
Cyclostationary Analysis towards Fault Diagnosis of Rotating Machinery

Authors: 

Shengnan Tang, Shouqi Yuan, Yong Zhu

Date Submitted: 2021-04-26

Keywords: rotating machinery, fault diagnosis, cyclic spectral, cyclostationarity

Abstract: 

In the light of the significance of the rotating machinery and the possible severe losses resulted from its unexpected defects, it is vital
and meaningful to exploit the effective and feasible diagnostic methods of its faults. Among them, the emphasis of the analysis
approaches for fault type and severity is on the extraction of useful components in the fault features. On account of the common
cyclostationarity of vibration signal under faulty states, fault diagnosis methods based on cyclostationary analysis play an essential role
in the rotatory machine. Based on it, the fundamental definition and classification of cyclostationarity are introduced briefly. The
mathematical principles of the essential cyclic spectral analysis are outlined. The significant applications of cyclostationary theory are
highlighted in the fault diagnosis of the main rotating machinery, involving bearing, gear, and pump. Finally, the widely-used methods
on the basis of cyclostationary theory are concluded, and the potential research directions are prospected.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2021.0208
Citation (this specific file, latest version): LAPSE:2021.0208-1
Citation (this specific file, this version): LAPSE:2021.0208-1v1

DOI of Published Version:  https://doi.org/10.3390/pr8101217

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



processes

Review

Cyclostationary Analysis towards Fault Diagnosis of
Rotating Machinery

Shengnan Tang 1 , Shouqi Yuan 1,* and Yong Zhu 1,2,3,*
1 National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China; tangsn6635@126.com
2 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University,

Hangzhou 310027, China
3 Ningbo Academy of Product Quality Inspection, Ningbo 315048, China
* Correspondence: shouqiy@ujs.edu.cn (S.Y.); zhuyong@ujs.edu.cn (Y.Z.); Tel.: +86-0511-88780280 (S.Y.);

+86-0511-88799918 (Y.Z.)

Received: 23 August 2020; Accepted: 23 September 2020; Published: 28 September 2020
����������
�������

Abstract: In the light of the significance of the rotating machinery and the possible severe losses
resulted from its unexpected defects, it is vital and meaningful to exploit the effective and feasible
diagnostic methods of its faults. Among them, the emphasis of the analysis approaches for fault
type and severity is on the extraction of useful components in the fault features. On account of the
common cyclostationarity of vibration signal under faulty states, fault diagnosis methods based on
cyclostationary analysis play an essential role in the rotatory machine. Based on it, the fundamental
definition and classification of cyclostationarity are introduced briefly. The mathematical principles
of the essential cyclic spectral analysis are outlined. The significant applications of cyclostationary
theory are highlighted in the fault diagnosis of the main rotating machinery, involving bearing, gear,
and pump. Finally, the widely-used methods on the basis of cyclostationary theory are concluded,
and the potential research directions are prospected.
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1. Introduction

In practical engineering, owing to the changeable operation conditions of widely used rotating
machinery, it is difficult to avoid the resulting faults of the components or system. In order to reduce
the economic losses and security risks caused by the faults, it is of great significance to conduct the
study of fault diagnosis methods [1–4].

In mechanical faulty conditions, different degrees of vibration can be produced, such as
harmonics, impulse response signals generated by wear and break, and noise signals generated by
measurement [5–7]. Vibration analysis has many strengths, including the easy online implementation
and fast change response in varying conditions [8,9]. Hence, the analysis of vibration signal is
conventionally employed for diagnosis and prediction. The acquired signal includes deterministic
components and stochastic signal, and the latter is classified into stationary and non-stationary signals.
Therefore, the approaches of feature extraction involve stationary and non-stationary analysis based
on the machinery vibration signal [10–12]. In light of the limitations of the characteristic representation
of the stationary methods and the non-stationarity of the fault signature, non-stationary methods have
been an attractive choice for the extraction of fault information with high precision in rotary machinery.

Some methods based on the time-frequency domain analysis have been successfully applied
to the processing of non-stationary signals, such as short-time Fourier transform (STFT), wavelet
transformation (WT), Wigner–Ville distribution, and cyclic statistical analysis [13–16]. It is of great
difficulty to investigate an effective method for the processing of nonlinear signals [17]. As a typical
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rising development of the signal processing techniques, cyclostationary (CS) approaches present
the admirable advantages in analyzing the signature with the characteristics of the nonlinearity,
non-Gaussian, and non-stationarity [18–20]. The concept of cyclostationarity was firstly proposed by
W.R. Bennett, indicating that the periodicity of signal could be well concealed in the non-stationary
processes [21]. Compared with normal signals, faulty signals produce periodic component or
modulation phenomenon, and the statistics present periodic transformation. Strictly, CS is defined as
a joint probability density function where the time series possess periodic time varying. When the
statistical characteristics show periodic or multiperiodic stationary changes, it can be named as CS. Since
Gardner firstly proposed the feature of the CS signal, it has aroused the interests of the researchers in
the field of the fault diagnosis of rotating machinery [22–24]. Akhand Rai et al. analyzed and discussed
the progress of signal processing techniques according to the different periods of the researches [25].
CS analysis was applied in the discussed second stage, and the new developments of enhanced and
combined methods were demonstrated as well in the third stage [26–28].

In terms of the characteristics of the vibration signal of rotating machinery, it can be viewed as
CS signal when machinery faults happen [29]. In consideration of the periodicity and randomness
of vibration signal, Sawalhi et al. employed the cyclostationarity and relative functions for the
fault diagnosis of gearbox, constructing the corresponding model for simulation [30]. The strategy
of the bispectral domain was used for the fault analysis of rotating machinery [31]. J. Antoni et al.
analyzed the varying CS components of different rotating machinery including bearing and gearbox
and discussed the relationship between angle domain and time cyclostationarity; moreover, a method
was investigated combined blind deconvolution and demonstrated the validity and feasibility under
the effects of the noise and speed [32–35]. Motivated by the research of J. Antoni, the CS analysis was
performed in bearing fault diagnosis under the non-stationary situations, the influence of the working
load and speed fluctuation included [36]. To analyze the squared envelope spectrum of signals, second
order CS components (a colored noise carrier modulated by a periodic signal, and the added colored
background noise) were separated and investigated for the bearing fault diagnosis [37]. Zhou et al.
employed the CS theory for the fault diagnosis of rolling bearing [38]. He et al. studied the first-order
cyclostationarity of the fault signal in gear and the second-order cyclostationarity of the bearing.
Moreover, the potential mechanism was analyzed and discussed [39]. On the basis of the enhanced
cyclical spectrum, a new method was developed to achieve the extraction of fault feature of bearing [40].
A new methodology based on the CS analysis was established for the gearbox diagnostics [41].

CS processing methods have made desirable achievements in the application of fault diagnosis
towards the rotary machines. With respect to the superiority of the CS analysis in non-stationary
signal processing, this review plays an emphasis on the main and widely-used rotating machinery,
involving bearing, gearing and pump. The highlighted methods include the cyclic spectral correlation
(CSC), cyclic spectral coherence (CSCoh), and some integrated methods to promote the performance
of fault diagnosis. Especially, the applications of the analysis methods discussed above are analyzed
and discussed on intelligent fault diagnosis for rotating machinery. This research provides a novel
perspective for the fault feature extraction of non-stationary signal and the exploration of the new
diagnostic methods.

2. Basic Theory of Cyclostationarity

In terms of the traditional signal processing methods, the vibration signal is conventionally
employed to accomplish the condition monitoring and fault diagnosis [42]. In healthy condition, the
acquired signal is usually viewed to be stational for the sequent analysis. However, owing to the
effect of the fluctuation of working load and environmental noise in faulty condition, non-stationary
signal could be obtained in most practical situations [43–46]. The CS analysis is exactly an effective
tool for the processing non-stational signal. It could be employed for the feature extraction, condition
monitoring, and fault identification [47,48]. Moreover, the vibration signal containing faults of rotating
machinery possesses non-stationarity, which provides a potential development for CS analysis [49,50].
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Through the CS analysis, the significant hidden feature information can be revealed, and the different
information denotes the changeable fault conditions.

2.1. Definition of Cyclostationarity

Generally, the signals whose statistical characteristics are periodic or multi-periodic (each cycle
cannot be generalized) are referred to as CS or periodic stationary. The rotating machine operates
in a rotating way, which will produce periodic signals under normal running process. When the
machinery fault occurs, its vibration signal can be considered as a modulation signal. Its second-order
statistics (mainly cyclic autocorrelation function, spectral correlation function, and spectral coherency
function) present the periodicity and thus can be viewed as a CS signal, which is a special non-stational
signal [51].

Definition 1. Strict cyclostationarity

As for the random process of x(t), the probability density function of the k dimensional variable
can be represented as follows:

f (x(t1), x(t2), · · · x(tk)) = f (x(t1 + L1T), x(t2 + L2T), · · · x(tk + LkT)), (1)

Among them, Li, (i = 1, 2, · · · , k) denotes any integer, L1 , L2 , . . . ,Lk, and T represents sampling
period. So, the process can be named strict cyclostationarity.

Definition 2. Generalized almost cyclostationarity

If the random process of x(t) presents the periodic or multi-periodic stationary change, it can
be called generalized almost cyclostationarity (GACS). The cyclostationarity involved in the most
researches are based on the GACS.

2.2. The Classification of Cyclostationarity

In accordance with the periodic change of the signature, this process can be classified into the
following three processes: the first-order, the second-order, and the higher order.

When the first moment mx(t) of random process x(t) satisfies the following condition:

mx(t) = mx(t + T). (2)

This can be named the first-order cyclostationarity.
Suppose that the autocorrelation function of x(t) Rx(t, τ) conforms to the following situation:

Rx(t, τ) = Rx(t + T +
τ
2

, u + T −
τ
2
). (3)

This can be called the second-order cyclostationarity.
If the k (k ≥ 3) moment mkx(t, τ1, τ2, · · · , τk−1) meets the following descriptions,

mkx(t, τ1, τ2, · · · , τk−1) = mkx(t + T, τ1, τ2, · · · , τk−1). (4)

This can be named the higher-order cyclostationarity, including the third-order cyclostationarity [52,53].
In terms of the second-order cyclostationarity, the instantaneous autocorrelation function of x(t)

can be expressed as:

Rx(t, τ) = E
{
x
(
t +

τ
2

)
x∗

(
t−

τ
2

)}
, (5)

where τ denotes the lag time, E{} denotes the mathematical expectation, and * means the
complex conjugate.



Processes 2020, 8, 1217 4 of 15

If the T is taken as the period of Rx(t, τ), Then,

Rx(t, τ) = Rx(t + T, τ), (6)

It can be represented as the form of Fourier series:

Rx(t, τ) =
∑
α

Rαx (τ)e
j2τxt, (7)

Thereinto, α = m/T, m ∈ Z, the Fourier coefficient of Rx(t, τ) can be given by:

Rαx (τ) =
1
T

∫ T/2

−T/2
Rx(t, τ)e j2τxtdt, (8)

Rαx (τ) is called the cyclic autocorrelation, α denotes the cyclic frequency.
Further, take the Fourier transform of Rαx (τ), then,

Sαx ( f ) ,
∫
∞

−∞

Rx(t, τ)e j2 f xtdt. (9)

Sαx ( f ) is defined as the spectral correlation density function or the spectral correlation function.
In the above expression, f denotes the spectral frequency which is distinct from the cyclic frequency
defined before [54].

3. Applications of Cyclostationarity Theory in Fault Diagnosis of Rotating Machinery

In accordance with the basic theory of cyclostationarity, it has been applied in many research
fields, involving signal processing, econometrics, mechanics, and biology [55–57]. Lots of direct and
combined approaches have been exploited for the fault diagnosis of rotating machinery [58–60]. It is
noted that variable operational conditions are studied in some analysis methods [61–63]. In the light of
the advantages in the nonstationary signal analysis, spectral correlation has been successfully used for
bearing fault diagnosis [64–66]. Furthermore, the CSC and CSCoh were employed to diagnose the
fault of bearing. Inspired by the development and application of artificial intelligence, the intelligent
diagnostic method was investigated combined machine learning techniques with cyclostationarity.
In addition, sparse test-based integrated methods and energy slice bispectrum-based methods were
used for bearing fault diagnosis. On account of the ratio of cyclic content and harmonic-to-noise ratio,
a new diagnostic approach was studied as well. In consideration of the noise cancellation, relative
improved methods were constructed. Moreover, the enhanced envelope spectrum was utilized for the
wind turbine gearbox.

Owing to the advantages of cyclic spectral analysis, it plays a pivotal role in the CS signature
processing of machinery [67–69]. CSC is a two-domain function, manifesting the relationship between
the spectral frequency and the cyclic frequency. Compared with traditional cyclic spectral analysis,
CSCoh presents the superiority in the presence of noise interference, which has been demonstrated to
be more efficacious for the processing of CS signals [70,71].

By integrating CSCoh and envelope spectrum, Mauricio et al. developed two methods to select
the optimal frequency band for the bearing fault diagnosis: improved envelope spectrum by alpha
maximization (IESAM) and improved envelope spectrum via feature optimization-gram (IESFOgram),
respectively [72]. The raw time signal was transformed into bispectral map in both methods. IESAM
was employed to acquire the specific frequency band on condition that the characteristic fault frequency
required to be gained. In comparison to other processing methods, it presents the superiority with
respect to the computational capability. The shortcoming of this method was that the preprocessing
step consumed a longer time. As one of the methods similar to the Fast Kurtogram, IESFOgram was
used to achieve the optimization of the amplitude. Although it presents enhanced performance, it is
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disadvantageous in terms of both the computing cost and operation time. Moreover, the IESFOgram
method was extended to accomplish the extraction of the combined improved envelope spectrum,
adding the information of other bands. In comparison with the band pass filtering selection based
on the Fast Kurtogram-based squared envelope spectrum (SES) and the Autogram-based combined
squared envelope spectrum (CSES), it presents better performance in detecting the characteristic
frequencies of bearing and gearbox [73].

The methods of band selection in CS analysis were also investigated in the fault diagnosis of rotating
machinery [74,75]. To achieve the separation of cyclostationarity from non-Gaussianity, an analysis
tool based on the log-cycligram was constructed for the selection of the optimal demodulation band.
The diagnostic performance of the method was validated through bearing experiments and other
existing methods were employed for comparisons [76]. The effectiveness in band selection of both
the methods was validated through the application to the bearing fault diagnosis. BPFI denotes the
characteristic inner race defect frequency. To obtain different fault data, varying moments of force
were added for the deformation of bearing. Three cases were performed with loads 30, 50, and 70 Nm.
The results with load 50 Nm were analyzed as an example. As shown in Figure 1, through correctly
seeking for the optimal band, the fault frequencies of bearing in different conditions were obtained by
the identification of the harmonics of the fault component. From Figure 2 it can be found that two
distinct fault feature values were located in around 42 kHz, which showed the comparability to the
results of IESAM methods.
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Inspired by the application of CSCoh in signature processing, Chen et al. employed it as a tool of
feature extraction to the intelligent fault diagnosis of bearings based on convolutional neural network
(CNN) [77]. Raw vibration data were processed to accomplish the preliminary feature learning of
fault information and obtain the distinguished features, which could make the subsequent feature
learning of CNN less difficult to some extent. Specifically, a special conversion was achieved from raw
data into two-dimensional spectrogram, which was taken as the data input of the developed CNN.
The concealed periodic variation behavior of fault data was revealed through the combination of the
preprocessing and classification methods. To be more consistent with practical different noise levels,
white Gaussian noise were added on the raw signals with a SNR of 4 and 0 dB. Moreover, diverse signal
analysis methods were employed for data preprocessing. The integrated approach achieved an average
accuracy of 99.02%, which was superior to other approaches by the use of different time-frequency
analysis methods under changing situations, including STFT and WT (Table 1).

Table 1. Comparison of average accuracy with different time-frequency analysis methods in varying
working conditions.

Time-Frequency Analysis Methods Signal to Noise Ratio (SNR) Average Accuracy (%)

short-time Fourier transform (STFT)
— — 95.20
4 dB 90.44
0 dB 87.98

wavelet transformation (WT)
— — 95.32
4 dB 88.51
0 dB 86.34

cyclic spectral coherence (CSCoh)
— — 99.02
4 dB 94.97
0 dB 92.15

With an integration of popular machine learning methods and CS analysis, an intelligent diagnostic
method was carried out for fault diagnosis of rolling element bearing [78–80]. The CSC and CSCoh
were exploited to convert the time signals into the spectral features, which achieved the establishment
of healthy indicators (Figure 3). Compared with other indicators, the indicators constructed showed the
superior robustness. A semi-supervised learning method based on the support vector data description
(SVDD) was used to accomplish the classification of the extracted features. Negative samples were
obtained by constructing artificial outliers using an object-generation method. Support vector data
description with negative samples was named NSVDD. Three different levels were employed to train
the model, namely sensor level, machine level, and fleet level. It was demonstrated that the method
presented the preferable classification effectiveness for bearing faults.
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On account of the screening of the effective spectral frequency and the reliance of spectral
correlation/spectral coherence on the special experience, a simple method was performed based
on the sparse test for bearing fault diagnosis [81]. It is demonstrated that this method is effective
even in condition of weak fault frequencies and serious interferences from other cyclic frequencies.
The method was considered as a guideline for the acquisition of the enhanced envelop spectrum, which
outperformed the other approaches for comparisons. Figure 4a,b displays the raw signal and the
corresponding frequency-domain distribution under inner race fault condition, respectively. Owing to
the limitations of the acquisition device, some large signal amplitudes show the flat trend. As shown in
Figure 4c, spectral coherence of the signal is obtained according to the previous research, indicating the
relationship of cyclic frequency and spectral frequency. But it is hard to complete the fault diagnosis
only by spectral coherence due to the interference of other components. By the use of the guideline,
two obvious hills are found in Figure 4d, around 2000 and 5000 Hz, respectively. By combing the
above analysis, Figure 4e depicts the EES obtained from the spectral frequency band from 1564 to
2030 Hz, and the bearing inner race fault can be observed. Similarly, Figure 4f displays the EES
obtained from the spectral frequency band from 4793 to 5259 Hz, and no useful information is acquired
for fault diagnosis.
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Figure 4. Results obtained by using the proposed method for processing an industrial inner race fault
signal: (a) A raw inner race fault signal; (b) frequency spectrum of (a); (c) spectral coherence of the
inner race fault signal; (d) the proposed guideline; (e) EES obtained by integrating spectral coherence
over a spectral frequency band from 1564 to 2030 Hz; (f) EES obtained by integrating spectral coherence
over a spectral frequency band from 4793 to 5259 Hz. EES represents an enhanced envelope spectrum.

Through the combination of the adaptive CS blind deconvolution and instantaneous energy slice
bispectrum, a new method was developed to achieve the signal separation and further fault feature
extraction of wind turbine bearing [82]. It is worth mentioning that the cuckoo search algorithm was
employed for parameter optimization. It could be concluded that the external inference was successfully
reduced with the method from the clear obtained characteristic frequencies. It was testified that this
novel diagnostic method outperformed the other methods such as minimum entropy deconvolution
and maximum correlated kurtosis deconvolution. With the assistance of different periodicity detection
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techniques, Chen et al. used maximum second-order CS blind deconvolution for the enhancement
of bearing fault feature [83]. To complete the fault diagnosis of rolling element bearing, Ming et al.
employed a simplified method of the CS called spectral auto-correlation analysis for extracting the
fault characteristic frequency [84].

Different from the conventional researches in single fault, compound fault diagnosis methods were
investigated based on the CS analysis with a combination of other techniques. In view of the pseudo-CS
analysis of the bearing fault conducted by some researches, a new combined diagnosis analysis method
was constructed based on the ratio of cyclic content, harmonic-to-noise ratio, and CS analysis [85–87].
In comparison with the spectral Gini index and spectral kurtosis, the method displayed the advantage
in both single fault diagnosis and compound fault diagnosis of bearing. By using the second order CS
and the discolored cyclic harmonic ratio, Luo et al. established a new index including the information
of fault characteristic frequency. In place of fast Kurtogram, the Meyer wavelet filters of empirical
wavelet transform were used owing to the advantages in spectrum separation and localization of time
and frequency. The effectiveness and feasibility of the method are demonstrated on planetary gearbox
and rolling bearing [88].

Similar methods have been applied in the condition monitoring of gear [89–91]. As a way of
extracting the periodic components hidden in noise, the analytical methods based on autocorrelation
were employed for gear and gearbox fault diagnosis [92,93]. In order to extract single CS component
of interest from complex sources, the methods of filtering the raw signals are worth further
exploring [94–96]. Inspired by this bottleneck in signal processing, a new stochastic model for
CS signals was built for the gear fault diagnosis [97]. For the purpose of the comprehensive and
complex modulation information of local faults in planetary gear, a novel analysis method was
established on the basis of the self-adaptive noise cancellation approach and CSCoh analysis [98].
It was worth pointing out that the influences of rotating speed fluctuation were taken into account.
It was demonstrated that the fault features of the vibration signals were uncovered via the constructed
CS model. Motivated by the previous research on the wind turbine gearboxes, Mauricio et al. employed
IESFOgram for the condition monitoring of the planetary gearbox with multiple vibration sources. It is
indicated that this method can promote the reliability of the complicated helicopters and provide the
evidences for the following maintenance [99,100].

On consideration of the complexity of CSC and CSCoh analysis, an improved method called the
enhanced envelope spectrum was employed for the fault diagnosis of wind turbine gearbox [101].
It was demonstrated that the method could effectively identify the characteristic frequencies of a wind
turbine gearbox in comparison with other processing approaches (Figure 5).
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In machinery fault diagnosis, external interferences may make it difficult to accomplish the
accurate and effective fault diagnosis, including background noise and interfering signals. Xin et al.
conducted an analysis method for the extraction of CS signal of interest and applied it for the fault
diagnosis of a wind turbine gearbox, taking the external influences into account. A periodic-variance
based model was used for the extraction of the desired CS signal. Moreover, the method can be
extended to gears and bearings, and applied to many kinds of modulations in a mechanical system [97].

In the light of non-stationarity of vibration signals for pumps, a CS analysis-based method
was developed through three different techniques of cyclic autocorrelation, slices analysis, and FFT.
The information on the characteristic frequencies of centrifugal pump was effectively identified from
the raw signature [102].

As a key component in most hydraulic systems, the fault diagnosis methods of an axial-piston
pump are very significant. On the strength of the fundamental CS theory and varying situations,
the acquired acceleration signal was separated, and a new method of feature extraction was developed
for the fault diagnosis of axial-piston pump [103]. As for the residual signals, first-order analysis of
time domain and frequency domain was conducted by the calculation of the synchronous average
and FFT. In view of the second-order analysis, the spectral correlation density and the cyclic spectral
coherence were performed.

4. Conclusions and Perspectives

Many researches based on the CS theory have been demonstrated to be efficient and feasible,
which outperform the other analysis approaches in the revelation of the useful components of the
fault signature [104–107]. With the improvement of the signal processing techniques, more and more
integrated methods are investigated mainly for the analysis of the single fault [108,109].

Some researchers embark on the exploration of the diagnosis of the compound fault. Moreover,
the external influences are taken into consideration, including the variation of speed and the noise.
It is more consistent with the engineering practice, which is more conducive to the extension of the
methods in practice.

The significant applications of CS are analyzed and evaluated in typical representatives of the
rotating machinery, including bearing, gear, and pump. On account of the strengths of cyclic spectral
analysis, CSC and CSCoh are successfully employed to enhance the diagnostic performance of bearings.
Combined CSC or CSCoh with envelope spectrum, IESAM and IESFOgram are performed for the
automatic selection of the optimal frequency band under strong electromagnetic interference. Even in
the case of varying loads, the outer race and inner race fault of bearings of complex helicopters can be
detected. It is indicated that it can be extended to more challenging conditions.

Motivated by the researches of CSCoh on traditional fault diagnosis, it is introduced into the
intelligent diagnostic methods based on machine learning and deep learning. The integrated methods
make full use of the advantages of single approach, involving the preprocessing of CSCoh and the
automatic learning capability of useful features of CNN and SVDD. The desirable diagnostic accuracy
is obtained.

In order to overcome the strong interferences on the identification of fault characteristic frequency,
CS-based methods can be applied to weak fault diagnosis via the acquisition of the enhanced envelop
spectrum. Further, the extraction of CS signal of interest can be generalized to gears and bearings.

CS analysis is a powerful tool for the fault diagnosis of rotating machinery. Especially, CSC and
CSCoh present the special superiority in many cases. However, most of the above methods are
employed in traditional fault diagnosis; the researches on intelligent diagnosis are still few. On account
of the complexity of its theory knowledge and implementation processes, it makes it difficult for
practical engineering application. Furthermore, the characteristic frequency is obtained via the only CS
methods, which have shortcomings in the simplicity and intuition [110–112]. The simplified methods
will be more conducive to the informative feature from raw signals. In addition, the intelligent
approaches will accomplish automatic learning of fault information and the enhanced diagnostic
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performance through using CS as a preprocessing method. In the future, it will be a trend of application
for the exploitation of the combined analysis methods to achieve the precise and effective fault diagnosis.
It is also worth exploring further to extend the existing approaches to compound faults of the same
machinery and diverse rotating machinery.
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Nomenclature

STFT short-time Fourier transform
CS cyclostationary
WT wavelet transformation
CSC cyclic spectral correlation
CSCoh cyclic spectral coherence
IESAM improved envelope spectrum by alpha maximization
IESFOgram improved envelope spectrum via feature optimization-gram
SES squared envelope spectrum
CSES combined squared envelope spectrum
CNN convolutional neural network
SNR signal-to-noise ratio
SVDD support vector data description
NSVDD support vector data description with negative samples
EES enhanced envelope spectrum
GACS generalized almost cyclostationarity
x(t) random process
Li any integer
T sampling period
mx(t) the first moment of random process x(t)
τ the lag time
E{} the mathematical expectation
Rαx (τ) the cyclic autocorrelation,
α the cyclic frequency
Sαx ( f ) the spectral correlation density function or the spectral correlation function
f the spectral frequency
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