (a) Throat diameter D and
throat height H combination; (b) throat diameter D and throat length L combination; (c) throat height
H and throat length L combination.

The RSM optimization was carried out to minimize the liquid maldistribution factor. The optimal
response combination was obtained for a throat diameter D of 20 mm, a throat height H of 84.5 mm,
and a throat length L of 16.4 mm, and a liquid maldistribution factor o of 0.162. For comparison,
the optimal structure proposed by Zhao was D = 30 mm, H = 50 mm, L = 15 mm, and o = 0.184.
The optimal estimate of the liquid maldistribution factor in this paper is lower than reported by
Zhao et al.

4. Results and Discussion

4.1. Effectiveness Evaluation of the PSO-SVR Model

The validity of the PSO-SVR model as the proxy model was evaluated by comparing the accuracy
rapidity of the algorithm.
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4.1.1. Comparison and Discussion on the Precision of PSO-SVR Model

Figure 4 shows the prediction results of training and test samples of the PSO-SVR model.
The abscissa represents the simulation value of the apparent linear velocity of the liquid obtained using
CFD [22], and the ordinate represents the output predicted value of the PSO-SVR model. The samples
of the training set and the test set are all concentrated in the diagonal attachment, which indicates
that the prediction results are consistent with the experimental data. As shown in Figure 4, the MSE
of the PSO-SVR model for the training set was 2.364 x 10~* and the coefficient of determination R?
was 0.991, which shows a high training accuracy. The normalized MSE of the test set was 5.391 x 10~
and the coefficient of determination R? was 0.985, which shows that the prediction result is still good.
Therefore, the PSO-SVR model can be used as a proxy model to predict the liquid distribution of the
gas-liquid distributor accurately.

25F

@ Training sample
A Test sample
— X=Y

20

Liguid apparentvelocity from PSO-SVR (m /&)

9
10
? *
]

05 @ MSE=2.364x10" R*=0.991
° A MSE=5391x10 R*=0.985
(](] 1 1 1 1 1
0.0 0.5 1.0 15 2.0 25

Liguid apparentvelocity from CFD (m /s)
Figure 4. The prediction results of training and test samples.
4.1.2. Comparison and Discussion on the Rapidity of PSO-SVR Model

The comparison result of the SVR algorithm optimized with the grid search method and the
PSO-SVR model is shown in Table 6. Optimizing the SVR parameters using PSO yielded a result of
{C =163, g =0.737, ¢ = 0.241}, while optimization using the grid search method resulted in {C = 5.6569,
§=1.071, & = 0.01}. The MSE of the PSO-SVR model was 5.391 x 107%, and R? was 0.985, while the
MSE of the SVR model was 1.314 x 1073, and R? was 0.976. The CPU time required by the SVR with
the standard grid method and PSO-SVR (t = 1047 s and 36.15 s, respectively). The results show that,
as a very effective evolutionary algorithm, the PSO can replace the standard grid search method to find
better model parameters and improve the optimization speed and accuracy.

Table 6. Comparison of evaluation parameters between particle swarm optimization-support vector
regression (PSO-SVR) and support vector regression (SVR).

{C g ¢ MSE R? CPU Time
PSO-SVR  {C=163,¢=0.737,¢=0241} 5391x107*  0.985 36.15s
SVR {C=56569,¢=1071,¢=001} 1314x107° 0976 1047 s

4.2. Verification of the Optimal Structure

To verify the credibility of the optimal structure of the gas-liquid distributor proposed in this
paper, CFD simulations were conducted using ANSYS FLUENT V15.00 and run on a high-performance
computing (HPC) system. The computations were carried out using an Intel Xeon (R) Gold 5118
processor with 24 CPU cores. As far as the boundary conditions are concerned, velocity-inlet conditions
were used at the domain inlet and a pressure outlet condition was specified at the domain exit.
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The physical properties and initial speed were set according to the properties of oil materials and
operating parameters in Table 2. The input speed of the single distributor was 0.02987 m/s, and the
cylindrical wall surface was set as an adiabatic, non-slip wall surface. The standard k-¢ model was
selected as the turbulence model, using the SIMPLE-algorithm for the pressure-velocity coupling.
The 3D non-steady state was taken as the initial condition for calculation. With a time step of
0.005 s, converge was achieved at 150 s for residual curve values of all the equations constantly stable
below 0.001.

The velocity distribution contour of the gas-liquid distributor converging to steady state is shown
in Figure 5. The velocity distribution of the oil materials at 300 mm below the gas-liquid distributor
tray is obtained as 1.4633, 1.3517, 1.0972, 0.7715, 0.4911, 0.2405 at the sampling position mentioned in
Section 2.1. Maldistribution factor o was calculated as 0.159 according to Equation (1), which is in
good agreement with the value of 0.162 obtained using RSM.

Liquid Velocity
0.734x107! m
. 0.698x 107!
0.661x10"!
0.624x 107!
0.588x 10!
0.551x10"
0.514x107!
0.477x10%!
0.441x107!
0.404x 107
P’“"* 0.367x10"!
o 0.330x107!
0.294x 107!
0.257x10™
0.220x 107!
0.184x10™
0.147x10°!
0.110x107!
7.340x10!
3.670x10!

0.000
[mv/s]

Figure 5. Velocity contour of Venturi distributor at central surface.

The distribution performance of the distributor with the optimal structure is analyzed according
to the liquid velocity distribution contour shown in Figure 5. After falling into the distribution tray;,
the materials continue to pile up, and then enter the dispenser under the suction of the slit. In this
process, the gas and liquid phases are violently mixed. While the continuous liquid phase is broken by
the gas phase, it flows upward along the channel, and the materials in different directions crash above
the downcomer and flow downward. Due to the improved Venturi structure existing in the gas-liquid
distributor, the flow area at the throat position decreases sharply, with the velocity of oil materials
reaching a maximum speed of 7.34 m/s. The accumulation of materials in the position of the throat
causes a large pressure above the throat, and a high-pressure difference is forming under the throat.
The material fills the outlet section quickly when it flows out through the throat under the effect of the
pressure difference. The inclined outlet section in the Venturi structure produces a larger diffusion
angle when the material flows out of the distributor, thus a larger radial distribution of the material on
the catalyst bed is achieved.

5. Conclusions

In this study, we investigate the utility of using the PSO algorithm for optimizing the parameters
of SVR in order to obtain an effective hybrid model (PSO-SVR) for application in modeling liquid
maldistribution of the gas-liquid distributor in TBRs. The hybrid PSO-SVR model was based on limited
CFD simulation data to replace the time-consuming CFD simulation for different cases, with a very
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low time cost for accurately predicting the results of the liquid distribution. RSM was used to predict
the optimal structure of the gas-liquid distributor in TBRs based on the PSO-SVR model. To ensure the
accurate values of the best structural parameters obtained using RSM, another simulation of these
structural was performed using CFD to determine the liquid maldistribution. The CFD simulation
results reaffirmed the accuracy of the optimal structure proposed in this paper.

The model development, experiment design, and CFD validation are coupled with the following
concluding remarks:

(1) SVR was used with limited CFD simulation data to overcome the high computational load issue
of CFD and achieve an accurate mathematical model.

(2) The PSO algorithm was employed to determine an optimal set of parameters of the SVR model
and speed up modeling.

(3) The optimal structure of gas-liquid distributor was obtained from the combination of PSO-SVR
and RSM.

(4) RSM was applied to clarify the influence of structural parameters of the gas-liquid distributor on
the liquid maldistribution.

(5) A closed-loop optimized system was designed beginning from collecting CFD data, modeling
with PSO-SVR, optimizing by RSM, and ending with CFD validation.

The closed-loop optimized system proposed in this manuscript could also be applied to the
modeling and optimization of chemical process, as well as related chemical equipment structure.
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