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Abstract: Dengue fever has been a threat to public health not only in tropical regions but non-tropical

regions due to recent climate change. Motivated by a recent dengue outbreak in Japan, we develop

a two-patch model for dengue transmission associated with temperature-dependent parameters.

The two patches represent a park area where mosquitoes prevail and a residential area where people

live. Based on climate change scenarios, we investigate the dengue transmission dynamics between

the patches. We employ an optimal control method to implement proper control measures in the

two-patch model. We find that blockage between two patches for a short-term period is effective

in a certain degree for the disease control, but to obtain a significant control effect of the disease,

a long-term blockage should be implemented. Moreover, the control strategies such as vector control

and transmission control are very effective, if they are implemented right before the summer outbreak.

We also investigate the cost-effectiveness of control strategies such as vaccination, vector control

and virus transmission control. We find that vector control and virus transmission control are more

cost-effective than vaccination in case of Korea.

Keywords: dengue transmission; patch model; temperature-dependent parameters; control strategies;

climate change

1. Introduction

Dengue fever is a vector-borne disease spread by Aedes type mosquitoes such as Aedes aegypti

and Aedes albopictus. Since Aedes mosquitoes were generally found in tropical regions, dengue fever

has been known as a tropical disease [1]. However, recent dengue outbreaks are expanding beyond

the tropic regions by climate change due to global warming [2]. It has been reported that dengue

transmission is affected by the climate environment [3–5] and in particular, the temperature strongly

affects the dengue dynamics [6,7].

Recently, 160 cases of confirmed autochthonous dengue fever were reported in Tokyo, Japan,

and most of the confirmed cases have been exposed to mosquito bites at Yoyogi Park in the city [8,9].

In case of Korea, a neighboring country of Japan, although there is no autochthonous dengue case

yet, the dengue fever has been predicted to be one of the most probable major threats to public health

in the near future [10], and it has been shown that the frequency of the imported dengue cases in

Korea and Japan has a similar pattern [11]. Moreover, the number of the imported dengue cases have

been increasing recently in Korea [12]. In particular, Seoul, the most populated capital city of Korea,

has several big parks where mosquitoes prevail like Tokyo, and the city would be at a risk from dengue

transmission in the future [13].
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In this paper, we develop a mathematical model associated with temperature-dependent

parameters for describing dengue transmission between two patches which represent a park

area where the dengue vector inhabits and an urban area where humans reside. Based on the

Representative Concentration Pathway (RCP) climate change scenarios, we investigate the effect

of control strategies for the dengue transmission in the two-patch model using the optimal control

method and cost-effectiveness analysis.

2. Materials and Methods

2.1. Two-Patch Dengue Transmission Model

In this section, we develop a two-patch dengue transmission model by applying differential

equation approach. It is assumed that patch 1 is a park area where mosquitoes prevail, and patch 2

is a residential area where people live. The focus area for the model is Seoul Forest Park (patch 1)

and the residential area (patch 2) around the park in Seoul, Korea. A schematic diagram of the full

two-patch model is shown in Figure 1. The model considers the states of mosquito larvae (susceptible

(Sei) and infectious (Iei) by vertical infection), female adult mosquitoes (susceptible (Svi), exposed (Evi)

and infectious (Ivi)) and humans (susceptible (Shi), exposed (Ehi), infectious (Ihi) and recovered (Rhi)),

for patch i = 1, 2. We denote the total larvae population, female adult mosquito population and

human population by Nei, Nvi and Nhi for patch i = 1, 2. That is, Nei = Sei + Iei, Nvi = Svi + Evi + Ivi

and Nhi = Shi + Ehi + Ihi + Rhi. To describe the transmission dynamics in patch 2, we use the

dengue model in [14]. In our two-patch model, we assume that humans can move between patches,

but mosquitoes cannot.

𝑆ℎ 𝐸ℎ 𝐼ℎ 𝑅ℎ 𝑆ℎ𝜇ℎ𝑑𝑆ℎ 𝜇ℎ𝑑𝐸ℎ 𝐸ℎ 𝜇ℎ𝑑𝐼ℎ 𝐼ℎ 𝜇ℎ𝑑𝑅ℎ 𝑅ℎ𝜼𝑺𝒉𝜇ℎ𝑏𝑁ℎ𝒑𝟏𝟐𝒑𝟐𝟏
𝜇𝑣𝑆𝑣 𝑆𝑣 𝜇𝑣𝐸𝑣 𝐸𝑣 𝐼𝑣𝜇𝑣𝐼𝑣
𝜇𝑙𝑆𝑒 𝑆𝑒 𝜇𝑙𝐼𝑒 𝐼𝑒

𝛿1(1 − 𝜈𝐼𝑣1/𝑁𝑣1) 𝛿1𝜈𝐼𝑣1/𝑁𝑣1

𝜇𝑣𝑆𝑣 𝑆𝑣 𝜇𝑣𝐸𝑣 𝐸𝑣 𝐼𝑣𝜇𝑣𝐼𝑣
𝜇𝑙𝑆𝑒 𝑆𝑒 𝜇𝑙𝐼𝑒 𝐼𝑒

𝛿2(1 − 𝜈𝐼𝑣2/𝑁𝑣2) 𝛿2𝜈𝐼𝑣2/𝑁𝑣2
Patch 1 (park) Patch 2 (residential area)

Figure 1. Two-patch dengue transmission model.

We write the governing equations of the model as follows:

Patch 1

Vector

Ṡe1 = δ1 (1 − νIv1/Nv1)− ωSe1 − µeSe1

İe1 = δ1νIv1/Nv1 − ωIe1 − µe Ie1

Ṡv1 = ωSe1 − βhvSv1 Ih1/Nh1 − µvSv1

Ėv1 = βhvSv1 Ih1/Nh1 − εEv1 − µvEv1

İv1 = εEv1 + ωIe1 − µv Iv1

Host
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Ṡh1 = p21Sh2 − βvhSh1 Iv1/Nh1 − p12Sh1

Ėh1 = p21Eh2 + βvhSh1 Iv1/Nh1 − αEh1 − p12Eh1

İh1 = p21(1 − g)Ih2 + αEh1 − γIh1 − p12 Ih1

Ṙh1 = p21Rh2 + γIh1 − p12Rh1

(1)

Patch 2

Vector

Ṡe2 = δ2 (1 − νIv2/Nv2)− ωSe2 − µeSe2

İe2 = δ2νIv2/Nv2 − ωIe2 − µe Ie2

Ṡv2 = ωSe2 − βhvSv2 Ih2/Nh2 − µvSv2

Ėv2 = βhvSv2 Ih2/Nh2 − εEv2 − µvEv2

İv2 = εEv2 + ωIe2 − µv Iv2

Host

Ṡh2 = p12Sh1 + µhb(Nh1 + Nh2)− βvhSh2 Iv2/Nh2 − ηSh2 − µhd(Sh1 + Sh2)− p21Sh2

Ėh2 = p12Eh1 + βvhSh2 Iv2/Nh2 + ηSh2 − αEh2 − µhd(Eh1 + Eh2)− p21Eh2

İh2 = p12 Ih1 + αEh2 − γIh2 − µhd(Ih1 + Ih2)− p21(1 − g)Ih2

Ṙh2 = p12Rh1 + γIh2 − µhd(Rh1 + Rh2)− p21Rh2

In the governing Equation (1), the parameters relevant to larvae and mosquitoes are described

as follows: ω is the maturation rate of pre-adult mosquitoes, and µv and µe are the mortality rate

of adult mosquitoes and larvae, respectively. ν and 1/ε denote the rate of vertical infection from

infected mosquitoes to eggs and the extrinsic incubation period, respectively, and δi is the number

of new recruits in the larva stage for patch i = 1, 2. The parameters βvh = bbh and βhv = bbv are the

transmissible rates from mosquito to human and from human to mosquito, respectively, where b is the

daily biting rate of a mosquito and bv and bh are the probability of infection from human to mosquito per

bite and the probability of infection from mosquito to human per bite, respectively [14]. The parameters

µhb and µhd represent the human birth rate and death rate, respectively, and the two rates are assumed

to be equal. The parameters 1/α and 1/γ are the latent period and infectious period for humans,

respectively. The inflow rate of infection due to international travelers is defined by η [14]. pij refers to

the human movement rate from patch i to j, where ∑
2
j=1 pij = 1 and 0 ≤ pij ≤ 1 for i = 1, 2. Since there

are about 7,500,000 visitors to Seoul Forest Park each year [15], approximately 20,550 people visit the

park daily. Hence, assuming Nh1(0) = 20, 000, Nh2(0) = 480, 000, i.e., the total human population

of both patches is 500, 000, we compute p21 = 20, 550/500, 000 = 0.0411. Moreover, we assume that

p11 = 0.001, which represents that a small number of people such as park keepers and homeless people

stay in the park, and p12 = 1 − p11 = 0.999.

The parameters in the system (1) are described with their values in Table 1.

Table 1. Descriptions and values of parameters.

Symbol Description Value Reference

ν Vertical infection rate of Aedes albopictus mosquitoes 0.004 [16]
1/α Latent period for human (day) 5 [17]
1/γ Infectious period for human (day) 7 [7,16,18]

µhb Human birth rate (day−1) 0.000022 [19]

µhd Human death rate (day−1) 0.000022 Assumed

p21 Human movement rate from patch 2 to 1 (day−1) 0.0411 Estimated

p12 Human movement rate from patch 1 to 2 (day−1) 0.999 Assumed
g Proportion of dengue infections symptomatic in Ih2 0.45 [20]
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Table 1. Cont.

Symbol Description Value Reference

b Biting rate (day−1) ** [21]
bh Probability of infection per bite (v→h) ** [22]
bv Probability of infection per bite (h→v) ** [22]

µe Mortality rates of the larvae (day−1) ** [23]

µv Mortality rates of the mosquitoes (day−1) ** [24]

ω Pre-adult maturation rate (day−1) ** [24]

ε Virus incubation rate (day−1) ** [25]

βvh Transmissible rate (v→h) (day−1) bbh [22]

βhv Transmissible rate (h→v) (day−1) bbv [22]
δi Number of new recruits in the larvae stage µv Nvi + µe Nei [16]

for patch i = 1, 2 (day−1)

η Inflow rate of infection by international travelers (day−1) ** [14,26]

** denotes the temperature-dependent parameters described in Section 2.2.

2.2. Parameter Estimation

The temperature-sensitive parameters for the dengue mosquitoes have been studied in previous

researches [14,16,21–25]. Using the previous results, we describe the parameters sensitive to the

temperature as the following temperature-dependent functions.

(1) The biting rate b of an Aedes mosquito is [21]

b(T) =

{

0.000202T(T − 13.35)
√

40.08 − T (13.35 ◦C ≤ T ≤ 40.08 ◦C)

0 (T < 13.35 ◦C, T > 40.08 ◦C)

(2) The probability bh of infection from mosquito to human per bite is [21]

bh(T) =

{

0.000849T(T − 17.05)
√

35.83 − T (17.05 ◦C ≤ T ≤ 35.83 ◦C)

0 (T < 17.05 ◦C, T > 35.83 ◦C)

(3) The probability bv of infection from human to mosquito per bite is [21]

bv(T) =

{

0.000491T(T − 12.22)
√

37.46 − T (12.22 ◦C ≤ T ≤ 37.46 ◦C)

0 (T < 12.22 ◦C, T > 37.46 ◦C)

(4) The mortality rate µv of the adult mosquito is [21]

µv(T) =

{

1/(−1.43(13.41 − T)(31.51 − T)) (13.41 ◦C ≤ T ≤ 31.51 ◦C)

1 (T < 13.41 ◦C, T > 31.51 ◦C)

(5) Pre-adult maturation rate ω is [21]

ω(T) =

{

0.0000638T(T − 8.60)
√

39.66 − T (8.60 ◦C ≤ T ≤ 39.66 ◦C)

0 (T < 8.60 ◦C, T > 39.66 ◦C)

(6) Virus incubation rate ε is [21]

ε(T) =

{

0.000109T(T − 10.39)
√

43.05 − T (10.39 ◦C ≤ T ≤ 43.05 ◦C)

0 (T < 10.39 ◦C, T > 43.05 ◦C)
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(7) The mortality rate µe of larva (aquatic phase mortality rate) is [24]

µe = 2.130 − 0.3797T + 0.02457T2 − 0.0006778T3 + 6.794 × 10−6T4.

(8) The number of new recruits in the larvae stage δ for patch i = 1, 2 is computed as [14]

δi = µvNvi + µeNei.

Figure 2 illustrates the the graph of the temperature-dependent parameters.
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Figure 2. Plots of the temperature-dependent parameters; (a) transmissible rates βhv and βvh, (b) vector

mortality rates µv and µe, (c) pre-adult maturation rate ω and (d) virus incubation rate ǫ.

For the temperature data, we utilize RCP scenarios, which provide four representative scenarios

such as the low level scenario (RCP 2.6), the two medium level scenarios (RCP 4.5/6.0) and the high

level scenario (RCP 8.5) [27]. Since patch 1, Seoul Forest Park, is located in Seongdong-gu, Seoul,

the RCP temperature data for Seongdong-gu is used in the simulation. One can see the tendency of the

temperature rise between 2030 and 2100 according to the RCP scenarios (refer to Appendix A).

2.3. The Seasonal Reproduction Number

The basic reproduction number is important in epidemiology since it measures the expected

number of infectious cases directly caused by one infectious case in a susceptible population. It is

known that if R0 < 1, the system has a locally asymptotically stable disease-free equilibrium, but if

R0 > 1, it has an unstable disease-free equilibrium [28]. However, when some model parameters are

time-dependent as in Table 1, one has to use the seasonal reproduction number Rs instead of the basic

reproduction number [29].
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Theorem 1. The seasonal reproduction number Rs corresponding to a single patch model with only patch 2
without the inflow rate η is computed as

Rs =
δ2νω

2µv(ω + µe)Nv
+

√

√

√

√

αεβhvβvhSvSh

µv(α + µhd)(γ + µhd)(ε + µv)N2
h

+

(

δ2νω

2µv(ω + µe)Nv

)2

Proof. The proof of the theorem can be found in Appendix B.

Theorem 2. The seasonal reproduction number Rs in the two-patch model (1) is the spectral radius ρ of the

matrix G, i.e.,

Rs = ρ(G)

where

G =







































G1,1 0 G1,3 0 G1,5 0 0 0 0 0

0 G2,2 0 G2,4 0 G2,6 0 0 0 0

0 0 0 0 0 0 G3,7 G3,8 G3,9 G3,10

0 0 0 0 0 0 G4,7 G4,8 G4,9 G4,10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

G7,1 0 G7,3 0 G7,5 0 0 0 0 0

0 G8,2 0 G8,4 0 G8,6 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0







































and

G1,1 =
ωδ1ν

(ω + µe)µv Nv1
, G1,3 =

εδ1ν

(ε + µv)µv Nv1
, G1,5 =

δ1ν

µv Nv1

G2,2 =
ωδ2ν

(ω + µe)µv Nv2
, G2,4 =

εδ2ν

(ε + µv)µv Nv2
, G2,6 =

δ2ν

µv Nv2

G3,7 =
αSv1 βhv((1 − g)p21(α + p21 + p12) + (γ + µhd)(α + p21 + µhd))

Nh1(α + p12 + p21)(γ + p12 + (1 − g)p21)(α + µhd)(γ + µhd)

G3,8 =
αp21Sv1 βhv((1 − g)(α + p21 + p12) + γ + µhd)

Nh1(α + p12 + p21)(γ + p12 + (1 − g)p21)(α + µhd)(γ + µhd)

G3,9 =
Sv1 βhv(γ + (1 − g)p21 + µhd)

Nh1(γ + p12 + (1 − g)p21)(γ + µhd)

G3,10 =
(1 − g)p21Sv1 βhv

Nh1(γ + p12 + (1 − g)p21)(γ + µhd)

G4,7 =
α(p12 − µhd)Sv2 βhv(α + γ + p21 + p12 + µhd)

Nh2(α + p12 + p21)(γ + p12 + (1 − g)p21)(α + µhd)(γ + µhd)

G4,8 =
αSv2 βhv(p12(α + γ + p21 + p12) + αγ − p21µhd)

Nh2(α + p12 + p21)(γ + p12 + (1 − g)p21)(α + µhd)(γ + µhd)

G4,9 =
(p12 − µhd)Sv2 βhv

Nh2(γ + p12 + (1 − g)p21)(γ + µhd)

G4,10 =
(γ + p12)Sv2 βhv

Nh2(γ + p12 + (1 − g)p21)(γ + µhd)

G7,1 =
ωSh1 βvh

(ω + µe)µv Nh1
, G7,3 =

εSh1 βvh

(ε + µv)µv Nh1
, G7,5 =

Sh1 βvh

µv Nh1

G8,2 =
ωSh2 βvh

(ω + µe)µv Nh2
, G8,4 =

εSh2 βvh

(ε + µv)µv Nh2
, G8,6 =

Sh2 βvh

µv Nh2

Proof. The proof of the theorem can be found in Appendix B.

Figure 3 shows the seasonal reproduction number Rs for three years from 1 January 2030 for

each RCP scenario. It is observed that the value of Rs is much higher than 1 in the summer season

for all RCP scenarios. This implies that it is very likely that the dengue outbreak will occur during

the summer.
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Figure 3. Plots of the seasonal reproduction number Rs for Representative Concentration Pathways

(RCPs) 2.6, 4.5, 6.0 and 8.5 during three years.

3. Results

3.1. Dengue Transmission Dynamics Based on Rcp Scenarios

In this section, we perform numerical simulations for the two patch model based on RCP

scenarios. For each simulation, we assume the initial condition as Nh1(0) = 20, 000, Nh2(0) = 480, 000,

Nv1(0) = 0.5 × Nh(0), Nv2(0) = Nh(0), where Nh(0) = Nh1(0) + Nh2(0). Moreover, we assume that

there are no infected mosquitoes and humans initially, that is, Iei(0) = Evi(0) = Ivi(0) = 0 and

Ehi(0) = Ihi(0) = 0 for i = 1, 2, so that the first infection in the model is initiated by the inflow of

infected international travelers. Figure 4 shows the time evolution of human incidence and cumulative

human incidence from January 1 in 2030 for 10 years in the model without control for each RCP

scenario. One can see that there will be more dengue incidences for RCP 2.6 and 8.5 than RCP 4.5 and

6.0, which implies that the two extreme level RCP scenarios might provide more favorable temperature

environment for dengue virus transmission than the two medium level RCP scenarios.

3.2. The Effects of Human and Vector Controls

In the case of the dengue outbreak in Tokyo, Yoyogi park in the city was known as an infection

hub and the closure of the park turned out to be very effective control strategies [8]. In accordance

with the case in Tokyo, it is worth investigating the effects of the control strategies including the park

closure as well as vector and human controls for our model (1). We assume that the park closure begins

when the cumulative incidence is over 10. In order to see the control effect of the park closure, we set

p12 = p21 = 0, and all human population stays in the city area (patch 2). Figure 5 shows the effect

of park closure for duration 3, 5, 10, 30, 60 days. It is observed that the park closure for a short-term

period such as 3 and 5 days would be effective in a certain degree and the closure for a long-term

period such as 30 and 60 days would make a significant control effect for all RCP scenarios.
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Figure 4. Human incidence (top) and cumulative human incidence (bottom) for 10 years from 2030

without control.
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Figure 5. The effect of the park closure (CL) for duration 0, 3, 5, 10, 30 and 60 days on human

incidence (top) and cumulative human incidence (bottom). Park closure for duration 0 means there is

no park closure.

Concerning the control for mosquitoes and humans, it was estimated that the current level of

control for mosquitoes in Korea is about 2% increase of mosquito death rate and 2% decrease of

transmissible rate between mosquitoes and humans, respectively, and these control measures were

implemented between May and October in each year [29].

Now we compare the control effects of the vector death rate, dengue transmissible rate and park

closure. In Figure 6, it is assumed that the controls of the vector death rate and dengue transmissible

rate are implemented as a 2% increase and a 2% decrease of the rates, respectively, and the park closure

is made for only 30 days in the year 2030 at the early stage of the dengue outbreak. Figure 6 shows

that the vector control is more effective than the transmission control, and the combination of the park

closure and vector and human control is most effective.
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Figure 6. Comparison of cumulative incidences under different control strategies: no control,

transmission control, vector (mosquito death) control, combination of transmission and vector controls

and combination of transmission control, vector control and park closure.

3.3. Optimal Control

In this section, we implement effective control measures by formulating an optimal control

problem for the two-patch dengue model. By incorporating the control functions (1 − u1) and (1 + u2)

into the transmissible rate between the vector and human and the mortality rate of the vector in each

patch, respectively, in the model Equation (1), we obtain the controlled two-patch system (2) as follows:

Patch 1

Vector

Ṡe1 = δ1 (1 − νIv1/Nv1)− ωSe1 − µeSe1

İe1 = δ1νIv1/Nv1 − ωIe1 − µe Ie1

Ṡv1 = ωSe1 − (1 − u1)βhvSv1 Ih1/Nh1 − (1 + u2)µvSv1

Ėv1 = (1 − u1)βhvSv1 Ih1/Nh1 − εEv1 − (1 + u2)µvEv1

İv1 = εEv1 + ωIe1 − (1 + u2)µv Iv1

Host

Ṡh1 = p21Sh2 − (1 − u1)βvhSh1 Iv1/Nh1 − p12Sh1

Ėh1 = p21Eh2 + (1 − u1)βvhSh1 Iv1/Nh1 − αEh1 − p12Eh1

İh1 = p21(1 − g)Ih2 + αEh1 − γIh1 − p12 Ih1

Ṙh1 = p21Rh2 + γIh1 − p12Rh1

(2)

Patch 2

Vector

Ṡe2 = δ2 (1 − νIv2/Nv2)− ωSe2 − µeSe2
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İe2 = δ2νIv2/Nv2 − ωIe2 − µe Ie2

Ṡv2 = ωSe2 − (1 − u1)βhvSv2 Ih2/Nh2 − (1 + u2)µvSv2

Ėv2 = (1 − u1)βhvSv2 Ih2/Nh2 − εEv2 − (1 + u2)µvEv2

İv2 = εEv2 + ωIe2 − (1 + u2)µv Iv2

Host

Ṡh2 = p12Sh1 + µhb(Nh1 + Nh2)− (1 − u1)βvhSh2 Iv2/Nh2 − ηSh2 − µhd(Sh1 + Sh2)− p21Sh2

Ėh2 = p12Eh1 + (1 − u1)βvhSh2 Iv2/Nh2 + ηSh2 − αEh2 − µhd(Eh1 + Eh2)− p21Eh2

İh2 = p12 Ih1 + αEh2 − γIh2 − µhd(Ih1 + Ih2)− p21(1 − g)Ih2

Ṙh2 = p12Rh1 + γIh2 − µhd(Rh1 + Rh2)− p21Rh2

Now we set up an optimal control problem for the two-patch model in order to minimize the
proportions of infected vectors and humans in both patches for a finite time interval at a minimal cost
of implementation. We first define the classical objective functional [30,31]

J(u1, u2) =
∫ t f

0

{

W1(Ih1(t) + Iv1(t) + Ih2(t) + Iv2(t)) + W2(Nv1(t) + Nv2(t)) +
1

2
W3u2

1(t) +
1

2
W4u2

2(t)

}

dt, (3)

where W1 and W2 denote the weight constants on the infected humans and vectors and the total

vectors, respectively, and W3 and W4 denote the weight constants that are the relative costs of the

implementation of the preventive controls for decreasing the transmissible rate between vector and

human and increasing the mortality rate of the vector, respectively.

Then, we find an optimal solution (U∗, X∗) that satisfies

J(U∗) = min{J(U) | U ∈ Ω},

where Ω = {ui(t) ∈ (L1(0, t f ))
2 ‖ a ≤ ui(t) ≤ b, t ∈ [0, t f ], i = 1, 2} subject to the state equations

with X = (Se1, Ie1, Sv1, Ev1, Iv1, Sh1, Eh1, Ih1, Rh1, Se2, Ie2, Sv2, Ev2, Iv2, Sh2, Eh2, Ih2, Rh2) and U = (u1, u2).

It is known that the standard results of optimal control theory guarantees the existence of optimal

controls, and the necessary conditions of optimal solutions can be derived from Pontryagin maximum

principle [31,32]. The Pontryagin maximum principle converts the system (2) into the problem of

minimizing the Hamiltonian H given by

H = W1(Ih1(t) + Iv1(t) + Ih2(t) + Iv2(t)) + W2(Nv1 + Nv2) +
1

2
W3u2

1(t) +
1

2
W4u2

2(t)

+ λ1[δ1 (1 − νIv1/Nv1)− ωSe1 − µeSe1] + λ2[δ1νIv1/Nv1 − ωIe1 − µe Ie1]

+ λ3[ωSe1 − βhv(1 − u1(t))Sv1 Ih1/Nh1 − µv(1 + u2(t))Sv1]

+ λ4[βhv(1 − u1(t))Sv1 Ih1/Nh1 − εEv1 − µv(1 + u2(t))Ev1]

+ λ5[εEv1 + ωIe1 − µv(1 + u2(t))Iv1]

+ λ6[p21Sh2 − βvh(1 − u1(t))Sh1 Iv1/Nh1 − p12Sh1]

+ λ7[p21Eh2 + βvh(1 − u1(t))Sh1 Iv1/Nh1 − αEh1 − p12Eh1]

+ λ8[p21(1 − g)Ih2 + αEh1 − γIh1 − p12 Ih1] (4)

+ λ9[δ2 (1 − νIv2/Nv2)− ωSe2 − µeSe2] + λ10[δ2νIv2/Nv2 − ωIe2 − µe Ie2]

+ λ11[ωSe2 − βhv(1 − u1(t))Sv2 Ih2/Nh2 − µv(1 + u2(t))Sv2]

+ λ12[βhv(1 − u1(t))Sv2 Ih2/Nh2 − εEv2 − µv(1 + u2(t))Ev2]

+ λ13[εEv2 + ωIe2 − µv(1 + u2(t))Iv2]

+ λ14[p12Sh1 + µhb(Nh1 + Nh2)− βvh(1 − u1(t))Sh2 Iv2/Nh2 − ηSh2 − µhd(Sh1 + Sh2)− p21Sh2]

+ λ15[p12Eh1 + βvh(1 − u1(t))Sh2 Iv2/Nh2 + ηSh2 − αEh2 − µhd(Eh1 + Eh2)− p21Eh2]

+ λ16[p12 Ih1 + αEh2 − γIh2 − µhd(Ih1 + Ih2)− p21(1 − g)Ih2]
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Using the Hamiltonian H and the Pontryagin maximum principle, we obtain the theorem.

Theorem 3. There exist optimal controls U∗(t) and state solutions X∗(t) which minimize J(U) over Ω in (3).
In order for the above statement to be true, it is necessary that there exist continuous functions λj(t) such that

λ̇1 = (λ1 − λ2)µeνIv1/Nv1 + (λ1 − λ3)ω, λ̇2 = (λ1 − λ2)µeνIv1/Nv1 − (λ1 − λ2)µe + (λ2 − λ5)ω

λ̇3 = −W2 − λ1µv − (λ1 − λ2)µe Ne1νIv1/N2
v1 + (λ3 − λ4)βhv(1 − u1)Ih1/Nh1 + λ3µv(1 + u2)

λ̇4 = −W2 − λ1µv − (λ1 − λ2)µe Ne1νIv1/N2
v1 + (λ4 − λ5)ǫ + λ4µv(1 + u2)

λ̇5 = −W1 − W2 − λ1µv + (λ1 − λ2)ν(µv + µe Ne1(Sv1 + Ev1)/N2
v1) + (λ6 − λ7)βvh(1 − u1)Sh1/Nh1

+λ5µv(1 + u2)

λ̇6 = (λ6 − λ7)βvh(1 − u1)Iv1/Nh1 + (λ6 − λ14)p12 + λ14µhd

λ̇7 = (λ7 − λ8)α + (λ7 − λ15)p12 + λ15µhd

λ̇8 = −W1 + (λ3 − λ4)βhv(1 − u1)Sv1/Nh1 + (λ8 − λ16)p12 + λ8γ + λ16µhd

λ̇9 = (λ9 − λ10)µeνIv2/Nv2 + (λ9 − λ11)ω, λ̇10 = (λ9 − λ10)µeνIv2/Nv2 − (λ9 − λ10)µe + (λ10 − λ13)ω

λ̇11 = −W2 − λ9µv − (λ9 − λ10)µe Ne2νIv2/N2
v2 + (λ11 − λ12)βhv(1 − u1)Ih2/Nh2 + λ11µv(1 + u2)

λ̇12 = −W2 − λ9µv − (λ9 − λ10)µe Ne2νIv2/N2
v2 + (λ12 − λ13)ǫ + λ12µv(1 + u2)

λ̇13 = −W1 − W2 − λ9µv + (λ9 − λ10)ν(µv + µe Ne2(Sv2 + Ev2)/N2
v2) + (λ14 − λ15)βvh(1 − u1)Sh2/Nh2

+λ13µv(1 + u2)

λ̇14 = (λ14 − λ15)βvh(1 − u1)Iv2/Nh2 + (λ14 − λ15)η − (λ6 − λ14)p21 + λ14µhd

λ̇15 = (λ15 − λ16)α − (λ7 − λ15)p21 + λ15µhd

λ̇16 = −W1 + (λ11 − λ12)βhv(1 − u1)Sv2/Nh2 − (λ8 − λ16)p21(1 − g) + λ16(γ + µhd)

with the transversality conditions λj(t f ) = 0 for j = 1, ..., 16 and the optimality conditions

u∗
1 = min{max

{

a,
λ4 − λ3

W3
βhvSv1

Ih1

Nh1
+

λ7 − λ6

W3
βvhSh1

Iv1

Nh1
+

λ12 − λ11

W3
βhvSv2

Ih2

Nh2
+

λ15 − λ14

W3
βvhSh2

Iv2

Nh2

}

, b}

u∗
2 = min{max

{

a,
µv

W4
(λ3Sv1 + λ4Ev1 + λ5 Iv1 + λ11Sv2 + λ12Ev2 + λ13 Iv2)

}

, b}

Proof. The proof of the theorem can be found in Appendix B.

We assume the control duration as 5 years throughout the simulations, and the upper bound for

ui, i = 1, 2 is 0.1, since the control resources are limited. In Figures 7–9, we simulate the effects on

incidence and optimal control functions from different control strategies when only the transmissible

rates βhv, βvh are controlled, only the mortality rate µv is controlled and both the transmissible rates

βhv, βvh and the mortality rate µv are controlled, respectively. Considering the ratio of the number

of infected vectors and humans to the total number of vectors, we use the weight constants W1 = 1,

W2 = 0.0001, W3 = 1000 and W4 = 2000 for Figures 7–9. Figure 7 suggests that when the transmission

control is considered, it is effective to focus on the control during the summer. Moreover, Figure 8

shows that the peaks of u2 occasionally occurred, and Figure 9 implies that when all βhv, βvh and µv

are controlled, the control period of µv is longer than βhv and βvh. These results imply that it is more

effective if the controls are concentrated right before the summer outbreak, since seasonal patterns are

observed in all cases. For more cases with different weight constants, refer to Appendix C.
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Figure 7. The effect of control of transmissible rates βhv, βvh on the incidences and the optimal control

function u1.
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Figure 8. The effect of control of the mortality rate µv on the incidences and the optimal control

function u2.

3.4. Vaccination Model and Cost-Effectiveness of Control Strategies

Recently the vaccine for dengue such as Dengvaxia has been used to prevent dengue transmission

in the dengue-endemic countries including Mexico, Philippines, Indonesia and Brazil [33]. A recent

research investigated the cost-effectiveness of dengue vaccination in Mexico [20], which concluded

that a proper dengue vaccination program would be very cost-effective and also highly reduce the

dengue cases and casualties. Thus, it is worth investigating the cost-effectiveness of control strategies

including vaccination in our two-patch model. We assume that the vaccination will begin at the year

2030 and any susceptible individual, either seropositive or seronegative, can be vaccinated.

In order to consider the effect of the vaccination, we first construct a two-patch dengue

transmission model with vaccination by modifying the model (1). The model with vaccination

includes the new compartments such as SV
hi, EV

hi, IV
hi and RV

hi which denote the vaccinated susceptible,
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exposed, infected and recovered human class in patch i = 1, 2, respectively. The schematic diagram for

the model is shown in Figure 10.
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Figure 9. The effect of control of βhv, βvh and µv on the incidences and the optimal control functions

u1, u2.
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Figure 10. Two-patch dengue transmission model with vaccination.

The governing equation for the model is written as follows:

Patch 1

Vector

Ṡe1 = δ1 (1 − νIv1/Nv1)− ωSe1 − µeSe1

İe1 = δ1νIv1/Nv1 − ωIe1 − µe Ie1

Ṡv1 = ωSe1 − βhvSv1(Ih1 + IV
h1)/Nh1 − µvSv1

Ėv1 = βhvSv1(Ih1 + IV
h1)/Nh1 − εEv1 − µvEv1

İv1 = εEv1 + ωIe1 − µv Iv1
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Host (5)

Ṡh1 = p21Sh2 − βvhSh1 Iv1/Nh1 + ψSV
h1 − p12Sh1

Ėh1 = p21Eh2 + βvhSh1 Iv1/Nh1 − αEh1 − p12Eh1

İh1 = p21(1 − g)Ih2 + αEh1 − γIh1 − p12 Ih1

Ṙh1 = p21Rh2 + γIh1 − p12Rh1

ṠV
h1 = p21SV

h2 − βvh(1 − κ)SV
h1 Iv1/Nh1 − ψSV

h1 − p12SV
h1

ĖV
h1 = p21EV

h2 + βvh(1 − κ)SV
h1 Iv1/Nh1 − αvEV

h1 − p12EV
h1

İV
h1 = p21(1 − gv)IV

h2 + αvEV
h1 − γv IV

h1 − p12 IV
h1

ṘV
h1 = p21RV

h2 + γv IV
h1 − p12RV

h1

Patch 2

Vector

Ṡe2 = δ2 (1 − νIv2/Nv2)− ωSe2 − µeSe2

İe2 = δ2νIv2/Nv2 − ωIe2 − µe Ie2

Ṡv2 = ωSe2 − βhvSv2(Ih2 + IV
h2)/Nh2 − µvSv2

Ėv2 = βhvSv2(Ih2 + IV
h2)/Nh2 − εEv2 − µvEv2

İv2 = εEv2 + ωIe2 − µv Iv2

Host

Ṡh2 = p12Sh1 + µhb(Nh1 + Nh2)− βvhSh2 Iv2/Nh2 − ηSh2 − φSh2 + ψSV
h2 − µhd(Sh1 + Sh2)− p21Sh2

Ėh2 = p12Eh1 + βvhSh2 Iv2/Nh2 + ηSh2 − αEh2 − µhd(Eh1 + Eh2)− p21Eh2

İh2 = p12 Ih1 + αEh2 − γIh2 − µhd(Ih1 + Ih2)− p21(1 − g)Ih2

Ṙh2 = p12Rh1 + γIh2 − µhd(Rh1 + Rh2)− p21Rh2

ṠV
h2 = p12SV

h1 − βvh(1 − κ)SV
h2 Iv2/Nh2 + φSh2 − ψSV

h2 − µhd(S
V
h1 + SV

h2)− p21SV
h2

ĖV
h2 = p12EV

h1 + βvh(1 − κ)SV
h2 Iv2/Nh2 − αvEV

h2 − µhd(EV
h1 + EV

h2)− p21EV
h2

İV
h2 = p12 IV

h1 + αvEV
h2 − γv IV

h2 − µhd(IV
h1 + IV

h2)− p21(1 − gv)IV
h2

ṘV
h2 = p12RV

h1 + γv IV
h2 − µhd(RV

h1 + RV
h2)− p21RV

h2,

where the parameter ψ denotes the rate at which vaccine wanes off and the vaccination rate φ followed

by antibody formation is computed by φ = − ln(1−a)
b , where a is the proportion of the vaccinated

humans and b is the vaccination period. Here, we assume a = 0.3 and b = 120 days between June and

September. The parameters relevant to vaccination are described in Table 2.

Table 2. Descriptions and values of parameters used in the model (5).

Symbol Description Value Reference

κ Vaccine efficacy against infection 0.616 [34]
1/αv Latent period for vaccinated human 5 Assumed
1/γv Infectious period for vaccinated human 7 Assumed

gv Proportion of symptomatic infection 0.8 [35]
in the vaccinated class

φ Vaccination rate 0.0030 Estimated
ψ Immunity reduction rate 0.0019 Estimated



Processes 2020, 8, 781 15 of 26

We evaluate the cost-effectiveness of the control measures such as vector control, dengue

virus transmission control, and vaccination by using the incremental cost-effectiveness ratio (ICER)

in terms of dollars per quality-adjusted life year (QALY) gained for a range of control costs.

The cost-effectiveness of a control strategy is related to the costs per disability-adjusted life years

(DALY) and gross domestic product (GDP) per capita; (i) a control strategy is very cost-effective if the

costs per DALY are less than GDP per capita, (ii) cost-effective if the costs per DALY are between GDP

per capita and 3× GDP per capita and (iii) not cost-effective if the costs per DALY are greater than 3×
GDP per capita [20,36]. The QALY function Q is computed as follows [20,37]:

Q(D, L, a) = − DCe−ha

(h + r)2
[e−(h+r)L{1 + (h + r)(L + a)} − {1 + a(h + r)}]

where D is the disability weight for dengue fever(DF), dengue hemorrhagic fever(DHF) and death,

which are denoted by DDF, DDHF and DDeath, respectively, C is the age-weighting correction constant,

h is the parameter from the age-weighting function, a is the average age, L is the duration of the

disability or the years of life lost due to premature death expressed in years such as LDF, LDHF or LDeath

and r is the social discount rate [37]. The total QALYs lost (TQL) is computed as follows [20]:

TQL =
∫ Tf

0

[

∆Q(DDF, LDF)(
d(DF)

dt
) + ∆Q(DDHF, LDHF)(

d(DHF)

dt
− d(Death)

dt
)

+∆Q(DDeath, LDeath)(
d(Death)

dt
)
]

dt,

where the rates of new DF, DHF and death cases for the vector and transmission control are

d(DF)

dt
= g(1 − h)α(Eh1 + Eh2)

d(DHF)

dt
= ghα(Eh1 + Eh2)

d(Death)

dt
= χ

d(DHF)

dt
,

and the rates for the vaccination case are

d(DF)

dt
= g(1 − h)α(Eh1 + Eh2) + gv(1 − hv)αv(EV

h1 + EV
h2)

d(DHF)

dt
= ghα(Eh1 + Eh2) + gvhvαv(EV

h1 + EV
h2)

d(Death)

dt
= χ

d(DHF)

dt
.

The total cost is obtained by the sum of the cost for direct control along the control strategies and

the cost associated with dengue infection under the observation period Tf . The direct controls we

consider are vector control, transmission control and vaccination where the costs of each direct control

are Cµv , Cβ and CV , respectively. The costs associated with dengue infection DF and DHF are CDF and

CDHF, respectively, where each cost is estimated from [20]. The total cost (TC) for each control strategy

is computed as follows:

(i) Total costs for vector control:

TC =
∫ Tf

0

{

Cµv(cµ − 1)Nv + CDF
d(DF)

dt
+ CDHF

d(DHF)

dt

}

(1 + r)−t/365dt
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(ii) Total costs for transmissible rate control:

TC =
∫ Tf

0

{

Cβ(1 − cβ)(Sh1 + Ih1 + Sh2 + Ih2) + CDF
d(DF)

dt
+ CDHF

d(DHF)

dt

}

(1 + r)−t/365dt

(iii) Total costs for vaccination:

TC =
∫ Tf

0

{

CVφSh2 + CDF
d(DF)

dt
+ CDHF

d(DHF)

dt

}

(1 + r)−t/365dt

The parameters relevant to cost-effectiveness are described in Table 3.

Table 3. Descriptions and values of parameters for cost-effectiveness.

Symbol Description Value Reference

r Social discount rate for DALYs calculations 0.03 [37,38]
b Parameter of the age-weighting function 0.04 [37,38]
h Probability of developing DHF/DSS * 0.045 × 0.25 [20,35]

after symptomatic infection without vaccine
hv Probability of developing DHF/DSS 0.045 [35]

after symptomatic infection with vaccine
C Age-weighting correction constant 0.16243 [37,38]

CDF Direct medical cost for DF 293 [20]
CDHF Direct medical cost for DHF 1171 [20]
DDeath Disability weight for death 1 [20]
DDF Disability weight for DF 0.197 [39,40]

DDHF Disability weight for DHF 0.545 [39,40]
LDeath Years of life lost due to death 42 [20]
LDF Time lost due to DF (years) 0.019 [40]

LDHF Time lost due to DHF/DSS (years) 0.0325 [40]
a Average age of dengue exposure 28 [41]
χ Risk of death from DHF/DSS 0.01 [20,42]

* DSS = dengue shock syndrome.

In order to evaluate the cost-effectiveness of controls, we use the incremental cost-effectiveness

ratio (ICER) which is calculated by dividing the difference in total costs (incremental cost) by the

difference in the QALY with and without control cases. Figure 11 shows ICER per DALY averted

for the vaccination, vector control and transmission control cases. Here we assume, as in Section 3.2,

that the vector control and transmission control are implemented as a 2% increase of mosquito death

rate and a 2% decrease of transmissible rate between May and October, respectively. According to

recent researches, it was estimated that the cost of vaccination per capita is hundreds of USD [20,43],

while the cost per capita of the vector control and the transmission control ranges from tens of cents to

a few dollars in USD [44,45]. Thus, the results of Figure 11 imply that vector control and transmission

control are relatively more cost-effective than vaccination, and vaccination is not a suitable control

strategy in Korea in terms of cost-effectiveness.
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Figure 11. Incremental cost-effectiveness ratio (ICER) in log10 scale for the vaccinate, vector control

and transmission control cases.

4. Discussion and Conclusions

In this paper, we developed the two-patch dengue transmission model associated with

temperature-dependent parameters. The focus area for the model was Seoul Forest Park (patch 1)

and the residential area (patch 2) around the park in Seoul, the most populated city in Korea.

In the model, we represented the parameters sensitive to temperature as the temperature-dependent

nonlinear functions using the previous literatures. Using the temperature data under RCP climate

change scenarios, we investigated the dengue transmission dynamics within and between patches.

The simulation results for the model showed that if a dengue infection is initiated by the inflow of

infected international travelers into the focus area, there will be thousands of infected humans within

10 years in the case of no controls for the dengue disease.

We derived the formulas for the seasonal reproduction number Rs for the single-patch (patch 2)

and the two-patch model by using the next generation matrix. The simulation results (Figure 3) for

Rs showed that the value of Rs is much bigger than 1 in the summer season for all RCP scenarios.

This implies that it is very likely that the dengue outbreak will occur during the summer in the

near future, if there is no proper control strategy. To reduce the potential of the dengue outbreak,

proper control strategies should be implemented.

We studied optimal control strategies by using an optimal control framework under different

scenarios. We found that the control strategies are effective if they are implemented right before the

summer outbreak. Concerning the park closure, we found that the closure for a short-term period such

as 3 and 5 days would be effective in a certain degree, but the closure for a long-term period such as 30

and 60 days would make a substantial control effect.

By incorporating the vaccination policy into the two-patch model, we constructed the two-patch

dengue transmission model (5) with vaccination. Concerning the vaccination, currently Dengvaxia

is vaccinated for seropositive cases and also other vaccines are now in clinical development [46,47].

Since our model simulation begins at the year 2030, there is a possibility of the development of other

vaccines which can be used for any susceptible cases, either seropositive or seronegative. In light of

this aspect, in the vaccination model (5), we assume that any susceptible individual, seropositive or

seronegative, can be vaccinated. We investigated the cost-effectiveness of the control policies such as

vaccination, vector control, and transmission control, using the incremental cost-effectiveness ratio

(ICER) in terms of dollars per quality-adjusted life year (QALY). We found that the transmissible rate
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control and the vector control are cost-effective while the vaccination is less cost-effective. This result

is not compatible with the result in Mexico [20] because there are not a sufficient number of infective

humans in Korea, compared to the case of Mexico.

Since there have been no autochthonous dengue cases in Korea yet, the parameters relevant

to the cost of the dengue vaccination were adapted from the previous studies in dengue-endemic

regions [20,39,40]. Moreover, to the best of our knowledge, there have been no studies about the

relation between the cost and effectiveness of the dengue control in Korea. Although these factors

may result in a limitation in the accurate estimation of the cost-effectiveness for the control strategies,

the simulation results (Figure 11) clearly show the difference in cost-effectiveness between different

strategies; when the control resources are limited, it is more effective to implement vector control and

transmission control rather than vaccination.

In this research, we used the regional data such as temperature and human movement rate for

Seoul, Korea. Thus, most of the results presented in this paper may not be applied directly to the area

with different environment for mosquitoes and humans, but we expect that the modeling approach

presented in this work will be applied to other cases, especially when the temperature-dependent

transmission dynamics between endemic and non-endemic regions are investigated.
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Appendix A. Temperature Data under RCP Scenarios

The Intergovernmental Panel on Climate Change has developed RCP scenarios in 2014,

and four representative scenarios are the lowest-level scenario (RCP 2.6), the two medium level

scenarios (RCP 4.5/6.0) and the high-level scenario (RCP 8.5) [27]. In this paper, we use the daily climate

data estimated by the Korea Meteorological Administration under the four RCP scenarios. Figure A1

illustrates the 5-year averages of daily temperature and the ranges from the mean temperature in the

summer (June to August) to the mean temperature in the winter (December to February) for five years

in Seongdong-gu, Seoul from year 2030 to 2099.
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Figure A1. (a) Daily mean temperature for five years. (b) Range from the mean temperature in the

summer (June to August) to the mean temperature in the winter (December to February) for five years.

Appendix B. Proofs of Theorems 1, 2 and 3

Proof of Theorem 1. The system for the single-patch model with only patch 2 has the disease-free

state x0 = (Se, 0, Sv, 0, 0, Sh, 0, 0, 0) with η = 0. Let x = (Ie, Ev, Iv, Eh, Ih)
T ,

F (x) =

















δ2ν Iv
Nv

βhvSv
Ih
Nh

0

βvh Iv
Sh
Nh

0

















and

V(x) =















(ω + µe)Ie

(ε + µv)Ev

−ωIe − εEv + µv Iv

(α + µhd)Eh

−αEh + (γ + µhd)Ih















.

Here F (x) denotes all of the new infections and V(x) denotes the net transition rates of the

corresponding compartment. F and V are 5 × 5 matrices at x0 given by

F =

















0 0 δ2ν
Nv

0 0

0 0 0 0
βhvSv

Nh

0 0 0 0 0

0 0
βvhSh

Nh
0 0

0 0 0 0 0

















V =















ω + µe 0 0 0 0

0 ε + µv 0 0 0

−ω −ε µv 0 0

0 0 0 α + µhd 0

0 0 0 −α γ + µhd
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Hence, the next generation matrix G is computed as

G = FV−1 =

















δ2νω
µv(ω+µe)Nv

δ2νε
µv(ε+µv)Nv

δ2ν
µv Nv

0 0

0 0 0
αβhvSv

(α+µhd)(γ+µhd)Nh

βhvSv

(γ+µhd)Nh

0 0 0 0 0
ωβvhSh

µv(ω+µl)Nh

εβvhSh
µv(ε+µv)Nh

βvhSh
µv Nh

0 0

0 0 0 0 0

















Since the seasonal reproduction number Rs for the single-patch model is the dominant eigenvalue
of the matrix G, Rs is obtained as

Rs =
δ2νω

2µv(ω + µe)Nv
+

√

√

√

√

αεβhvβvhSvSh

µv(α + µhd)(γ + µhd)(ε + µv)N2
h

+

(

δ2νω

2µv(ω + µe)Nv

)2

Proof of Theorem 2. The system (1) has the disease-free state x0 = (Sei, 0, Svi, 0, 0, Shi, 0, 0, 0) with

η = 0. Let x = (Iei, Evi, Ivi, Ehi, Ihi)
T for i = 1, 2. If F (x) and V(x) denote the functions for all of the

new infections and the net transition rates of the corresponding compartment, respectively, then one

can obtain

F (x) =









































δ1ν Iv1
Nv1

δ2ν Iv2
Nv2

βhvSv1
Ih1
Nh1

βhvSv2
Ih2
Nh2

0

0

βvh Iv1
Sh1
Nh1

βvh Iv2
Sh2
Nh2

0

0









































and

V(x) =





































(ω + µe)Ie1

(ω + µe)Ie2

(ε + µv)Ev1

(ε + µv)Ev2

−ωIe1 − εEv1 + µv Iv1

−ωIe2 − εEv2 + µv Iv2

−p21Eh2 + (α + p12)Eh1

(µhd − p12)Eh1 + (α + µhd + p21)Eh2

−p21(1 − g)Ih2 − αEh1 + (γ + p12)Ih1

(µhd − p12)Ih1 − αEh2 + (γ + µhd + p21(1 − g))Ih2





































.
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Thus, F and V are 10 × 10 matrices at x0 given by

F =











































0 0 0 0
δ1ν

Nv1
0 0 0 0 0

0 0 0 0 0
δ2ν

Nv2
0 0 0 0

0 0 0 0 0 0 0 0
βhv Sv1

Nh1
0

0 0 0 0 0 0 0 0 0
βhvSv2

Nh2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0
βvhSh1

Nh1
0 0 0 0 0

0 0 0 0 0
βvhSh2

Nh2
0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0











































and

V =



































ω + µe 0 0 0 0 0 0 0 0 0

0 ω + µe 0 0 0 0 0 0 0 0

0 0 ε + µv 0 0 0 0 0 0 0

0 0 0 ε + µv 0 0 0 0 0 0

−ω 0 −ε 0 µv 0 0 0 0 0

0 −ω 0 −ε 0 µv 0 0 0 0

0 0 0 0 0 0 α + p12 −p21 0 0

0 0 0 0 0 0 µhd − p12 α + µhd + p21 0 0

0 0 0 0 0 0 −α 0 γ + p12 −p21(1 − g)
0 0 0 0 0 0 0 −α µhd − p12 γ + µhd + p21(1 − g)



































Hence, one can obtain the next generation matrix G as

G = FV−1,

where

G =







































G1,1 0 G1,3 0 G1,5 0 0 0 0 0

0 G2,2 0 G2,4 0 G2,6 0 0 0 0

0 0 0 0 0 0 G3,7 G3,8 G3,9 G3,10

0 0 0 0 0 0 G4,7 G4,8 G4,9 G4,10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

G7,1 0 G7,3 0 G7,5 0 0 0 0 0

0 G8,2 0 G8,4 0 G8,6 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0







































and

G1,1 =
ωδ1ν

(ω + µe)µv Nv1
, G1,3 =

εδ1ν

(ε + µv)µv Nv1
, G1,5 =

δ1ν

µv Nv1

G2,2 =
ωδ2ν

(ω + µe)µv Nv2
, G2,4 =

εδ2ν

(ε + µv)µv Nv2
, G2,6 =

δ2ν

µv Nv2

G3,7 =
αSv1 βhv((1 − g)p21(α + p21 + p12) + (γ + µhd)(α + p21 + µhd))

Nh1(α + p12 + p21)(γ + p12 + (1 − g)p21)(α + µhd)(γ + µhd)

G3,8 =
αp21Sv1 βhv((1 − g)(α + p21 + p12) + γ + µhd)

Nh1(α + p12 + p21)(γ + p12 + (1 − g)p21)(α + µhd)(γ + µhd)

G3,9 =
Sv1 βhv(γ + (1 − g)p21 + µhd)

Nh1(γ + p12 + (1 − g)p21)(γ + µhd)

G3,10 =
(1 − g)p21Sv1 βhv

Nh1(γ + p12 + (1 − g)p21)(γ + µhd)

G4,7 =
α(p12 − µhd)Sv2 βhv(α + γ + p21 + p12 + µhd)

Nh2(α + p12 + p21)(γ + p12 + (1 − g)p21)(α + µhd)(γ + µhd)

G4,8 =
αSv2 βhv(p12(α + γ + p21 + p12) + αγ − p21µhd)

Nh2(α + p12 + p21)(γ + p12 + (1 − g)p21)(α + µhd)(γ + µhd)

G4,9 =
(p12 − µhd)Sv2 βhv

Nh2(γ + p12 + (1 − g)p21)(γ + µhd)

G4,10 =
(γ + p12)Sv2 βhv

Nh2(γ + p12 + (1 − g)p21)(γ + µhd)



Processes 2020, 8, 781 22 of 26

G7,1 =
ωSh1 βvh

(ω + µe)µv Nh1
, G7,3 =

εSh1 βvh

(ε + µv)µv Nh1
, G7,5 =

Sh1 βvh

µv Nh1

G8,2 =
ωSh2 βvh

(ω + µe)µv Nh2
, G8,4 =

εSh2 βvh

(ε + µv)µv Nh2
, G8,6 =

Sh2 βvh

µv Nh2

Finally, the seasonal reproduction number Rs for the two-patch model is computed as the spectral

radius ρ of the next generation matrix G, i.e., Rs = ρ(G).

Proof of Theorem 3. Since the integrand of J is a convex function of U(t) = (u1(t), u2(t)) and the

state system satisfies the Lipschitz condition, the existence of the optimal controls can be proved by

Corollary 4.1 of [32]. Moreover, using the system (5) and the Pontryagin Maximum Principle, one can

obtain the following:

dλ1(t)

dt
= − ∂H

∂Se1
,

dλ2(t)

dt
= − ∂H

∂Ie1
,

dλ3(t)

dt
= − ∂H

∂Sv1
,

dλ4(t)

dt
= − ∂H

∂Ev1
,

dλ5(t)

dt
= − ∂H

∂Iv1
,

dλ6(t)

dt
= − ∂H

∂Sh1
,

dλ7(t)

dt
= − ∂H

∂Eh1
,

dλ8(t)

dt
= − ∂H

∂Ih1
,

dλ9(t)

dt
= − ∂H

∂Se2
,

dλ10(t)

dt
= − ∂H

∂Ie2
,

dλ11(t)

dt
= − ∂H

∂Sv2
,

dλ12(t)

dt
= − ∂H

∂Ev2
,

dλ13(t)

dt
= − ∂H

∂Iv2
,

dλ14(t)

dt
= − ∂H

∂Sh2
,

dλ15(t)

dt
= − ∂H

∂Eh2
,

dλ16(t)

dt
= − ∂H

∂Ih2
,

with λj(t f ) = 0 for j = 1, ..., 16 and evaluating the above system at the optimal controls and

corresponding states, one can obtain the adjoint system. Since the Hamiltonian H is minimized

with respect to the controls, we differentiate H with respect to ui on the set Ω, and obtain the following

optimality conditions:

0 =
∂H

∂u1
= W3u1 + (λ3 − λ4)βhvSv1

Ih1

Nh1
+ (λ6 − λ7)βvhSh1

Iv1

Nh1
+ (λ11 − λ12)βhvSv2

Ih2

Nh2
+ (λ14 − λ15)βvhSh2

Iv2

Nh2

0 =
∂H

∂u2
= W4u2 − µv(λ3Sv1 + λ4Ev1 + λ5 Iv1 + λ11Sv2 + λ12Ev2 + λ13 Iv2).

Solving for ui(t), one can obtain

u1 =
λ4 − λ3

W3
βhvSv1

Ih1

Nh1
+

λ7 − λ6

W3
βvhSh1

Iv1

Nh1
+

λ12 − λ11

W3
βhvSv2

Ih2

Nh2
+

λ15 − λ14

W3
βvhSh2

Iv2

Nh2

u2 =
µv

W4
(λ3Sv1 + λ4Ev1 + λ5 Iv1 + λ11Sv2 + λ12Ev2 + λ13 Iv2)

By using the standard argument for bounds a ≤ ui ≤ b for i = 1, 2, we have the optimality

conditions.
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Appendix C. Optimal Control Result with Different Weight Constants

We consider various weight constants for the case that all of βhv, βhv and µv are controlled.

Figure A2a–c show the plots of u1 and u2 for W4 = 1000, 3000, 5000, when W1 = 1, W2 = 0.0001,

W3 = 1000 are fixed. One can see the similar results as in Section 3.3.
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(a) Plot of u1 and u2 when W3 = 1000, W4 = 1000.
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Figure A2. Cont.
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(c) Plot of u1 and u2 when W3 = 1000, W4 = 5000.

Figure A2. The effect of different weight constant values on the optimal control functions.
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