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Abstract: Being at the heart of modern pulp mills, continuous pulp digesters have attracted much
attention from the research community. In this article, a comprehensive review in the area of modeling,
control and diagnostics of continuous pulp digesters is conducted. The evolution of research focus
within these areas is followed and discussed. Particular effort has been devoted to identifying the
state-of-the-art and the research gap in a summarized way. Finally, the current and future research
directions in the areas have been analyzed and discussed. To date, digester modeling following the
Purdue approach, Kappa number control using model predictive controllers and health index-based
diagnostic approaches by utilizing different statistical methods have dominated the field. While the
rising research interest within the field is evident, we anticipate further developments in advanced
sensors and integration of these sensors for improving model prediction and controller performance;
and the exploration of different AI-based approaches will be at the core of future research.

Keywords: Kraft pulping; pulp digester; modeling; control; diagnostics

1. Introduction

With the widespread expansion of the Internet, electronic media and paperless communication,
the demand for the graphic paper (i.e., newsprint and higher-value printing and writing paper) has
been declining since 2000 [1]. Despite this downfall, the global pulp and paper market is growing
steadily at a rate of over 1% per year [2]. A large part of the growth is attributed to packaging materials
and the sanitary products as a result of growing e-commerce business and the modern lifestyle. In spite
of the economic significance, the pulp and paper industry is lagging behind in embracing digitalization
and state-of-the art process optimization techniques. Consequently, research in the area of modeling,
advanced process control and diagnostics is grabbing much attention.

Pulp and paper mills convert wood chips into a fibrous mass called pulp, the raw material for
different paper products. The production of pulp is commercially accomplished by a mechanical or
chemical pulping process or a combination of both methods. In mechanical pulping, abrasive refining
or grinding is used to reduce wood into fibrous pulp. As the name suggests, in chemical pulping the
wood pulp is produced by means of chemical reactions. Sulfate pulping and sulfite pulping are two
typical types of chemical pulping process. More than two-thirds of the globally produced pulp comes
from sulfate or Kraft pulping mills [3].

A typical outline of the integrated Kraft pulping process is shown in Figure 1. Normally the process
includes wood handling steps such as debarking, chipping and storage; Kraft cooking in the digester;
screening and washing of pulp; bleaching and drying of pulp or paper/board; and pressing, drying
and finishing. About 97% of the chemicals are recovered through the chemical recovery process [4].
To do so, the spent chemicals known as black liquor are evaporated, burnt in a recovery boiler and
converted back to white liquor in a causticizing plant.
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Figure 1. An overview of Kraft pulping process.

In the Kraft pulping process, the quality of the produced pulp is very much dominated by the raw
material properties and the process conditions. All wood species are mainly composed of three basic
structural elements called cellulose (∼40%), hemi-cellulose (∼30%) and lignin (∼25%). As depicted in
Figure 2, cellulose and hemi-cellulose form the fibrous structure of the wood, and lignin acts like a
“glue” that that holds the individual cellulosic polymers together. The conversion of wood chips into
pulp mainly takes place in a long, upright, tubular vessel known as the pulp digester (see Figure 3).
In the digester lignin is removed from wood chips to free the wood fibers by utilizing a thermo-chemical
conversion process known as delignification. In this process, an aqueous solution of sodium hydroxide
(NaOH) and sodium sulfide (Na2S), also known as white liquor, is used, which dissolves most of the
lignin and thus separates the cellulosic fibers from each other. However, the white liquor also reacts
with the cellulosic fibers and thus not only degrades the physical properties of the produced pulp
but also reduces the pulp’s yield. Therefore the cooking conditions inside the pulp digester must be
controlled in a way that fibers are separated without damaging them too much while maximizing the
pulp yield. These factors are highly correlated, and hence a best compromise among residual lignin,
yield and fiber properties is needed.

Wood chips

Cellulose

Hemicellulose

Lignin

Figure 2. Arrangement of cellulose, hemi-cellulose and lignin in wood.

Two common types of pulp digesters that are widely used for Kraft pulping are batch and
continuous digesters. Due to lower space requirements, less labor and lower energy costs, continuous
digesters have become the dominant design in the realm of Kraft cooking [5]. As illustrated in Figure 3,
after pre-steaming, wood chips are transported at the top of the digester via a circulating liquor system.
Cooking liquor is also added at the top of the digester. The top part of the digester is called the
impregnation zone where wood chips are soaked by the cooking liquor via penetration and diffusion
mechanism. The delignification already starts in this zone at a typical temperature between 115 ◦C to
120 ◦C. Then in the heating zone, the temperature of the chip mixture is rapidly increased between
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150 ◦C and 170 ◦C via two external heat exchangers. After that the chips enter the cooking zone where
the majority of the lignin is removed at an elevated temperature. The spent liquor is separated and
taken out of the digester in the extraction zone. The next zone is the counter current washing zone
where cooked pulp is washed and cooled down with wash liquor. By doing so the delignification
reaction is stopped and thus fiber properties are preserved. The cooked pulp is diluted to around a
10% concentration level and removed from the bottom of the digester. The produced pulp quality is
mainly expressed by Kappa number which is the residual lignin content of the pulp.
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Figure 3. Schematic of a continuous pulp digester process flow [6].

Due to the naturally varying feedstock, long residence time, inadequate measurements and
complex nature of the delignification process, controlling pulp quality at the digester outlet is
a challenging task. Moreover, due to the non-ideal flow behavior in the digester, process faults
often occur that lower the pulp quality and production rate considerably. Hence, controlling of the
pulping process in an efficient way and early detection of underlying digester faults are matters of
utmost importance for the economic operation of a pulp and paper mill. In this article the modeling,
control and diagnostics of continuous pulp digesters are reviewed. Particular effort has been devoted
to highlighting the state-of-the-art and the research gaps in a summarized way.

The paper is organized as follows. Firstly, the research methods along with a bibliographic analysis
of the reviewed articles are provided that lay down the foundations of this study. Subsequently,
the review of relevant literature on pulp digester modeling, control and diagnostics is presented.
The outcome of the review is discussed, and concurrently, future research directions are proposed.
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2. Materials and Methods

The present work focused on the review of available literature within the area of modeling,
control and diagnostics of continuous pulp digesters. The purpose of considering the entire span
of literature instead of basing our work on the previously published articles was to provide a truly
comprehensive review by following the development in the field along the way. Though some of
previously publish articles included rather narrow literature reviews to frame their work, to the best of
the author’s knowledge, no comprehensive review has been published covering this topic yet.

To conduct the review, three major bibliometric databases, the Web of Science, Google Scholar and
Scopus, were queried using a comprehensive keyword list. Various combinations of keywords were
utilized, including “pulp digester”; “kraft pulping”; “model”; “control”; “fault detection”; “diagnostics”;
etc. To broaden the search, synonyms used by both industry and academia were included. Furthermore,
references of relevant papers were also individually investigated to find new papers which were related
to this topic. A manual sorting based on titles, abstracts and keywords yielded 210 articles to be
potentially relevant for this review. These works, ranging from 1966 up to July 2020, were all published
in white literature and written in English.

The yearly distributions of these publications are presented in Figure 4. Although the number of
publications is unevenly distributed over the years, a gradual increment can be observed until 1997,
followed by a rather slow descent. However, recently the number of publications within the area of
this review seems to be rising again. This shows a positive trend of growing research interest within
the topic. An overview of the origin of these publications can be visualized through Figure 5. If we
look at the number of publications per country, the USA (63), Canada (16), Finland (14), China (14) and
Sweden (11) have dominated the research area. This is no surprise, since they are also top pulp and
paper producing countries.

0

2

4

6

8

10

12

14

19
66

19
68

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

N
um

be
r o

f p
ub

lic
at
io
ns

Year

Figure 4. Distribution of publications over the years.

Using VOSviewer (https://www.vosviewer.com/), a bibliometric analysis tool, a network
visualization of citation relationships between the publications was studied. Only publications that
were connected to other publications in the network were considered for visualization; only 68 items
met the requirement. As shown in Figure 6, 15 different clusters were identified based on their similarity.
While the clusters are represented through different colors, the size of each node is proportional to the
number of times the item has been cited. As expected, publications following the Purdue approach and
MPC gained the most attention among the surveyed articles and are in the center of the network.
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Figure 5. Number of publications per country.

Figure 6. The network map showing the relationships between various publications based on citations.

To conduct the review in a structured way, the sub-topics of modeling, control and diagnostics
were addressed independently. However, in reality there were noticeable overlaps among these
sub-topics, especially modeling and control. In the following section, the outcome of the literature
review is thoroughly discussed by highlighting the state-of-the-art and potential literature gaps.

3. Modeling of Pulp Digesters

Robust and reliable process models are prerequisites for optimal control and diagnostics of any
complex industrial process. Over the years, extensive research effort has been devoted to exploring
different approaches for modeling pulp digesters. Typically, pulp digester models can be classified
into two broad categories: physics-based and data-driven (Figure 7). Physics-based models are based
on mathematical equations that explain the underlying physico-chemical phenomena that take place
inside the digester. On the other hand, data-driven models are based on historical data or observations,
and mainly capture the relationships between inputs and outputs.

Widely explored data-driven approaches used for digester modeling are regression, the Box–Jenkins
method, artificial neural networks (ANN), clustering and other model-order-reducing methods [7–11].
A comparative study on different data-driven modeling techniques based on their ability to predict Kappa
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number was performed by Correia et al. [12]. The study revealed that the Box–Jenkins method provides the
best accuracy, followed by regression and ANNs. Even though data-driven models potentially allow rapid
development and deployment due to their flexible structure, they have limited expressive capabilities and
require high-quality data.

Physics-based models can be further classified into two groups, steady-state and dynamic models.
The fact that distinguishes these two is that the steady state model depends on spatial variables
(such as extent of delignification) while dynamic models depend on temporal variables (such as rate
of delignification). Moreover, a steady state model is based on the assumption that the system is in
equilibrium, and is thus time-invariant. This type of model is useful for system design but not for
control applications. On the other hand, a dynamic model accounts for the time-dependent changes
in a system and can therefore capture the transient behavior of the system, which is essential for
dynamic control. Few researchers have investigated steady-state models for pulp digesters [13–15],
whereas the majority of researchers have concentrated their focus on dynamic modeling. Some of these
dynamic models are more focused on physical phenomena such as chip bed compaction, diffusion and
detailed fluid dynamics, whereas others are more focused on reaction kinetics of lignin dissolution,
carbohydrate degradation and alkali reactions.

Pulp digester models

Physics 
based

Data 
driven

Regression models

Artificial neural network

Clustering techniques

Reduced order

Reaction kineticsPhysical phenomena
 Chip bed packing
 Diffusion
 Fluid dynamics

Steady state Dynamic

Box-Jenkins Method

 Lignin dissolution
 Carbohydrate degradation
 Alkali reaction 

Figure 7. Overview of pulp digester models.

In reality, purely physics-based models rarely exist. They often incorporate statistical information
based on the experimental observations whenever physical interpretations are not directly available.
However, physics-based digester models are based on one very important assumption—that is,
that the pulping reaction rates are kinetically controlled. One of the earliest well-known kinetic models
was proposed by Vroom [16] that even today is widely used for control purposes. It describes the
rate of lignin dissolution based-on Arrhenius-type expression (Equation (1)) to derive the H-factor
(Equation (2)).

dL
dt

= −k(T) = −αe−
β
T , (1)

where L is the lignin concentration; k is the temperature (T) dependent Arrhenius constant; and α and
β are positive constants.

H =
∫

e43.20− 16113
T dt, (2)

Vroom used the H-factor to combine the pulping time and temperature into a single variable
that represents the extent of cooking in a batch digester. In reality, the factor is used to predict the
temperature or cooking time needed to achieve a given Kappa number. Kleinert [17] theorized different
reaction rates for bulk and residual phases of delignification. In Kleinert’s model, the delignification
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reaction is assumed to be first order and dependent on temperature and alkali. Later, Kerr [18]
improved Vroom’s kinetic model by incorporating effective alkali (EA) and lignin concentrations into
the delignification rate equation (Equation (3)).

dL
dt

= −k[OH]L, (3)

where OH is the alkali concentration.
Kerr used H-factor to account for time–temperature behavior while empirically estimating the

Kappa number. Two linear functions are used to represent the alkali consumption rate for initial and
bulk phases. However, in a later paper, Kerr and Uprichard [19] simplified the model by proposing a
single first-order equation for softwood delignification. They also refined the model by empirically
incorporating sulfidity, chip moisture, chip size and liquor to wood ratio into the kinetic equation.
Later, Clarke [20] extended the model to be valid for hardwood too. LeMon and Teder [21] presented a
three-stage approach by assuming initial, bulk and residual stages for wood substance dissolution.

Based on these early kinetic models, three broad groups of digester models have emerged that are
widely used at present. These models are well-known as the Purdue, Gustafson and Andersson models,
and have been the bases for developing digester models with increasing degrees of sophistication.
The main conceptual bases of these kinetic models are similar. They all are based on the Arrhenius
expression, which shows the effect of a change of temperature on the reaction rate constant for different
wood components. In contrast, the main differences between the models arise from the numbers
of wood components that are considered (particularly lignin); the assumption of consecutive or
parallel reactions; and the assumption about how the delignification reaction takes place along the
digester length.

3.1. Purdue Model

The Purdue model was originally developed by Smith and Williams at Purdue University in
the 1970s [22]. This was one of the first kinetic models developed for both softwood and hardwood.
The model was developed for simulation and control of a Kamyr digester by approximating series of
continuously stirred-tank reactors (CSTR). In Smith’s model, it is assumed that there are three phases
in the digester: solid wood, entrapped liquor and free liquor phase. The wood substance is represented
by five different components reacting in parallel: high-reactive lignin, low-reactive lignin, cellulose,
galactoglucomannan and arabinoxylan. The reaction rate for each component is expressed as:

dC
dt

= −(k1[OH] + k2[OH]a[HS]b)C, (4)

where C is the wood component concentration, HS is the sulfide concentration, k1 and k2 are rate
constants and a and b are exponents determined experimentally.

Christensen et al. [23] and Saltin [24] extended the Purdue model by adding a nonreactive lignin
component in addition to the high-reactive and low-reactive lignin. Consumption of dissolved
reagents and heat of reaction are also included in Christensen’s model. Later, Michelsen [25]
developed a dynamic model for a continuous digester by combining simplified reaction kinetics
following the Purdue model and a modified bed compaction correlation following Harkonen [13].
He modeled the flow dynamics and thermodynamics in detail by using mass, momentum and
energy balances. Thus, the model was able to capture the effect of flow variation on Kappa number
better, but the model validity range reduced considerably due to simplification of reaction kinetics.
Later, Kayihan et al. [26] developed a simplified two-phase benchmark model for a continuous digester
by ignoring the heat of reaction and considering no diffusion limitation. Lindgren and Lindström [27]
proposed a modification to the reaction kinetics where delignification of fast, intermediate and
slow lignin is considered. The authors also incorporated the effect of sodium ion on the reaction
rates. Miyanishi and Shimada [28] simulated a Lo-Solids Kamyr continuous digester to compare its
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performance with conventional digester. The authors also proposed a new equation for cellulose
degradation. The results showed good agreement with the measured process data. Bhartiya et al. [29]
integrated work from Kayihan et al. [26] and Michelsen [25] to extend the benchmark Purdue model
with Michelsen’s momentum transport description and control volume approach with three-phases.
This allowed for simulation of the production rate change, feedstock grade change, chip level transition
and plugging of the digester. Afterwards, Kayihan et al. [30] extended the Purdue model to incorporate
dynamic compaction and stochastic changes in chip size distribution. Pougatch et al. [31] developed
a three-dimensional numerical model for the continuous digester by using simplified, Purdue-like
reaction kinetics. Ding et al. [32] used the Purdue model to estimate the parameters of a simplified
linear model. Araneda et al. [33] adapted the Purdue model to simulate an industrial Lo-Solids
pulp digester and thus showed 9.1% savings of white liquor can be achieved by adapting operating
conditions. Recently, Rahman et al. [6] developed a dynamic continuous digester model for real-time
simulation by following reaction kinetics similar to Bhartiya et al. [29] and simplified compaction
similar to Fernandes and Castro [15]. The authors developed an object-oriented modeling library in
Modelica language [34] for modeling various commercial digesters. The wood components dissolution
rates are adapted as presented in Equation (5),

dC
dt

= −(k1[OH] + k2[OH]0.5[HS]0.5)(C− C∞), (5)

where C and C∞ represent the concentrations of instantaneous and nonreactive components in the
solid phase and

Kn = Anexp(
−En

RTc
), (6)

where Tc, An, R and En are the chip temperature, pre-exponential factors, universal gas constant and
activation energies of the reaction, respectively.

In a more recent work, Choi and Kwon [35] extended the Purdue model to capture the evolutions
of cell wall thickness and fiber length for batch digesters by integrating the macroscopic model with a
microscopic model.

3.2. Gustafson Model

The Gustafson model, also known as the three-stage model, was developed by Gustafson at
the University of Washington in the 1980s for softwood [36]. In Gustafson’s model, the wood
substance is represented by two components: lignin and carbohydrates that react consecutively.
The dissolution of these wood components is modeled as three consecutive phases: initial, bulk and
residual. The percentage of lignin is used to mark the transition from initial to bulk phase and so on.

The kinetic expression during the initial stage (lignin content > 22.5%):

dL
dt

= −k1
√

TL, (7)

dCH
dt

= c1[OH]0.11 dL
dt

, (8)

During bulk stage (22.5% > lignin content > 2.5%):

dL
dt

= −(k2a[OH] + k2b[OH]0.5[HS]0.4)L, (9)

dCH
dt

= c2
dL
dt

, (10)
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Finally, during bulk stage (lignin content > 2.5%):

dL
dt

= −k3[OH]0.7L, (11)

dCH
dt

= c3
dL
dt

, (12)

Subsequently, Pu et al. [37] extended the Gustafson model by considering three wood substances:
lignin, cellulose and hemi-cellulose, while assuming portions of cellulose and hemi-cellulose are
nonreactive. The authors simplified the kinetic model by neglecting the residual stage and effect of
[HS] on the reaction rates. Vanchinathan and Krishnagopalan [38] implemented the Gustafson model
for Kraft pulping of southern pine and identified kinetic model parameters using real-time liquor
analysis data. Walkush and Gustafson [39] used the Gustafson model to analyze the operation of
a continuous commercial digester operated in extended modified continuous cooking (EMCC) and
LoSolids cook modes. Later, Rantanen et al. [40] adopted the Gustafson model for modeling of an
industrial Downflow Lo-Solids cooking process. The authors optimised the model parameters for
both softwood and hardwood. Ahvenlampi et al. [41] predicted the yield profiles of conventional
and Downflow Lo-Solids digesters by combining the Gustafson model and fuzzy clustering.
Santos et al. [42] studied the kinetics of hardwood carbohydrate degradation during bulk phase
to better understand losses during the Kraft process.

3.3. Andersson Model

The Andersson model was developed by Andersson at Karlstad University in 2003 by combining
Purdue and Gustafson models [43]. The Andersson model uses similar underlying kinetic expressions
to the Purdue model, including the assumption of parallel reactions. One of the key assumptions that
differs from the Purdue model is the three types of reactive lignin (L1, L2 and L3 in Figure 8) used
to model the delignification reaction inside the digester. The concept of using transition points as a
function of the cooking conditions in the distribution model is quite similar to Gustafson’s model.
This results in a total of 12 pseudocomponents representing the wood substance [44]. The component
dissolution is expressed by Equation (13):

dC
dt

= −k1([OH]a[HS]b + k2)C, (13)
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Figure 8. Schematic showing (a) L1, L2 and L3 lignin, and (b) dependence of the intersection level L∗

on cooking conditions—in this case [OH] and [HS].

Using multivariable curve fitting, the authors derived Equation (14) for intersection level L∗

that represents the cooking stage when the intermediate (L2) and slow reacting lignin (L3) amounts
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are equal. According to the experimental observations, the authors found that the intersection level
depends on the cooking conditions, i.e., amounts of hydroxyl and sulphide groups and temperature.

L∗ = 0.49([OH] + 0.01)−0.65([HS] + 0.01)−0.19(1.83− 2.91× 10−5(T − 273.15)2), (14)

Similar equations for intersection levels were also derived for the other wood components too.
According to the authors, these modifications resulted in better fits with autoclave and circulation
digester data when compared to prior models.

Later, Sixta and Rutkowska [45] extended the Andersson model by considering the influences of
sodium ions on pulping kinetics for Eucalyptus globulus. Paananen et al. [46] followed Andersson’s
approach to study the impacts of alkali concentration, temperature and reaction time during the initial
phase of Kraft cooking.

3.4. Other Models and Comparative Studies

He et al. [47] proposed one of the earlier computational fluid dynamics (CFD) models of a
continuous digester based on Michelsen’s fluid dynamics assumptions, Härkönen bed compaction
and a simplified kinetic model. Continuing the work of He et al. [47], Fan [48] developed a detailed CFD
model by considering inter-phase friction, thermal dispersion and chip compressibility. The reaction
model was based on regression method from extensive experimental data. Pourian [49] extended the
digester CFD model by incorporating factors such as chip quality, variations in the concentrations of
active ions and energy balance to describe the temperature distribution in the digester.

Burazin and McDonough [50,51] used non-linear regression and parameter estimation to choose
the best models out of 200 model candidates for delignification and carbohydrate degradation
of softwood. For delignification, the best model incorporated three parallel pathways for lignin
solubilization, a pathway for lignin condensation, and a pathway for residual delignification.
For carbohydrate dissolution, the best model incorporated two parallel pathways for peeling,
two for stopping and one for chain cleavage. Giudici and Park [52] modified Burazin’s model for
hardwood. Masura [53] derived a model for Kraft pulping by relating the lignin content and the alkali
concentration of a cooking liquor.

Grenman et al. [54] combined the work of Purdue, Gustafson and Andersson to model
delignification kinetics by considering the influences of wood anisotropy and internal diffusion.
The authors proposed a dynamic, three-dimensional model that can be used for pulping process
intensification and optimization, and future digester design. The authors also attempted to benchmark
the performances of three well-known kinetic models, and concluded that the trends predicted by
these kinetic models are quite similar, but the details differ depending on which kinetic model is used.
Nieminen et al. [55] developed a detailed kinetic model for carbohydrate degradation in Kraft pulping.
The carbohydrate degradation is modeled based on the reaction mechanism of peeling, stopping and
alkaline hydrolysis. Another Kraft cooking modeling approach was proposed by Bogren et al. [56],
which is based on the assumption that the wood species consist of infinite numbers of components
that react with a continuous distribution of time and concentration-dependent rate constants.

dC
dt

= −(S0[OH](m+nC)[HS](o+pC)[Na](q+rC)e−
Ea
RT )γγ1−γΓ(− 1

γ
)γtγ−1C, (15)

where Γ denotes the gamma function, S represents concentration-dependent function and γ represents
temperature-dependent function. S0, m, n, o, p, q and r are parameters that need to be determined
by fitting the experimental data. While Bogren’s model provides reasonable results, the higher
mathematical complexity and many tuneable parameters make it challenging to use.

Andersson et al. [57] used data collected from an well-instrumented circulation digester to
compare eleven kinetic models by categorizing them into three broad families (i.e., simplified kinetics
model, Purdue Model and three-stage model). The results showed that the three-stage model was
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good at capturing the end point for lignin, while the Purdue model followed the trajectory better.
Later, Nieminen and Sixta [58] performed a similar study that compared the Purdue, Gustafson,
Andersson and Bogren models. The authors used these kinetic models to simulate a well-controlled
laboratory-scale batch digester. The results demonstrated that the Purdue model had the best
structure, weighing the complexity and computational efficiency. It was able to follow the trajectory
of the cook with higher accuracy, given that good adjustments of its parameters were performed.
Recently, Fearon et al. [59] studied phenomena-based detailed modeling of the delignification process
by considering macromolecular aspects of lignin. Concurrently, Fearon et al. [60] also studied the
detailed chemistry and essential phenomena of carbohydrate reactions at the molecular level. While all
of these detailed models are quite useful to help with understanding the Kraft pulping process in more
detail and creating in-depth knowledge on the existing and possible new cooking processes, these are
not very suitable for online prediction and advanced control of commercial digesters.

3.5. Discussion and Future Research Directions for Pulp Digester Modeling

Modeling of pulp digesters is well studied in the literature. Many variants have been studied;
some were devoted to studying the influences of only one or a few variables on the delignification
kinetics or carbohydrate degradation in detail; others were devoted to developing overall models.
The chemical engineering community has explored models that are more complex in nature by studying
fundamental physical and chemical phenomena. Nonetheless, the control community always strives
for model simplification; in-fact, they often utilize linear state-space models for controller design.
Still, the control community has also explored kinetic models with variable degrees of complexity in
order to study different controller performances. The majority of these works studied diffusion effects
in a pseudokinetic approach by combining mass transfer and intrinsic kinetics together in a single
equation. Such an approach provides a good approximation of the diffusion effect within the nominal
operating region. However, using such equation systems beyond the studied experimental domain
can be prone to errors. This is also true for estimates of Kappa number, chip pressure and in many
cases bed compaction that are often based on empirical constants identified from experimental data.

Interestingly, the earlier scientific articles addressing pulp digester modeling devoted substantial
effort to describing the solution procedure to ensure model convergence. As different software
packages for solving differential-algebraic system of equations (DAEs) have became readily available,
the solution procedure has become less of a concern. If we look at recent trends, pulp digester modeling
studies are more application focused. Nevertheless, using pulp digester models for online applications
is still challenging due to the poor accuracy, high development costs and complex adaptive schemes.
One of the reasons behind the poor accuracy is that most of the earlier models only considered
physico-chemical phenomena along the digester’s length. Radial phenomena were often neglected—a
simplifying assumption.

The obvious reason for often using very simplified models is the challenge of the problem itself.
The delignification process is very complex by nature, involving hundreds of parallel reactions that
are still not well-known. Moreover, the wood chip is a very heterogeneous material that is subject
to natural variations. Both the properties and compositions vary depending on the type of wood,
geographical location, land elevation, seasonal variation and climate. The properties of wood chips
even differ depending on age and which part of the tree they originate from. These variations are the
major source of unmeasured process disturbances. Ding et al. [61] stated that the variation of wood
chip quality is responsible for 30–40% of process variability. Moreover, wood chips undergo both
structural and chemical changes during delignification. The process is not only dynamic in nature but
also has long dead times. Much work has been carried out toward online characterizations of wood
chips, black liquors and pulp to measure the amounts of moisture, lignin and carbohydrates, and the
reactivity [62,63]. However, model improvements using such inputs are still uncharted territory for
the research community. Some researchers studied the residence time distributions (RTDs) of pulp
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digesters and emphasized on RTD’s importance for digester modeling [64,65]. Besides, integrating
RTD in pulp digester modeling has never materialized.

To reduce the development cost, there is a growing need for developing a generic library that could
be used to model different digesters with different dimensions, configurations and types. Data-driven
modeling is one of the growing research domains that has been capturing much attention recently.
While it is not uncommon to position data-driven and physics-based approaches as opponents to one
another, real opportunity lies within combining them to exploit the benefits of both. Using data-driven
techniques to improve physical models by incorporating parameter tuning, real-time adaptations and
virtual sensors remain unexplored. Moreover, physical models can also be used to perform optimal
tests or in the training of data-driven models for fault detection.

4. Control of Pulp Digesters

The ultimate objective of a pulp and paper mill is to ensure the specified quality of the end
products while meeting the production targets and minimizing the operational costs. On the pulp
digester side, this can be translated to producing pulp with a specific Kappa number with minimum
chemical and energy inputs [66]. Pulp with a higher Kappa number can lead to screen clogging
that often affects production rate negatively and sometimes even creates rejects. This also affects
the downstream processes; i.e., chemical uses in bleaching plants and organic uses in the effluent
treatment plants are increasing significantly. Though a lower Kappa number does not lead to rejects,
it is not desirable either. It is linked with lower fiber strength due to carbohydrate degradation and
thus results in lower yield [67]. Hence, Kappa number control is mostly a constrained control; digesters
are operated in such a way that the produced pulp Kappa number stays below the upper limit. Hence,
the Kappa number target is set conservatively based on the ability of the control system to account
for process variability. As illustrated in Figure 9, improved control can lead to reduction in process
variability. Consequently, the Kappa number target can be shifted upward, closer to the upper limit.
Typically, this results in higher yield and thus lowers the operating cost significantly.
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Figure 9. Graph showing Kappa number variability: (a) before and (b) after improved control.

In addition to the Kappa number control, stable operation of the digester requires chip-level
control. Chip level influences the downward movement of chip column inside the digester. Frequent
variation in the chip column movement result in disturbances in the cooking process and hence
inconsistent pulp quality [68]. A higher chip level leads to under-cooking of the pulp, thereby resulting
in increased Kappa number and vice-versa. Furthermore, residual alkali control at the extraction is
necessary to minimize the white liquor demand for the cooking process. Since the pulp quality and
black liquor composition are closely related, residual alkali control also results in reductions in Kappa
number variability, white liquor and energy consumption.

Figure 9. Graph showing Kappa number variability: (a) before and (b) after improved control.

In addition to the Kappa number control, stable operation of the digester requires chip-level
control. Chip level influences the downward movement of chip column inside the digester. Frequent
variation in the chip column movement result in disturbances in the cooking process and hence
inconsistent pulp quality [68]. A higher chip level leads to under-cooking of the pulp, thereby resulting
in increased Kappa number and vice-versa. Furthermore, residual alkali control at the extraction is
necessary to minimize the white liquor demand for the cooking process. Since the pulp quality and
black liquor composition are closely related, residual alkali control also results in reductions in Kappa
number variability, white liquor and energy consumption.
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4.1. Kappa Number Control

Controlling the Kappa number at the continuous digester outlet is a difficult problem, mainly due
to the fact that all the main control manipulations are performed in the top part of the digester, but the
Kappa number is physically measured at the outlet of the digester (see Figure 3). The residence time
between these points can be between four to six hours. This literally means that the instantaneous
Kappa number measurement is a result of past process input parameters that existed four to six hours
earlier [6]. Moreover, blow-line Kappa number is affected by a huge number of process variables.
Due to the complexity involved, continuous cooking requires multi-variable process control [68].
Kappa number control is usually achieved by monitoring the properties of chips and liquor at the
digester inlet and by manipulating several liquor flows and reaction temperatures [66].

Although many strategies for Kappa number control have been studied and utilized over the
years, the H-factor control remains the legacy control strategy taken originally from the control of
batch digesters [69]. This type of conventional control strategy utilizes the measured Kappa number
for feedback control, often a proportional-integral-derivative (PID) controller that manipulates the
H-factor target. Since for a stable chip level the preceding production rate dictates the retention
time, in reality the H-factor manipulation is achieved by adjusting the lower heating circulation
temperate [68]. However, the multivariate nature of the delignification process and long retention time
make PIDs inappropriate for Kappa number control and eventually results in manual digester control
by the operators [70]. Therefore, different model-based control strategies were widely explored by
both academic and industrial researchers. Particularly, model predictive control (MPC) has been at the
center of attention for research efforts within this area [71].

In one of the pioneering studies, Cegrell and Hedqvist [72] deployed a simple but adaptive
model of the continuous digester to control a predicted Kappa number by manipulating the cooking
temperature. Liao and Wu [73] proposed a double loop Kappa number and H-factor control of a
Kamyr digester based on a lower-order auto-regressive (AR) model for Kappa number estimation.
The proposed control strategy does not appear to have been implemented for online digester control.
A comprehensive survey of earlier control strategies can be found in Dumont [74]. Michaelsen et al. [75]
employed an MPC optimization on a Kamyr digester using a real-time mechanistic model compensated
by an optimal state estimator. The MPC performance proved to be superior when compared with
proportional-integral (PI) control in offline simulations.

Funkquist [76] tested a 2 × 2 multivariate controller for washing zone control using a low-order
linear model identified from a high-order nonlinear model. The control design was based on a Smith
predictor in combination with a H-infinity stabilization. Sidrak [77] used the Purdue model to calculate
set of optimal operating condition for blow-line Kappa number control though offline simulations.
The author also proposed an online control architecture for online model adaptation and optimal control
of pulp digester. Wisnewski and Doyle [78] analyzed the performance of linear MPC and nonlinear
MPC for set-point tracking and unmeasured disturbance rejection. The authors used Hankel-norm
approximation to obtain a low-order linear model from an extended Purdue model. It was shown that the
nonlinear MPC provides better performance in terms of set-point tracking. However, no improvement in
unmeasured composition disturbances was noticed. Wisnewski et al. [79] and Wisnewski and Doyle [80]
explored a systematic method for selecting manipulated variable (MV) and secondary measurements to
design a multi-rate linear MPC for Kappa number control. The authors concluded that either modified
continuous cooking (MCC) or EMCC trim flow rates should be used for the Kappa number control.
Amirthalingam and Lee [81] and Amirthalingam and Lee [82] examined a data-driven stochastic
system model through subspace identification in order to design a multi-rate Kalman filter coupled to
a MPC for the Kappa number control. Kayihan [83] and Kayihan [84] studied Kappa number profile
control along the digester using a 5 × 5 unconstrained MPC. While the method is more likely to
guarantee stable fiber properties and target Kappa number, having only one direct Kappa number
measurement available at blow-line makes this approach difficult to apply in reality.
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Al-Awami et al. [85] compared the performance of dynamic matrix control (DMC) with the
performances of classic single-input-single-output (SISO) and multi-inputs-multi-outputs (MIMO)
controllers. The author showed that a SISO feedback controller performed better than a MIMO
controller based on 4 × 4 transfer function matrix. Both constrained and unconstrained DMC shown
superior performance over all classical control methods. Clarke-Pringle and MacGregor [86] developed
and compared two SISO reduced dimension controllers (RDCs) to a full-dimension DMC for a Kamyr
digester. Despite the simpler structure, the performances of the RDCs were comparable with DMC at
operating point and showed very mild degradation in operating conditions.

Wisnewski and Doyle [87] performed a comparative study where two linear MPCs, one obtained
though subspace identification and the other through linearization, were compared with a nonlinear
MPC. The nonlinear MPC and linear MPC with a linearized model had better closed-loop performances
than MPC with a subspace identified model. Castro and Doyle [88] studied MPC and SISO PI control
for plant-wide control of a fiber line. The authors performed relative gain array (RGA) analyses to
prove that EMCC temperature was the best MV in terms of interaction, but MCC temperature had
a gain almost three times that of EMCC temperature. Hence, it was concluded that both MCC and
EMCC temperatures should be used for Kappa number control. The authors also concluded that the
multivariate compensation by MPC was useful in the digester, but did not affect the bleach plant’s
performance. Mori et al. [89] utilized multiple linear regression (MLR) for Kappa number control
of a Kamyr digester during wood species change. Silva and Biscaia [90] applied a multi-objective
optimization based on the genetic algorithm (GA) for Kappa number and yield control of a Kamyr
digester. By using an improved Purdue model, the authors showed that for each Kappa number
there was a maximum yield associated and concluded that GA was able to overcome the conflicting
optimization goals. Alexandridis et al. [91] demonstrated a MPC for Kappa number control by
using a multi-input single-output (MISO) partial least square (PLS) model. The paper showed the
effectiveness of the PLS method for developing an accurate Kappa number prediction model and MPC.
Alexandridis et al. [92] and Alexandridis and Sarimveis [93] employed an adaptive MPC based on
a radial basis function (RBF) ANN model for Kappa number control of continuous pulp digesters.
The authors found that the tracking performance of the adaptive MPC was superior to that of a
non-adaptive MPC. Padhiyar et al. [94] extended the work presented in [84] by employing a multi-rate
extended Kalman filter (MR-EKF)-based nonlinear inferential MPC for Kappa number profile control
of a continuous pulp digester. The authors used a first-principles nonlinear model as the controller
model, while most of the previous authors used some simplified controller models. They illustrated
Kappa number control at three different locations along the length of the digester. The developed
controller showed superior performance even under significant mismatches in parameters, initial state
errors and stochastic disturbances in the feed-stock composition.

Rantanen [95] proposed an iterative control strategy for Kappa number control of the Downflow
Lo-Solids digester wherein set points for chemical charge and cooking temperature are iteratively
solved by using a mechanistic digester model. Later, Ahvenlampi and Rantanen [96] extended
the approach presented in [95] and tested a fault tolerant control strategy with the combination of
diagnosis and control of the Kappa number in the continuous cooking plant. The authors used a
self-organizing map (SOM) to monitor the process and the information was used to switch on the
controller or switch it off. Padhiyar and Bhartiya [97] proposed a lexicographic optimization-based
MPC that enforces priorities to achieve the blow-line Kappa number target when the target Kappa
number profile is unachievable due to model–plant mismatch, unmeasured disturbances and input
limitations. Galicia et al. [98] showed that the closed-loop performance of PID can be significantly
improved by feedbacking Kappa number prediction from a recursive reduced order dynamic PLS
model. Choi and Kwon [99] tested a model-based feedback controller for Kappa number and porosity
control of a batch digester with simulation studies. The reduced order controller model was built using
the simulation data to design a Luenberger observer for state estimation. Recently, Rahman et al. [6]
examined a feedforward MPC approach by combining a state-space model identified from complex
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first-principles model and a near infrared (NIR) soft-sensor for online lignin content measurement.
The authors demonstrated that the feedforward MPC performed superiorly to both PID and MPC
without feedforwarding lignin content.

4.2. Chip Level Control

In practice, digester chip level or column height varies significantly due to unmeasured changes
in chip size, density and composition; unstable movement; and elasticity of the column caused by
different cooking conditions. Chip level influences the residence time of the chips in the digester [100].
Hence, a fluctuating chip level results in varying degrees of cooking, and thus an inconstant Kappa
number. Digester chip level can be controlled either by adjusting the chip inflow or by manipulating
the pulp outflow. Typically chip inflow is manipulated by varying the chip meter speed, and the pulp
outflow is manipulated by adjusting the blow flow [101]. However, the less the blow valve has to move
to maintain the digester level, the more likely the chip column is to remain compact and stable [102].
Hence, the chip meter speed is often preferred over blow flow. In some mills, both chip feed and
blow flow rate are used, as primary and secondary MVs respectively. In addition to the blow flow,
the bottom scraper speed also influences the pulp outflow from the digester. Due its effect on pulp
consistency, bottom scraper speed can be used for chip-level control in combination with chip meter
speed and blow flow [68]. It is important to note here that different types of disturbances may require
different manipulation strategies [103]. For example, chip level change due to bulk density variation
will require blow flow manipulations for residence time control and manipulation of chip meter speed
for throughput control.

A wide range of control strategies have been applied over the years for digester level control,
but only a few research articles could be found in reality. Dumont et al. [104] and Belanger et al. [105]
showed self-tuning regulators (STR) using both chip feed and blow flow rate had comparable
performances for Kamyr digester level control. Allison et al. [106,107] demonstrated a MISO
generalized predictive control (GPC) where the blow flow and the chip feed rate were manipulated
simultaneously to control the chip level. However, the controller was discontinued after six months
of operation due to increased Kappa number variability. Lindgren et al. [108] implemented a MPC
for chip-level control through manipulation of chip meter speed at M-real Husum mill. Though the
control strategy did not reduce the chip-level variations significantly, the reduction of the blow flow
manipulations resulted in lower Kappa number variations. Badwe and Satini [68] emphasized the need
for a multivariate controller over linear MPC for a continuous digester by highlighting the nonlinear
behavior of the chip level. Subsequently, they implemented a nonlinear MPC for the level control to
compute optimal bottom scraper speed and blow flow as primary MVs, bottom wash liquor flow as
the secondary MV and chip meter speed for situations when the chip level is significantly high or low.
The authors suggested the use of a soft-sensor or bottom differential pressure for blow consistency
control if direct measurement is not available.

4.3. Residual Alkali Control

Residual alkali or residual EA of the black liquors is the amount of unused EA that is left after
the cook [109]. Residual alkali concentration should not be too high or too low. High residual alkali
increases chemical consumption and increases load on the recovery cycle, and thus also raises energy
consumption. This is often linked to high EA at the beginning of the cook that results in higher
cellulose degradation, which reduces pulp yield [110]. On the other hand, too low a concentration of
residual alkali can lead to lower pulp quality and bleachability. Lignin starts to re-precipitate if the EA
drops too low at any stage of the cook [111]. This can result in high chemical consumption, low pulp
strength and low yield [112]. Hence, modern digester control should not only minimize the initial
alkali levels but also control the alkali profile along the digester’s length [113].

Only a few scientific articles can be found that address the important issue of residual alkali
control. This is probably due to the fact that Kappa number is the main quality key performance
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indicator (KPI) and thus the primary objective of any digester control system. Gough and Kay [114]
applied a transfer function-based predictive adaptive controller for closed loop control of residual
alkali in an effort to reduce Kappa number variability. Luo et al. [115] studied the control of residual
alkali content during Kraft pulping by employing empirical prediction model for residual alkali and
Kappa number. The simulation study revealed that residual alkali control requires co-regulation of
H-factor, initial alkali charge and sulfidity.

4.4. Discussion and Future Research Directions of Pulp Digesters Control

Control of continuous pulp digesters has been widely studied by both academic and industrial
researchers. Initially, the research focus was set on the control of the chip level of continuous pulp
digesters [104,106,107]. Eventually, the focus shifted to achieving maximum pulp production at a
specific Kappa number with minimum chemical and energy consumption. Apart from MPCs, a wide
variety of control approaches, such as DMC, RDC, Smith predictor and GA were explored to accomplish
these goals [76,85,86,90]. Due to its superiority, researchers have investigated different MPC concepts
for continuous pulp digesters. Some of the studies are focused on the linear MPC concept that tackles
problems with linear constraints and dynamics [75,78,82]. Both linearization of the physics-based
models and subspace identification from the data were adopted. On the other hand, nonlinear MPC
based on complex physics-based methods, and data-driven methods such as ANN, MLR and PLS,
have also been studied [94,97,116,117]. Interestingly enough, the focus shifted along the way from
end-point Kappa number control to Kappa number profile control.

Even though level control, residual alkali control and a few others also gained heed in the realm
of digester control, the ultimate goal of all these control strategies was typically linked to stabilizing
the end-point Kappa number. If a control strategy impacts the end-point Kappa number negatively,
it is most likely to be discontinued despite any other gains in performance.

Despite the extensive research, end-point Kappa number variability at the digester outlet
is still a major concern for the pulp mills. With the skyrocketing computing power, the use of
nonlinear MPC by employing complex digester models is gaining traction. Particularly, integrating
advanced measurement techniques with MPC can enable tighter control of continuous digesters.
However, reliable measurement devices targeting digester control are not well developed [118].
Conventionally, reliable measurements of chip moisture, lignin and carbohydrate contents, white
liquor EA, sulfidity, residual alkali, pulp consistency and end-point Kappa number, have mostly been
achieved by laboratory testing and rarely by in-situ testing. Nonetheless, advanced measurement
techniques for reliable online measurements of important process parameters are emerging [119–121].
Till date, most of these advanced sensors have primarily been used for process monitoring rather than
process control. We anticipate that integration of state-of-the-art sensors and advanced controllers will
be extensively researched in coming years. On that front, measurement techniques targeting digester
operation and control need further research exploration. Particular focus needs to be on improving the
robustness of these sensors.

In recent years, applications of different artificial intelligence (AI) techniques, i.e., ANN, reinforcement
learning, etc., gained much attention in the area of process control [122]. Particularly, employing
reinforcement learning to approximate the cost function of a nonlinear MPC seems very promising [123].
Approaches such as deep reinforcement learning eliminate the need for tailor-made feature descriptors,
controller tuning, deriving control laws and developing mathematical models [124]. It is expected
that in the near future deep reinforcement learning and other AI approaches will be extensively
researched for control of complex industrial processes like pulp digesters. However, the actual industrial
application might need to wait until such approaches have been fully developed and gained trust through
pilot applications.
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5. Diagnostics of Pulp Digesters

Pulp digesters are the main production bottleneck that can considerably limit the production
capacities of pulp mills. Therefore, early detection of process abnormalities or faults is necessary.
Process abnormalities or faults can be referred to as unwanted process conditions when the process
changes abruptly or gradually. These situations can be better described as soft-faults, since they often do
not result in instant shutdowns of plants. Rather, the quality of the product and/or the production rate
can be substantially degraded. They may also result in energy and chemical wastage, and high waste
generation. Thus, soft-faults can significantly affect plant economics. Typically, soft-faults are almost
impossible to detect through monitoring the process parameters only. Normal control actions under such
faulty conditions may further deteriorate the plant’s operation and result in major shutdowns. The most
problematic soft-faults that can occur in a continuous pulp digester with major effects on the blow-line
pulp quality and/or the production rate are hang-ups, channeling and screen clogging [125,126].

Over the years, fault detection and diagnostics for different chemical processes have been studied
in many articles [127,128]. However, only a small number of studies have focused on fault detection
and diagnostics of continuous pulp digesters. In an early study, Puranen [129] proposed a disturbance
index to monitor the status of the chemical pulping process, which was calculated by combining
measurements, means and deviations using fuzzy logic. Alhoniemi [130] used SOM to identify the
faulty states related to chip column movement in a digester. The author highlighted the ineffectiveness
of the control system under the faulty states. Dufour et al. [131] evaluated three different data-driven
approaches to diagnose a pulp digester. A Gross error-detection approach for sensor fault detection and
two ANN approaches for the detection of product quality related changes and feedstock composition
changes were investigated . The third approach was further investigated in Dufour et al. [132]. Due to
the lack of plant measurements, the ANN approach was developed and validated based on data
generated from a first-principles model of the pulp digester. A Bayesian network (BN)-based root
cause analysis method for pulp digesters was proposed and validated using a simulation model by
Weidl and Dahlquist [133]. The proposed model needed many inputs that were not readily available
from pulp mills. Ahvenlampi et al. [134] used fuzzy logic and principal component analysis (PCA)
to compute key factors for the digester diagnosis by combining measurements and some statistical
variables. The authors showed the applicability of the approach by using offline data. In another paper
Ahvenlampi and Kortela [10] applied SOM and fuzzy clustering to identify faulty state of continuous
digesters. Later, Ahvenlampi and Uusitalo [135] studied extraction screen plugging by analyzing data
from a Downflow Lo-Solids digester. Lee et al. [136] examined a hybrid fault diagnosis method based
on a combination of the signed directed graph (SDG) and the PLS. The regression result revealed
that the method performs better if the time delays of the measurements are also included as inputs.
To reduce disturbances related to chip retention in the digester, Correia and Lana [137] proposed a
digester criticity index based on different correlation tests and process measurements. The index was
intended to provide an estimation of the stability of the digester as well as suggestions to the operator
if corrective actions are required. Another performance index-based method for digester monitoring
and root cause identification was examined by Tervaskanto et al. [138]. The authors used seven
performance indices—each corresponding to a sub-process in the chemical pulping mill—that were
developed based on process statistics and physics-based models. Yli-Korpela et al. [139] evaluated the
digester runnability problem by utilizing process performance indices and k-means clustering to find
failure pathways. Pourian and Dahlquist [140] studied the channeling phenomenon in pulp digesters
by using a porous medium model with CFD. The result showed higher circulation flow and lower
pressure in the nearest circulation pipe, which can be used as indicators of channeling situations.

5.1. Discussion and Future Research Directions in Pulp Digester Diagnostics

According to the review of relevant literature, the data-driven and knowledge-based methods
have so far been largely preferred over physics-based approaches for digester diagnostics.
However, in terms of accuracy level, none of the methods explored to date seem to be superior
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to the others or mature enough for industry-wide application. One of the possible ways forward to
improve the performance of diagnostics systems could be by combining results from different methods,
particularly through data fusion. This has the potential to enhance the benefits as well as diminish the
drawbacks of different methods [141].

Due to the abundance of historical data, many novel AI approaches for fault detection and diagnostics
of chemical processes have been appeared during last few years [142]. However, the potential applications
of these techniques for pulp digester diagnostics have not been materialized yet. Many challenges lie ahead
before industry wide applications of these AI approaches can take place. One of the major challenges is the
lack of labeled data that is necessary for supervised AI approaches. Contrarily, unsupervised AI approaches
often fail due to the lack of domain knowledge that is required to achieve explainable outcomes. Another
key issue is that historical data are often clustered around a specific (or nominal) operating condition.
This is not very useful for the AI approaches that tries to segregate normal and faulty process behavior
over a wide range of operating condition. In this regard, physics-based approaches can have the upper
hand over AI approaches. Hence, combining both in a hybrid approach would be beneficial.

6. Conclusions

The pulp and paper industry accounts for almost half of the total gross value added from the
forestry sector at the global level [143]. Despite its economic significance, the industry is lagging
behind in terms of adopting state-of-the-art operation and control techniques. It is likely that multiple
factors led to this situation. During the past decade, R&D spending has dropped substantially due
to the difficult financial situation faced by the pulp and paper industry [144]. The need for a major
infrastructure overhaul, resistance from the workforce and the lack of pilot applications proving the
robustness of new technological solutions are some of the things that are currently hindering the
advancement within the field. The sector is also occupied by only a small number of multinational
conglomerates which poses a penetration barrier for new technology niches. In this context, research
to develop new methods, tools and algorithms for improving product quality and process efficiency
while reducing production cost and plant downtime is drawing attention.

Bearing this in mind, a comprehensive literature review has been presented in the present work
focused on the modeling, control and diagnostics of continuous pulp digesters, one of the major
elements of a pulp mill. According to the bibliometric analysis, the USA dominates the research field,
being the main driving force behind past research efforts. Furthermore, the research interest with
the domain seems to be growing gain. In the area of digester modeling, although many approaches
have been studied, models following the Purdue and Gustafson approaches have dominated the field.
In a nutshell, the Purdue model has the best structure and succeeds in following the Kappa number
trajectory better, while Gustafson’s model is good at capturing the end point of delignification reaction.
When it comes to digester control, minimizing the end-point Kappa number variability seems to have
been the top priority for pulp mills, with MPC being the most studied control strategy. Both linear
and nonlinear MPCs have been studied extensively, but online applications of nonlinear MPCs are
not evident in the literature. Being the least studied research area, digester diagnostics have mostly
focused on different statistical techniques.

The present work has also summarized the current and future research directions within the digester
modeling, control and diagnostics. In recent years, a noticeable trend towards the development of new
measurement devices around pulp digesters has been visible. Particularly, online characterization of wood
chip, black liquor and pulp has been extensively researched. It is expected that this trend will continue in
the coming years, explicitly focusing on robustness improvements for such devices. We argue that in the
future we will see further integration of such advanced sensors for the improvement of model prediction
and controller performance. The fear of lagging behind is forcing the pulp and paper industry to embrace
AI and digital transformation. We anticipate that research on different AI-based approaches for modeling,
control and diagnostics of pulp digesters will accelerate in the future.
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Notation and Symbols

The following notation and symbols are used in this manuscript:

α, β Positive constants
H H-factor
γ Temperature dependent function
L Lignin concentration
Γ Gamma function
L∗ Intersection lignin level
a, b Exponents of concentration
L1, L2, L3 Fast, intermediate and slow lignin concentration
c1, c2, c3 Carbohydrate reaction rates
R Universal gas constant
k1, k2, k3 Lignin reaction rates
S Concentration dependent function
m, n, o, p, q, r Fitting parameters
T Temperature
t Time
Tc Chip temperature
An Pre-exponential factor
CH Carbohydrate concentration
C Wood component concentration
HS Sulfide concentration
C∞ Nonreactive wood component concentration
Na Sodium concentration
En Activation energies
OH Alkali concentration

Abbreviations

The following abbreviations are used in this manuscript:

EA Effective alkali
MLR Multiple linear regression
CSTR Continuously stirred-tank reactor
GA Genetic algorithm
CFD Computational fluid dynamics
MISO Multi-input single-output
PID Proportional-integral-derivative
PLS Partial least square
MPC Model predictive control
RBF Radial basis function
AR Auto-regressive
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ANN Artificial neural network
PI Proportional-integral
MR-EKF Multi-rate extended Kalman filter
MV Manipulated variable
SOM Self-organizing map
MCC Modified continuous cooking
NIR Near infrared
EMCC Extended modified continuous cooking
STR Self-tuning regulator
DMC dynamic matrix control
GPC Generalized predictive control
SISO Single-input-single-output
BN Bayesian network
MIMO Multi-inputs-multi-outputs
PCA Principal component analysis
RDC Reduced dimension control
SDG Signed directed graph
RGA Relative gain array
DAE Differential-algebraic equation
RTD Residence time distribution
AI Artificial Intelligence
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