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Abstract: The energy cost of producing steel in an electric arc furnace (EAF) has a sizable influence on
the prices of natural gas and electricity. Therefore, it is important to use these energies efficiently via
a tailored oxy-fuel combustion burner and oxygen lance. In this study, an important modification of
the side-wall injector system in the EAF at Hyundai Steel Incheon works was implemented to reduce
electrical energy consumption and improve productivity. A protruding water-cooled copper jacket,
including a newly designed burner, was developed to reduce the distance between the jet nozzle and
the molten steel. In addition, the jet angles for the burner and lance were separately set for each scrap
melting and refining mode. The modifications led to a reduction in electrical energy consumption of
5 kWh/t and an increase in productivity of approximately 3.1 t/h. Consequently, total energy cost
savings of 0.3 USD/t and a corresponding annual cost savings of approximately 224,000 USD/year
were achieved.

Keywords: electric arc furnace; oxy-fuel burner; oxygen lancing; natural gas; energy savings; steelmaking

1. Introduction

In the recycled steel processing industry, the electric arc furnace (EAF) is an energy-intensive
facility. Electric energy, with a moderate addition of chemical energy, provides sufficient heat to melt
recyclable scraps charged in the EAF [1]. For the production of 1 t of steel at 1600 ◦C from steel scrap
at 25 ◦C, a typical EAF process, approximately 60% of the energy input comprises electric energy
and chemical energy provides the remaining 40% [2]. Similar values have been reported for the
energy required to melt steel scraps in EAFs [3,4]. Efforts are needed to improve the efficiency of
electricity use in the EAF sector owing to the recent rise in electricity rates and the implementation of
the greenhouse gas emission trading system [5]. Therefore, to improve the efficiency of heat used in
the EAF, it is important to utilize a heat source other than electric power. To save energy in EAFs, it is
important to optimize the utilization of chemical energy; energy can potentially be saved by reducing
electrical energy use while increasing the chemical energy input [6,7]. Chemical energy, supplied by
a side-wall injector system, is an auxiliary form of energy and is delivered by the oxidation of fossil
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fuels; exothermic reactions of chemical elements, such as iron, carbon, manganese, and silicon; and by
post-combustion of carbon monoxide [8,9]. Hence, this study focuses on modifying the side-injector
system, with an oxygen lance and an oxy-fuel burner to enhance energy efficiency in EAFs.

The prices of natural gas (NG) and electricity, or their ratio, have a large impact on the production
costs of steel in the EAF [10]. Table 1 lists the energy prices of industrial NG and electricity in different
countries (the prices are converted to cent/kWh content to simplify the energy comparison [11,12]).
The maximum and minimum prices for NG are 1.05 cent/kWh in Canada and 7.27 cent/kWh in
Switzerland, respectively. For electricity prices, the values are 6.81 cent/kWh in the USA and
17.12 cent/kWh in Italy, respectively. Replacing electricity by NG in an oxy-fuel burner, is more
effective at a high ratio of electricity to NG prices. The maximum and minimum values for the ratio of
NG and electricity are 7.86 in Canada and 1.39 in Sweden.

Table 1. Comparison of energy prices of industrial NG and electricity with different countries in
2018 [11,12].

Country NG (Cent/kWh) Electricity (Cent/kWh) Electricity/NG (-)

Canada 1.05 8.24 7.86
USA 1.36 6.81 5

Germany 3.03 14.28 4.72
United

Kingdom 2.99 13.66 4.57

Italy 3.88 17.12 4.57
Belgium 3.10 13.41 4.32

Spain 2.96 12.52 4.23
Slovakia 3.38 13.87 4.10
Portugal 3.29 13.28 4.04
Turkey 1.97 6.98 3.55
Japan 4.52 15.79 3.49

Poland 2.96 9.39 3.17
Ireland 4.10 12.63 3.08

Netherlands 2.97 9.13 3.07
Hungary 3.09 9.26 3.00

Czech Republic 3.17 9.47 2.99
Austria 3.69 10.83 2.93
Greece 3.55 10.26 2.89
France 4.28 11.42 2.67

Luxembourg 3.25 8.20 2.52
Korea 4.24 9.85 2.32

Denmark 4.11 9.13 2.22
Switzerland 7.27 11.99 1.66

Finland 5.27 7.70 1.46
Sweden 4.93 6.85 1.39

Mean values 3.53 10.88 3.43
Max. values 7.22 17.12 7.86
Min. values 1.05 6.81 1.39

In South Korea, as of 2018, both energy prices are below the mean values shown in Table 1.
However, the ratio of both prices is higher than the mean value. During the last 15 years, the price of
NG has continuously increased in South Korea but the price of electricity has decreased since 2014,
as shown in Figure 1 [11,12]. From 2006 to 2014, the average price ratio of NG and electricity was
1.67. Therefore, either oxy-fuel burner operations in EAFs have been minimized in South Korea or the
system was not in use between 2006 to 2014, in particular at the Hyundai Steel Company. The price
ratio of NG and electricity increased from 2014. For these reasons, the reuse or development of oxy-fuel
burners in South Korea has increased in the recent years; hence, research was initiated into the system
modification presented herein.
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In EAF operations, several oxy-fuel burners, including oxygen lances, have been integrated to
reduce electrical energy consumption by substituting electricity with fuels. The oxygen lance and
oxy-fuel burner can be used for pre-heating, cutting, and removing cold spots to ensure uniform
temperature distribution inside the furnace and promote the circulation of molten steel in the
refining process, thereby reducing the tap-to-tap time (TTT) by approximately 6%, improving power
consumption and productivity [5]. When optimizing the oxy-fuel burner/lance, the electric power
savings can be expected to be 20–40 kWh/t (t: tons of steel), by injecting NG, which is 0.3 Nm3/kWh [13].
Typical savings, ranging from 2.5–4.4 kWh/Nm3 oxygen injection, can be achieved, with electricity
savings of 0.14 GJ/t [14,15].

Oxygen jet and oxy-fuel flame configurations modifications have been researched to reduce
electrical energy consumption in EAFs [16–19]. Megahed et al. [16] conducted an upgradation by
using oxygen injections with jet location, length, and flowrate at Ezz Flat Steel. The modifications led
to a reduction in electrical power consumption by 64 kWh and an increase in furnace productivity
of 30%. Thomson et al. [17] investigated the effect of the oxy-fuel burner ratio on energy efficiency
in Co-Steel Lasco’s EAF. They concluded that the decrease in specific electrical energy consumption
(4%) and TTT (4.5%) could be realized by optimizing the oxygen-to-fuel ratio in the oxy-fuel
combustion burner. Memoli et al. [18] achieved electrical energy savings of approximately 27%
through multi-point supersonic oxygen injection within a real-scale EAF with a nominal capacity
of 105 tons. Cantacuzene et al. [19] investigated the distribution of lancing oxygen among multiple
locations to improve the effectiveness of oxygen usage in an EAF. Through this tailored use of oxygen,
the electrical energy consumption was reduced from 427 to 400 kWh/t and the power-on time (POT)
was also reduced from 41 to 37 min. Kirschen et al. [20] demonstrated that the assessment of multiple
EAF energy balances did not reveal a significant influence of NG consumption on the total energy
input in an EAF but did demonstrate an associated decrease in the electrical energy requirement.

The above-mentioned studies showed that the reduction in electrical energy consumption of EAFs
primarily depends on the oxygen usage of the burner and lancer, in terms of the installation location,
flame type, injection angle, and ratio of NG-oxygen. In particular, the injection angle of the jets requires
optimization according to the time step (period), such as the heating/melting of scraps and refining of
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molten steel. Therefore, the jet angles from the oxy-fuel burner and oxygen lance have to be separately
maintained at their corresponding roles during each period. A jet with an impinging point too close to
the refractory walls can cause excessive consumption of the refractory, while a jet that is less inclined
with respect to the horizontal plane can produce splashing of hot steel [15]. If the distance from the jet
nozzle to the molten steel is too large, the fuel and oxygen usage efficiency in the side-wall injectors
will be reduced. This study primarily focuses on these specific aspects, which include modifications to
the side-wall injector system, with different burner and lance jet angles, but also closely modifies the
distance from the jet nozzle to the molten steel. A protruding water-cooled copper jacket, including a
tailored oxy-fuel burner, was developed. The energy savings and productivity performance before and
after modification were evaluated for a real-scale EAF.

2. Materials and Methods

2.1. Modification Concept of Side-Wall Injector System For Improving Energy Efficiency and Productivity in
the EAF

Figure 2 shows the modification concept of the side-wall injector system in the present study.
The conventional injector (Badische Stalhl-Engineering, Kehl, Germany), before modification, was a
hybrid system, which operates the oxy-fuel combustion and oxygen lance. The new modified system
was designed to operate the burner and lance separately, using the existing three lines for the supplied
gases. For the conventional system installed in the EAF wall, shown in Figure 2a, a problem arises;
the efficiency of heat transfer becomes low since the distance between the injector and molten steel is
large during the scrap heating, meting, and refining periods. In addition, the injection angles for both the
oxygen jet and oxy-fuel burner flame were fixed at 40◦ to the horizontal. This may cause the occurrence
of non-melted scrap and the reduction in reaction efficiency between the molten steel and slag layer.
Therefore, it is necessary to enhance the efficiency of heat transfer by introducing a designed injector
system to close the distance between the injector nozzle and molten steel. Figure 2b shows the design of
the new injector system to differentiate the injection angle by separating the lance (40◦) and burner (25◦)
roles. Separated nozzles were installed at the protruding water-cooled jacket to enable the injection of the
oxy-fuel flame and oxygen jet with different angles, as well as closer jet distances. The oxy-fuel burner
has two lines for supplying oxygen and NG and the lance has a single oxygen supply line. This new jet
allowed a shorter distance to the molten steel, as compared to the conventional jet, allowing an increase in
the chemical energy usage and production efficiencies in EAFs.
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2.2. Flame Test of the Oxy-Fuel Burner and Thermal/Mechanical Analysis of Protruding Water-Cooled Copper
Jacket for the Side-Wall Injector System

To minimize the system modification costs, the existing oxygen and NG supply lines for the
oxy-fuel burner and oxygen lance have been used without additional lines. The new modified oxy-fuel
burner, as shown in Figure 2, has only one supply line for oxygen in the nozzle. This damages
the oxy-fuel flame formation and hence degrades the performance of the oxy-fuel burner. Therefore,
the design of the burner nozzle was optimized. The number of nozzle holes was modified from 6 to 12
to enhance the mixing performance of NG and oxygen. The effect of the nozzle configuration of the
oxy-fuel burner on the flame performance was tested. In this flame test, the burner nozzle was selected
by comparing conventional oxy-fuel burner and new modified burner flames.

EAFs operate at high thermal and mechanical loads. The protruding water-cooled jacket must
have sufficient strength to withstand collisions with falling heavy scraps. The scrap is charged during
the EAF process and the cooling performance of the jacket at high temperatures must be maintained
efficiently. Figure 3 shows the flame photos obtained with and without damage to the cooling jacket
surface. In Figure 3a, flames generated at the oxy-fuel burner nozzle and cracked surface by a damaged
cooling jacket are shown and this damage is attributed to the weight of the scraps and material
softening at the EAF operating temperature. Even though the amount of NG and oxygen supplied
to the burner was the same in both cases, the oxy-fuel combustion flame in Figure 3a is smaller than
that in Figure 3b. The heat of oxy-fuel combustion will be distributed by generating junk flames and
thus there is an inefficient chemical to thermal energy conversion. The junk flames caused by system
damage are not favorable for the EAF refining process as compared to the undamaged oxy-fuel flame,
as shown in Figure 3b.
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Figure 3. Oxy-fuel combustion flames of the burner installed at protruding water-cooled box:
(a) flames generated at oxy-fuel burner nozzle and cracked surface with system damage; (b) observed
flame without system damage.

In this context, computational fluid dynamics simulations were carried out using the commercial
simulation program ANSYS to better understand the temperature and stress distribution on the jacket.
The effects of the rib height and thickness of the protruding water-cooled box on the thermal and
mechanical characteristics were evaluated. This can help design the protruding water-cooled jacket
with high durability and without any damage due to scraps charged in the EAF.
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2.3. Evaluation of EAF Performance Before and After System Modification

The melting experiments were tested in a real-scale EAF at Hyundai Steel Incheon works, with a
nominal capacity of 120 t per charge and a three-phase current supply from a 95 MVA transformer.
The furnace has a diameter of approximately 6 m and is equipped with three side-wall box-type systems,
including an oxygen lance, oxy-fuel burner, and carbon injector. Performance parameters, such as
electric power (kWh/t), oxygen consumption (Nm3/t), NG consumption (Nm3/t), carbon injection
(kg/t), POT (min), TTT (min), product rate (t/h), and cost savings (USD/yr), have been evaluated by the
conventional injector system (before) and the new injector system (after).

3. Results and Discussion

3.1. Flame Characteristics of the Developed Oxy-Fuel Burner

Figure 4 shows the oxy-fuel burner flame tests. A photograph of the experimental test rig with
burner and fluid supply lines for fuel and oxygen is shown in Figure 4a. The nozzle and flame
configurations of the conventional and newly designed jets are shown in Figure 4b. Case A1 represents
the conventional burner with three supply lines before modification. Cases A2 and A3 represent the
initial and final burner models with two supply lines, respectively. Even though the size and area of the
nozzle hole changed according to the variation in cases A1–A3, the entire area remained the same for
each case, in terms of the fuel and oxygen nozzles. The initial model (case A2) can be conceptualized
most easily as only the auxiliary oxygen is removed from the existing burner (case A1). The purpose of
the initial model is to identify the characteristics of a single oxygen nozzle and set the burner design
direction. The flame in case A1 showed a strong elliptical configuration in the center and it can be seen
that NG does not diffuse into the surroundings due to the presence of the auxiliary oxygen. However,
it can be seen that the flame in case A2 (as shown in the dotted box) is strongly formed at the center,
with a blue flame, owing to the bulk oxygen supplied. Moreover, the flame forms with a yellow band
due to the combustion reaction of the surrounding air with NG. Therefore, the initial model is expected
to show a low combustion efficiency as a large amount of NG does not participate in combustion and
diffuses into the surroundings; thus, the mixing of NG and oxygen is an important nozzle design factor
for suitable oxy-fuel combustion.
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of burner nozzle configuration.

To improve the mixing of NG and oxygen for oxy-fuel combustion, the final model was designed
with a 12-hole nozzle for fuel and oxygen supply. In addition, the holes for supplying both NG and
oxygen were located at the edge of the nozzle to increase the width of the flame. In Figure 3b, the flames
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in case A3 seem to be the most stable and active combustion reaction among cases A1–A3. The flame
width—in particular just behind the nozzle—increased in comparison with that in other cases due
to the increasing nozzle diameter of the fuel and oxygen. Considering the scrap melting operational
characteristics of the oxy-fuel burner in EAFs at high temperatures, the burner must incorporate a
water-cooling jacket. In addition, it must be designed to separate the NG and oxygen nozzle parts for
maintenance. Therefore, the final burner model was designed to facilitate cooling, water circulation,
and repair.

3.2. Thermal and Mechanical Characteristics of the Developed Protruding Water-Cooled Copper Jacket

Figure 5 shows the analysis of the jacket with different rib heights and thicknesses. For the
simulation conditions, a static load of 15 t of charging scraps and cooling water inside the water-cooling
jacket, with a temperature of 30 ◦C, were set at an external temperature of 1000 ◦C, as shown in Figure 5a.
Case B1 represents the initial model, with a rib height and thickness of 30 and 20 mm, respectively.
Cases B2 and B3 represent at comparable model, with a 40 mm height and 20 mm thickness, and the
final model, with a 30 mm height and 30 mm thickness. As shown in Figure 5b,c, a higher protruding
jacket rib height, corresponds to reduced cooling performance. However, the equivalent (von Mises)
stress was reduced and the temperature was relatively low when the thickness of the rib was high, i.e.,
lower height and thicker rib of the protruding jacket result in a better load stress and cooling capacity.
The final model, case B3, exhibited the superior thermal and mechanical characteristics among the three
cases. The maximum stress and temperature were approximately 383 MPa and 92 ◦C, respectively.

3.3. Improvement of EAF Performance Before and After System Modification

The EAF performance was evaluated using a newly designed side-wall injector system consisting
of an oxy-fuel burner, oxygen lance, and carbon injector, mounted on the developed protruding
water-cooled jacket, as shown in Figure 6. The jets have two different operational modes: the oxy-fuel
burner and oxygen lance mode, both of which cause chemical exothermic reactions. The oxy-fuel
burner operates during periods of scrap charging and melting. The oxygen lance follows the burner
mode in the order of operation during the refining periods. In the present EAF performance test,
304 charges were performed for 17 days before system modification and 155 chargers were performed
for 9 days after system modification.

The operating results before and after the installation of the new system are summarized in
Table 2. To evaluate the economic advantages, Figure 7 shows the differences between pre- and
post-modification in terms of key values, such as production rate, TTT, POT, and consumption of
electric energy, oxygen, NG, and carbon. The benefits are a 0.8 min reduction in POT and 5 kWh/t in
power savings. The oxygen jet efficiency increases because of the relatively short distance between
the jet nozzle and molten steel by the protruding side-wall injection and its ability to use the optimal
injection angle of the oxy-fuel burner flame to efficiently melt scraps after modifying the system.
However, the consumption of oxygen and NG increased by 2.5 Nm3/t and 0.2 Nm3/t, respectively.
Half of the oxygen consumption was used to prevent clogging of the nozzle due to scattering from the
molten steel when injecting the burner and oxygen while approaching the molten steel. Consequently,
the total conversion cost was reduced by 0.298 USD/t and productivity increased by 3.1 t/h.
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Table 2. Overview of EAF performance before and after system modifications.

Item Before After Difference Cost [USD/t]

Production [t] 37,945 19,437
Charge number during the test (time, day) 304 (17) 155 (9)

Electrical consumption [kWh/t] 396.2 391.2 -5 -0.41
Oxygen consumption [Nm3/t] 18.8 21.3 +2.5 +0.2

Natural gas consumption [Nm3/t] 0.2 0.4 +0.2 +0.072
Carbon consumption [kg/t] 11.4 10.3 -1.1 -0.16

Power-on time [min] 49.2 48.4 -0.8
Tap-to-tap time [min] 62.4 61.1 -1.3

Productivity [t/h] 120 123.1 +3.1
Total energy cost savings [USD/t] 0.298

Annual production [t/yr] 774,908
Annual cost savings [USD/yr] 224,329Processes 2020, 8, x FOR PEER REVIEW 9 of 10 
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4. Conclusions

In order to save electrical power in EAF operations, a side-wall injector system featuring an
oxy-fuel burner and oxygen lance has been developed. The protruding water-cooled copper jacket was
designed, based on thermal and mechanical analysis, to close the distance between the jet nozzle and
molten steel, but also to separate the burner and lance separately with different jet angles. Any damage
such as surface cracks by charging scraps was not observed in the developed cooling jacket. The oxy-fuel
burner nozzle was designed through various flame tests for different nozzle geometries. The developed
burner was operated properly without degrading the flame performance in comparison with the
conventional one.

For the overall performance of energy efficiency and productivity before and after system
modification, the electrical energy consumption was reduced by 5 kWh/t and the productivity was
increased by 3.1 t/h. Thus, the total energy cost savings calculated by the consumption of electricity,
oxygen, NG, and carbon achieved by 0.298 USD/t. The annual cost savings of the EAF in this study
were approximately 224,329 USD/yr.
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