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Abstract: Compression ignition (CI) engines that run on high-viscosity fuels (HVF) like emulsified
biofuels generally demonstrate poor engine performance. An engine with a consistently low
performance, in the long run, will have a negative effect on its lifespan. Poor combustion in engines
occurs mainly due to the production of less volatile, less flammable, denser, and heavier molecules
of HVF during injection. This paper proposes a guide vane design (GVD) to be installed at the
intake manifold, which is incorporated with a shallow depth re-entrance combustion chamber (SCC)
piston. This minor modification will be advantageous in improving the evaporation, diffusion,
and combustion processes in the engine to further enhance its performance. The CAD models of
the GVD and SCC piston were designed using SolidWorks 2018 while the flow run analysis of the
cold flow CI engine was conducted using ANSYS Fluent Version 15. In this study, five designs of
the GVD with varying lengths of the vanes from 0.6D (L) to 3.0D (L) were numerically evaluated.
The GVD design with 0.6D (L) demonstrated improved turbulence kinetic energy (TKE) as well
as swirl (Rs), tumble (RT), and cross tumble (RCT) ratios in the fuel-injected zone compared to
other designs. The suggested improvements in the design would enhance the in-cylinder airflow
characteristics and would be able to break up the penetration length of injection to mix in the wider
area of the piston-bowl.

Keywords: alternative fuels; engine modelling; piston; guide vane; biofuels

1. Introduction

Diesel engines, otherwise known as the compression ignition (CI) engines are widely used
in industrial, commercial transportation, agricultural, watercraft propulsion power, and non-road
construction applications, particularly in off-grid situations [1]. To date, petro-diesel fuels have
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dominated as the preferred fuel in CI engines [2]. However, the periodic shortage of petroleum,
fluctuations in petroleum price in the global market, and strict regulations on vehicular emissions in
several countries have encouraged automotive manufacturers, scientists, and researchers to look for an
alternative source that could replace existing fossil fuels [3]. Modern lifestyle and rapid development
in urban areas have surged the global demand for fossil fuels to approximately 53%, according to the
report of the International Energy Agency [4]. For this reason, the challenges in the new era of the
twenty-first century are to resolve the dependency on fossil fuels and to minimize the emission of
exhaust pollutants for the sake of human civilization.

Biofuel is a potential fuel alternative since it can be easily extracted from various feedstocks
such as plants, vegetable oil, edibles/non-edibles, and animal fats. The similarity in the properties of
biofuel and petro-diesel make the former an attractive source to replace the conventional petro-diesel
fuel [5]. The commercial production of biofuel has been reported as an economically feasible process,
with an added advantage of improved emission characteristics [6]. Although the burning of biofuel
could reduce the emissions of pollutants such as soot, particulate matter (PM), carbon monoxide (CO),
and total hydrocarbon (THC); nevertheless, the emission of nitrogen oxide (NOx) is still high due
to the higher auto-ignition temperature of biofuel than that of petro-diesel [7]. The problem can be
alleviated by enforcing biofuel emulsification, wherein the biofuel burning and thermal inefficiency in
the combustion chamber are improved.

Numerous reports have shown that emulsified biofuel emits lower emissions of CO2, NOx, and CO
compared to neat biofuels [8–10]. Prakash et al. investigated the engine performance and emissions
from burning emulsified Jatropha methyl ester (JME), wherein about 35% of the reduction was observed
in the HCs emissions compared to that of neat JME [11]. In another study, it was found that CO2

emission was lower in higher load operated engines using emulsified Jatropa blends as fuel [12].
In general, the emission level of emulsified biofuels may vary based on the level of water concentration.

Generally, the direct use of biofuels without modification either in their properties or the engine
compartment is not recommended as it may lead to inferior engine performance, increased build-up
of carbon, injector choking, filter clogging, excessive fuel consumption, and reduced lifespan [13].
Similar outcomes can also be ascribed to the biofuel properties, such as higher viscosity, lower volatility,
higher density, and presence of heavier molecules during injection. High viscosity fuels are less prone
to evaporation, thus detrimental to the air-fuel mixture in the cylinder. Furthermore, on using neat
biofuel without modifications, a build-up of carbon deposits in the piston-bowl and cylinder wall were
found on disassembling the engine [14]. However, when the biofuel properties were modified closer
to the physiochemical properties of petro-diesel, for instance, biodiesel, a higher thermal efficiency
compared to that of petro-diesel, was observed. It is due to the presence of oxygen molecules and
different auto-ignition constituents in the biodiesel itself [15].

In order to improve the performance and reduce the emission of CI engines to run on high
viscosity fuel, particularly biofuels, researchers introduced various techniques to improve and resolve
the above-mentioned problems. Some of the popular techniques to reduce the viscosity of biofuels are
preheating of the biofuels at a specific temperature [16], blending the biofuel with petro-diesel [17],
and double-blending of biofuel with different cetane numbers [18]. In the engine configuration,
modifications of piston-bowl, intake manifold, and injection pressure and timing to suit the applications
of biofuel were investigated [3,19]. Meanwhile, in the modification of the physicochemical properties
of the biofuel, techniques such as emulsification, double-blending with different viscosity fluid,
and transesterification were introduced [20]. All of these techniques were proven to improve the
performance and emission of CI engines, yet their performance when using biofuel was still lower
compared to that of petro-diesel [21]. So far, very few studies related to the modification of in-cylinder
airflow characteristics to enhance the engine performance and reduce the emissions when running on
high viscosity fuels like emulsified biofuel have been conducted.

Studies to improve the in-cylinder airflow characteristics inside the engine combustion chamber
are beneficial as their capabilities to stimulate and break down the highly viscous fuel during the
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injection stage could be investigated [22]. Furthermore, the penetration length of spraying can
be reduced, and the spreading angle along the piston-bowl can be enhanced. Several designs to
improve the engine in-cylinder airflow were proposed by researchers, such as baffles or butterfly
valves, intake runners, guide vane design (GVD), combustion chamber designs, and piston bowl
geometry designs. Among the proposed designs, GVD signifies the simplest design with a promising
improvement of in-cylinder airflow compared to other designs [23]. GVD also escapes the need for an
extensive physical modification on CI engines. Therefore, this study suggests that the GVD will improve
CI engines in terms of swirl, turbulence, kinetic energy, tumble, and cross tumble ratios. However,
none of the researchers had explored the idea of combining GVD with piston geometry design to
enhance the in-cylinder airflow characteristics and regulate fluid flow inside the combustion chamber.

In this paper, the identified research gap has been considered by investigating the in-cylinder
airflow characteristics using the combination of guide vane design (GVD) and piston bowl design of
the shallow depth combustion chamber (SCC) type to enhance and regulate the in-cylinder airflow
characteristics of CI engines. Concerning GVD, the four main parameters of the study are vane height,
vane angle, vane number, and vane length. However, this research is limited to optimizing the length
of the vane, while the other parameters were kept constant at fixed values based on the findings
from previous studies [24–26]. As for the piston bowl design, the SCC type was selected since it is
capable of generating uniform fluid flow throughout the piston-bowl design, as suggested by several
researchers [27–29].

2. Computer Simulation

SolidWorks 2018, a computer-aided drawing software, was used in this research to draw the GVD
and SCC piston-bowl design. ANSYS FLUENT 15, a computational fluid dynamics (CFD) analysis
software, was employed to simulate the CI engine. The simulation was conducted based on three stages:
the SCC piston-bowl design, base model, and GVD with various lengths of the vane. The simulation
of the CI engine is comprised of four main steps, namely, drawing the model, meshing the elements,
setting up the boundary conditions, and computing the CI engine airflow characteristics. The details
of the constructed computer simulation models are discussed in the following sections.

2.1. Engine Specification Model

The numerical investigation was conducted on the CI engine, which was readily available in the
automotive laboratory of the School of Mechanical Engineering, Universiti Sains Malaysia. The engine
was a Yanmar L70AE, which can constantly run at 2000 rpm. Table 1 shows the specifications of the
Yanmar L70AE engine.

Table 1. Technical specifications of the Yanmar L70AE engine.

Engine Parameter Detail

Model Yanmar L70AE
Bore 78 mm

Stroke 62 mm
Compression ratio 19.1

Number of cylinders 1
Weight 36 kg

Type of injection Direct injection
Fuel injection pressure 19.6 Mpa

Displacement 0.296 L
High idle speed 3600 rpm
Injection timing 14 + 1 BTDC

Intake Naturally aspirated
Direct of rotation Counterclockwise
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2.2. Design Geometry of Piston-Bowl

The selection of the piston-bowl geometry design is crucial because a very close relationship exists
between the air–fuel mixture and emission formation in a diesel engine. The piston–bowl design
employed in this study was the shallow depth re-entrance combustion chamber (SCC). The SCC
piston-bowl design was chosen as it was capable of producing homogenous and well-organized
in-cylinder airflow characteristics applicable for high viscosity fuels such as emulsified biofuel [27].
Figure 1 illustrates the SCC piston–bowl design.
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2.3. Guide Vane Design (GVD)

The primary purpose of a guide vane in the intake runner is to guide the airflow before it enters
into the cylinder. It is a static vane used according to its shape to deflect the airflow [25]. It is usually
placed within the intake system between the air filter and the inlet valve. In the existing engine,
using alternative fuel of higher fuel viscosity will result in inferior engine performance due to the
higher viscosity fuel. The pattern of spraying is also different when using diesel and alternative fuels
like emulsified biofuel. The injection pattern when using diesel produced a wide cone angle and
short-length penetration. However, using emulsified biofuel shows an inverse pattern of injection,
which produces a low cone angle and long-length of penetration, promoting problems like carbon
deposition in the piston bowl. In order to mitigate this limitation, the in-cylinder airflow characteristics
need to be improved. The engine performance is enhanced by using alternative fuels or fuels with
a higher viscosity, and it is necessary to improve the in-cylinder air flow swirl and tumble in the CI
engine, i.e., at the start of injection (SOI), start of combustion (SOC) or in the ignition delay region.
Attention is paid to the ignition delay because of the in-cylinder air flow strength, which is capable of
breaking down the higher viscosity of the alternative fuel or emulsified biofuel molecules allowing
them to spread outward and facilitating better mixing of air and fuel. Guide vane design considers the
arrangement of vanes in the intake runner; the vanes serve to guide the airflow before the airflow is
introduced into the combustion chamber during the intake stroke [26]. Since guide vanes have fins to
guide the airflow, the developed swirl is predicted to be better than that produced by a typical engine
configuration, as it will combine with the existing swirl created by the piston-bowl and swirl chamber.

The computer-aided design software, SolidWorks 2018, was utilized for drawing the guide vane
model and for describing the study parameters. Limited literature is available concerning the effects
of parameters such as the number of vanes, vane height and length, and their corresponding angles.
The effect of guide vane length was investigated in this research, and the specifications of the GVD
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are given in Table 2. Based on studies found in the literature, the length of the guide vane is a key
factor for determining the momentum and structure of the inlet airflow during a combustion process.
However, an over-designed GVD length could result in hindering the airflow, which negatively affects
the volumetric efficiency. In this sense, the current research varied this key parameter, i.e., GVD length,
based on the diameter of the intake runner (R). The lengths were varied from 0.6 to 3.0 times the
diameter (D) in steps of 0.6 and were labelled as 0.6D (L), 1.2D (L), 1.8D (L), 2.4D (L), and 3.0D (L),
respectively. Altogether, a total of 5 GVD models with varying vane lengths were evaluated in this
study. L represents the vane length, with variations, while the other parameters such as the angle,
width, and number were correspondingly fixed at 35◦, 0.2 times R, and four vanes were retained
perpendicular to one another. Figure 2 shows the GVD design employed in this study.

Table 2. Specification parameters of the GVD.

GVD Parameter Parameter Detail

Number of vanes 4
Width of vane (W) 0.5 mm
Height of vane (H) 0.60R
Length of vane (L) 0.6D (L), 1.2D (L), 1.8D (L), 2.4D (L) and 3.0D (L)

Vane twist angle (α) 35◦
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3. Numerical Setting

SolidWorks 2018 software was used to design the geometry of the YANMAR L70AE CI generator
diesel engine, based on its specifications. The intake runner, intake valve, exhaust runner, and GVD
were drawn separately as individual parts and were assembled as a single model, as shown in Figure 3.
The complete assembled YANMAR L70AE CI generator diesel engine model was then exported to
the ANSYS-FLUENT v15 CFD software to numerically investigate and solve the complex CFD model
in a cost- and time-effective manner. ANSYS-FLUENT v15 software equipped with adaptive mesh
refinery (AMR) was even capable of refining the mesh during piston motion from the bottom dead
center (BDC) to the top dead center (TDC), as shown in Figure 4. In order to compute and analyze
the parameters representing fluid flow, the overall engine body compartments were set as a fluid
domain, except for the valves, which were set as a solid domain. However, the main challenge in the
3D simulation of the piston-bowl, valves, and cylinder of the CI engine was the correct handling of the
moving boundaries, set for dynamic simulation. The strategies of mesh remapping and grid moving
are the conventional techniques used by various researchers [30,31]. The mesh generation technique
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employed in this research was based on the level assembly meshing technique. The CFD simulation
setting was based on the cold flow CI engine specifications published by the company ANSYS Inc. [32].
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The numerical simulation presented in this work focused on the intake and compression strokes,
using the algorithms of mesh simplification and dynamic mesh moving boundaries [32]. An arbitrary
Lagrangian-Eulerian (ALE) approach was taken to treat the moving mesh for the typical events that
occurred in the CI engine, encompassing the valve and piston motions. Every event represents
different mesh types and boundary geometries for every single different step of crank angle. Therefore,
to perform a proper numerical simulation for the CI engine, several analyses and calculations should
be considered, including the unsteady flow (transient) condition, high compressible Reynolds number
(Re), moving mesh, momentum, heat, and mass transfer computations.
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The conservation of mass, momentum, energy (energy equations) and k-ε turbulence models are
governed by the Navier-Stokes equations [33], given below:

∂ρ

∂t
+∇.(ρU) = 0 (1)

where ρ is the density of the fluid and U is the three-dimensional speed in the direction of the x, y and
z axes. The momentum equation is based on Newton’s second law of motion, in which the forces
considered are the body and the surface forces on the volume of control, written as follows:

∂(ρU)

∂t
+∇.(ρU ⊗U) = −∇p +∇.τ+ SM (2)

where p is the pressure of the fluid, τ is the strain rate and SM is a source of momentum. All of these
equations are referred to as Navier-Stoke equations [33]. The energy equation is defined as the rate of
energy change within the fluid element, given in the conservation form by

∂(ρhtot)

∂t
−
∂ρ

∂t
+∇.(ρUhtot) = ∇.(λ∇T) +∇.(U.τ) + U.SM (3)

where htot is total enthalpy and λ is thermal conductivity, respectively.
Shear stress transport (SST) is a two-equation eddy–viscosity model that is employed in this

analysis. The SST model is a combination of k-ω and k-ε turbulence models which can overcome the
limitation of the shear stress until a 5% turbulence intensity is reached in the adverse gradient region.
The pressure and temperature conditions considered in this study are 101.3 kPa and 300 K, respectively.
Detailed information on the settings and boundary conditions of the models can be referred to in the
ANSYS FLUENT v15-Solver Theory Guide [32].

On the theoretical basis of physical boundary conditions of the engine, two distinct phases of
simulation studies were carried out: intake port analysis and intake analysis. Intake port analysis is
associated with the clearance volume before airflow is inducted into the cylinder along the y-direction,
while the intake analysis is related to the intake runner. The components that are not applicable in this
work were suppressed as there was no contribution to the results. This is to minimize the computation
time and increase the accuracy of analysis during the calculations.

4. Results and Discussion

The use of high viscosity fuels like emulsified biofuel aimed to improve the engine’s performance,
reduce the emissions, and increase the engine lifespan. Therefore, this research focuses on improving the
characteristics of in-cylinder airflow to stimulate diffusion, evaporation, air-fuel mixing, and combustion
processes in the CI engine, within the injection delay period. Based on the specifications of the Yanmar
L70 engine as shown in Table 1, the injection timing was set 14◦ before approaching the top dead center
(BTDC). Thus, this section also presents the in-cylinder airflow characteristics concentrating on the
start of injection (SOI) between the crank angle (CA) of 346◦ and the start of combustion (SOC) between
352◦ CA. The in-cylinder airflow characteristics, such as swirl (Rs), turbulence kinetic energy (TKE),
tumble (RT), and cross tumble ratio (RCT) are the determining components responsible for stimulating
diffusion, evaporation and mixing, thereby improving the combustion efficiency. Hence, the simulation
results were compared for various vane lengths with the base model of the engine to examine the
effects on the in-cylinder airflow characteristics and eventually determine the optimum vane length.

4.1. Model Validation

This section discusses the experimental setup adopted in the study for validating the results of
numerical simulation. The experiment was carried out in a test rig of the CI generator diesel engine
YANMAR L70AE model, as shown in Figure 5. The existing data were used for numerical validation,
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considering some important technical aspects. During the experiment, all the engine boundary
conditions were fixed, and a Kistler 7061B sensor with a highly sensitive water-cooled precision was
screwed directly into the standard M14 hole. An optical sensor at the TDC position with a magnetic
pickup shaft encoder was used to measure the in-cylinder pressure and record the data of crank angle
positions. For better accuracy, the sensor was mounted near the valve. K-type thermocouples were
installed at the intake and exhaust boundaries as close as possible to the cylinder head to measure the
temperature. In this experiment, the SCC piston was fabricated and installed first-hand in the YANMAR
L70AE CI generator diesel engine before running the engine test rig to collect experimental data.
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In order to characterize the large scale in-cylinder air-fuel mixing during the intake and compression
strokes, three main components that influence the in-cylinder air flow motion, namely Rs, RT and
RCT were calculated based on the crank angle engine stroke. Figure 6 shows the swirl, tumble and
cross tumble ratio orientation diagrams acting on the cylinder. The dimensionless parameter used
to quantify the rotational and angular motion inside the cylinder commonly characterized the swirl,
tumble and cross tumble ratio. These values were calculated by dividing the engine speed by the
effective angular velocity of the in-cylinder air motion. The three variables investigated in this paper
(swirl, tumble and cross tumble ratio) are presented in non-dimensionless equations [32], as follows:

Swirl ratio is defined as:
Rs =

60Hz

2πIzω
(4)

Tumble ratio is defined as:
RT =

60Hx

2πIxω
(5)

Cross tumble is defined as:

RCT =
60Hy

2πIyω
(6)
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where Hx, Hy, and Hz represent the angular momentum of the cylinder gas about the x-axis, y-axis and
z-axis, respectively. The symbol Ω represents the crankshaft rotation or engine speed in the unit of
rotation/minutes.
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Figure 7 illustrates the in-cylinder pressure (Pa) against the crank angle (θ) for both the experimental
and numerical results of the engine operation without combustion at a rotational speed of 2000 rpm for
the intake temperature and pressure of 302 K and 102 kPa, respectively. The numerical data collected
with the GVD consist of intake, compression, and expansion stroke between 0◦ to 540◦. Based on the
results, a good agreement between numerical and experimental results with a slight difference of about
7% at the peak pressure was observed. This might be due to the friction loss that occurred inside the
cylinder while running the experiment, a factor which is not possible to include in simulation through
numerical analysis.

4.2. Grid Independence Test (GIT)

A grid independence test (GIT) is a term used to describe the process of improving the results by
successfully using smaller cell sizes for the calculations. A calculation should approach the correct
answer as the mesh gets finer. The components involved in the numerical calculations are the valves,
intake port, cylinder head and piston-bowl. GIT is essentially performed as it will affect the time and
cost of the computational analysis. Typically, the cell size ranges from coarse to ultrafine, and the
number of elements was set between 100 and 400 k. For the sake of grid sensitivity and reasonable
computation time, half of the cells were used to generate meshes in the cylinder head and piston-bowl.
The hexahedral mesh was applied in the mesh generation step at the cylinder motion from the bottom
dead center (BDC) to top dead center (TDC), owing to their stability and better accuracy compared
to other types of mesh. Table 3 shows the comparison of elements average cylinder of mesh and the
pressure generated into the cylinder. From Table 3, Case 3 exhibits the optimum pressure generated;
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when the elements of the mesh were increased, the pressure indicated similar values to Case 3.
Therefore, Case 3 was selected for further analysis.
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Table 3. Grid independence test.

Case 1 2 3 4 5

Elements average cylinder 101,191 249,543 301,142 369,178 446,769
Pressure (Pa) 2.013 × 106 3.109 × 106 3.160 × 106 3.160 × 106 3.160 × 106

4.3. Turbulence Kinetic Energy (TKE)

Theoretically, TKE is the mean kinetic energy per unit mass associated with eddies in a turbulent
flow [3,34]. In other terms, it is the fluctuation of velocity in the in-cylinder airflow and is calculated
based on the root-mean-square. During the movement of the piston in the compression stroke,
the piston moves from the bottom dead centre (BDC) towards the top dead centre (TDC) and reduces
the volume of the combustion chamber, hence limiting the fluctuation of the cylinder airflow motion.
When the piston approaches the TDC, the velocity of air starts to decrease and becomes zero after
reaching the TDC. Therefore, TKE is expected to decrease during this time. Several researchers studied
and confirmed that the trend of turbulence pattern diminished linearly while the piston was heading
towards the TDC [35,36]. Furthermore, Payri et al. investigated and found that in the early stage
of the intake stroke, the piston geometry had little effect on the in-cylinder airflow [35]. However,
the piston-bowl geometry played a significant role during the movement of the piston approaching the
TDC in the compression stroke and the early stage of the expansion stroke. Figure 8 demonstrates
that the base engine without GVD showed the lowest magnitude of TKE compared to the other
modifications of GVD. The TKE of the vane modified engine compared with the baseline engine
showed a 30% difference with 1.8D (L), 35% with 2.4D (L), 40% with 1.2D (L), and 45% with 0.6D (L).
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The GVD model with 0.6D (L) displayed the highest TKE produced, followed by the other designs.
The graph also implies that further increase in the length of the GVD does not considerably increase
the TKE. However, it could be an indication of the minimal length of GVD required for rapid guidance
of airflow, less air resistance, and swift initial turbulence in the intake manifold. A minimal length of
vanes would be able to guide the airflow while the SCC piston produced a higher magnitude of TKE.
The swirl, which already existed in the SCC piston-bowl and the extra swirl created via the 0.6D (L)
GVD, could match the wind and create a larger magnitude of total swirl. Based on the result, the GVD
successfully improved and increased the average magnitude of TKE.

4.4. In-Cylinder Swirl (Rs), Tumble (RT), and Cross Tumble Ratio (RCT)

The in-cylinder airflow motion in the combustion chamber is an important factor that will
determine the scale of air and fuel mixing during the intake and compression stroke, particularly in
the velocity streamline. The three main components of air structure that will influence the combustion
efficiency are RS, RT, and RCT. Figure 9 shows the in-cylinder air flow swirling strength (Rs) of the
local swirling motion. Rs is defined by the organized movement of fresh air around the cylinder axis.
Swirl is created by an initial angular momentum of the intake airflow into the cylinder. In a diesel
engine, the swirl ratio is important for the preparation of the air-fuel mixture. The swirl effect can
be induced by a special intake port(s) shapes created by the rotational flow in the intake valve area
transferred to the cylinder during the intake process [37]. The simulation results for various vane
lengths are illustrated in Figure 9, which shows the magnitude of Rs. Based on Figure 9, it is found that
all the variations of the GVD model witness an improvement in the Rs compared to the base model.
In combustion theory, the generation of swirl inside the combustion chamber during the injection
period assists in breaking down the molecular chain and practically improves the mixing process of air
and fuel, thereby ultimately improving the combustion and engine efficiency [38]. The GVD design
of 0.6D (L) represents the optimum guide vane length to enhance Rs produced during the start of
injection (SOI) and the start of combustion (SOC).
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Figure 10 illustrates the behavior of RT for different lengths of GVD against the crank angle
before approaching the TDC. RT is defined as the ratio between the equivalent angular velocity of
the instant solid body and the angular velocity of the engine. The angular velocity (ω) is the angular
velocity of a rotating solid angular momentum body equal to that of the instantaneous in-cylinder mass,
evaluated perpendicular to the cylinder axis and centered between the head and the instantaneous
piston position [39]. The negative or positive sign of RT is neglected as it is arbitrary and dependent
on the magnitude obtained. From the graph, it can be seen that the design of the GVD type 0.6D (L)
produced a value closer to that of the base model. However, the GVD model of 0.6D (L) showed a
slightly higher RT value magnitude, about 7% different from that of the baseline engine in the area of
the start of injection (SOI). The other GVD designs showed a lower magnitude of RT values compared
to the baseline engine. This implies that GVD is capable of generating a strong lateral airflow within
the cylinder. Strong lateral airflow generated in the cylinder is imperative and will aid in enhancing
the speed and spread of the atomization of the fuel during the injection. As a result, an improvement in
the flame propagation and combustion efficiency is observed while eliminating the carbon deposition
that will reduce the lifespan of the engine.

Figure 11 shows the RCT for the different lengths of GVD against the crank angle before approaching
the TDC. RCT is defined as the rotational ratio of airflow on the cross tumble axes [40]. In combustion
theory, the enhancement of RCT facilitates the increment of turbulent flow and assists in homogenous
mixing of the fuel and air along the piston-bowl. Nevertheless, RCT has a close correlation with Rs

and RT. Bari et al. found that in order to improve RCT in a CI engine, Rs and RT values need to be
improved [41,42]. Prasad et al. reported that enhancing the RCT air motion is a crucial issue, as it
has an impact on increasing the air-fuel mixing process, achieving faster burning rates, increasing
indicated efficiency, and improving the air management [43]. As previously mentioned, the use of
higher viscosity fuels such as emulsified biofuel will deteriorate the atomization process, subsequently
decreasing the cone angle and increasing the length of penetration. Hence, with the correct length of
GVD, RCT would be able to significantly break down the length of penetration, which is expected to
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widen the cone angle during the injection period. Based on the figure, the 0.6D (L) GVD shows the
highest magnitude of values compared to the base engine and other models of GVD. It is noticeable
that the 0.6D (L) GVD can produce a homogeneous mixture during compression and consequently
improves the lateral flow of air within the cylinder.
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4.5. Characteristics of Cylinder Airflow During Intake and Compression Stroke

Figure 12 illustrates the intake stroke of the streamline of 10◦ and 100◦ crank angle (CA). During the
intake stroke at 10◦ CA, the airflow was initially induced through the SCC piston. As a result of
the lack of guidance in the intake stroke, tumbled flow occurred when the intake valve was opened.
However, when considering the 0.6D (L) GVD, the in-cylinder air flow phenomena behaved differently.
When the intake valve was opened, the airflow initially produced swirl. From the graph, it can also be
seen that in-cylinder airflow velocity improved when using the GVD compared to that of the standard
engine. This outcome is crucial to enhance the in-cylinder airflow by promoting the atomization
of heavy molecules, like emulsified biofuels. The engine that does not use vanes showed lower air
velocity in the combustion chamber during the intake stroke. These results were supported by studies
of Heywood [44], where it was recommended that turbulence intensity in the combustion chamber
could be increased by improving the vortex flow during the intake stroke.
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Figure 13 illustrates the compression stroke of the streamline of 350◦ and 310◦ CA. In the
compression stroke, the piston starts to compress while moving from the BDC to the TDC, and the
volume in the combustion chamber begins to decrease due to the motion of the piston. When both
the intake valve and the exhaust valves are closed, air density, temperature and pressure witness an
increase. Figure 13 shows that the velocity of air is higher during the compression stroke of 310◦ and
begins to decrease when the piston approaches the TDC. The combination of the SCC piston and the
GVD successfully improves the uniformity of airflow on both the sides and also increases the velocity
of air throughout the SCC piston compared to the engine standards. It implies that the engine which
uses vanes in its operation produces higher velocity airflow, high turbulent flow and is able to transport
heavy fuel molecules.
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5. Conclusions

Alternative fuels, particularly emulsified biofuel, possess high potential to replace conventional
diesel fuels in the near future. The renewable nature and the similarities in the chemical properties of
the emulsified fuel show that the existing YANMAR L70AE CI generator diesel engine can use these
alternative fuels with minor modifications. However, high viscosity fuels are generally characterized
by low volatility, comprised of heavier molecules of fuel which may result in a longer length of
penetration and shorter cone angles during injection in the combustion chamber. These patterns of
injection result in incomplete combustion and carbon deposition in the cylinder wall and piston head.
The combination of the GVD and SCC piston-bowl design has successfully enhanced the in-cylinder
airflow characteristics as well as those of Rs, RT, RCT, and TKE in order to assist in evaporating higher
viscosity fuel to improve the combustion and reduce the carbon deposition. ANSYS FLUENT V15 was
used to run the simulation, and it was found that most of the results showed that the 0.6D (L) GVD
design incorporated with SCC piston was capable of improving the in-cylinder airflow characteristics
with better-organized airflow during SOI to SOC period (injection delay) compared to the baseline
engine (without GVD). This combination of improved characteristics of the in-cylinder airflow is
expected to effectively break the penetration length of highly viscous fuels and increase the volatility
of the alternative fuels, resulting in better combustion and reduced carbon deposits. Therefore, it can
be concluded that installing the 0.6D (L) GVD incorporated with the SCC piston will enhance the
in-cylinder airflow characteristics and subsequently improve the performance of engine running on
high viscosity fuels. In the future, the study will be extended to investigate the effect on the injection
profile, structure of spraying, and the combustion characteristics based on the combination of the GVD
incorporated with SCC piston in diesel engines.
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Nomenclature

English Symbol Description Unit
U Three-dimensional flow velocities in the x, y, and z directions m/s
P Pressure Pa
t Time s
h Total enthalpy J/kg
SM Momentum source N/m3

R Radius mm
l Length mm
x,y,z Cartesian coordinates mm
Greek Symbol Description Unit
ρ Fluid density kg/m3

ω Angular acceleration rad/s
λ Thermal conductivity W/m.K
θ Crank angle degree −

τ Strain rate 1/s
α Vane twist angle −

∇ Gradient operator −

Abbreviation Description
GVD Guide vane design
HVF Higher viscosity fuel
SCC Shallow depth re-entrance combustion chamber
SM Momentum source
RT Tumble ratio
SOI Start of Injection
SOC Start of Combustion
RS Swirl ratio
CI Compression Ignition
JME Jatropha methyl ester
HC Hydrocarbons
CA Crank Angle
RCT Cross tumble ratio
TKE Turbulence kinetic energy
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