
A Representation of Membrane Computing with a Clustering Algorithm on
the Graphical Processing Unit

Authors:

Ravie Chandren Muniyandi, Ali Maroosi

Date Submitted: 2021-04-16

Keywords: CUDA, GPU multiprocessor occupancy, GPU kernel execution, parallel computing, membrane systems

Abstract:

Long-timescale simulations of biological processes such as photosynthesis or attempts to solve NP-hard problems such as traveling
salesman, knapsack, Hamiltonian path, and satisfiability using membrane systems without appropriate parallelization can take hours or
days. Graphics processing units (GPU) deliver an immensely parallel mechanism to compute general-purpose computations. Previous
studies mapped one membrane to one thread block on GPU. This is disadvantageous given that when the quantity of objects for each
membrane is small, the quantity of active thread will also be small, thereby decreasing performance. While each membrane is
designated to one thread block, the communication between thread blocks is needed for executing the communication between
membranes. Communication between thread blocks is a time-consuming process. Previous approaches have also not addressed the
issue of GPU occupancy. This study presents a classification algorithm to manage dependent objects and membranes based on the
communication rate associated with the defined weighted network and assign them to sub-matrices. Thus, dependent objects and
membranes are allocated to the same threads and thread blocks, thereby decreasing communication between threads and thread
blocks and allowing GPUs to maintain the highest occupancy possible. The experimental results indicate that for 48 objects per
membrane, the algorithm facilitates a 93-fold increase in processing speed compared to a 1.6-fold increase with previous algorithms.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2021.0191
Citation (this specific file, latest version): LAPSE:2021.0191-1
Citation (this specific file, this version): LAPSE:2021.0191-1v1

DOI of Published Version: https://doi.org/10.3390/pr8091199

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

processes

Article

A Representation of Membrane Computing with a
Clustering Algorithm on the Graphical
Processing Unit

Ravie Chandren Muniyandi * and Ali Maroosi

Research Center for Cyber Security, Faculty of Information Science and Technology, National University of
Malaysia, Bangi 43600, Selangor, Malaysia; ali.maroosi@gmail.com
* Correspondence: ravie@ukm.edu.my

Received: 30 July 2020; Accepted: 18 September 2020; Published: 22 September 2020
����������
�������

Abstract: Long-timescale simulations of biological processes such as photosynthesis or attempts to
solve NP-hard problems such as traveling salesman, knapsack, Hamiltonian path, and satisfiability
using membrane systems without appropriate parallelization can take hours or days. Graphics
processing units (GPU) deliver an immensely parallel mechanism to compute general-purpose
computations. Previous studies mapped one membrane to one thread block on GPU. This is
disadvantageous given that when the quantity of objects for each membrane is small, the quantity
of active thread will also be small, thereby decreasing performance. While each membrane is
designated to one thread block, the communication between thread blocks is needed for executing the
communication between membranes. Communication between thread blocks is a time-consuming
process. Previous approaches have also not addressed the issue of GPU occupancy. This study
presents a classification algorithm to manage dependent objects and membranes based on the
communication rate associated with the defined weighted network and assign them to sub-matrices.
Thus, dependent objects and membranes are allocated to the same threads and thread blocks, thereby
decreasing communication between threads and thread blocks and allowing GPUs to maintain the
highest occupancy possible. The experimental results indicate that for 48 objects per membrane,
the algorithm facilitates a 93-fold increase in processing speed compared to a 1.6-fold increase with
previous algorithms.

Keywords: membrane systems; parallel computing; CUDA; GPU multiprocessor occupancy; GPU
kernel execution

1. Introduction

Membrane systems are a class of computational models that inspired their computation from
cell biology. Membrane systems have been applied in different areas [1], including zooplankton
migrate vertically in system biology [2], image processing [3,4], robot path planning problem [5],
power systems as well as address highly-complex computational problems such as traveling salesman,
knapsack, Hamiltonian path and satisfiability [6–10]. The main elements of a membrane system include
(i) structure, including its delimiting compartments; (ii) multisets of objects; (iii) biochemically-inspired
rules. Membrane systems are based on the parallel and distributed systems found in biological cells,
with both the objects and membranes located within the system capable of being processed by the
same set of rules [11,12].

While various attempts have been carried out and are currently ongoing to imitate membrane
systems, some of these had been implemented on single-processor computers [13], neglecting
the intrinsic parallelism of the systems being simulated. Efforts are now focused on increasing

Processes 2020, 8, 1199; doi:10.3390/pr8091199 www.mdpi.com/journal/processes

Processes 2020, 8, 1199 2 of 21

membrane-system simulation speed through the use of multicore processors [14–17], cluster of
computers [10,18], designs of parallel hardware and the field programming gate arrays (FPGA) [19,20],
and graphics processing units (GPU) [21–26]. Installation and employment of cluster computing are
cost-prohibitive, making this option feasible only for large companies. Additionally, implementation
and modification of the FPGA code are very time-consuming. However, thousands of threads able to
be executed in parallel using one low-cost platform of GPU. Different variants of P systems have been
simulated on GPU [27], including enzymatic numerical P system [28], spiking neural P system [3],
population dynamics P systems [29], etc. This study used active membrane systems, another variant of
the membrane system for GPU simulation with Compute Unified Device Architecture (CUDA). CUDA
is a platform for parallel computing using GPU to develop highly parallel algorithms on graphic units.

The first implementation of an active membrane system was reported in [30]. Each membrane
was assigned to one GPU thread block, the CPU accomplished the selection process, and the GPU
undertook the execution of rules. A subsequent study in [31] assigned each membrane to one thread
block with both selection and execution procedures performed by the GPU. Active membrane systems
were used to resolve the satisfiability (SAT) investigation by using a cluster of GPUs and by designating
a particular active membrane where the number of objects in every membrane approached the highest
achievable number of threads per thread block in the GPU to escalate the number of active threads
in every thread block, thereby increasing effectiveness [32,33]. The maximum quantity of threads
available per thread block is 512 for version 1.x GPUs and 1024 for versions 2.x and 3.0 GPUs [34].
The method in [32,33] was useful in situations that can modify the number of objects while the number
of objects in the membrane was problem-dependent and not modifiable.

Here, we represent active membrane systems as matrices. In our previous study, active membrane
systems were expressed as a matrix [21]. This study generalized concepts in [21] and assigns matrices
to each thread block instead of assigning a matrix. This approach would increase the thread block
occupancy of the GPU. As a result, the efficiency of the GPU would be increased. The object-weighted
network and membrane-weighted network have been introduced to automatically organize dependent
objects and membranes within the same groups according to their dependencies, allowing them to be
executed by the same threads or thread blocks. The algorithm presented here tests communication rates
between membranes. It determines whether assigning sub-matrices, including additional membranes
to each thread block, will cause a decrease in communications between threads and increase GPU
occupancy. Matrices are apportioned into sub-blocks to fully utilize the maximum possible quantity of
threads in each thread block [35,36]. This method eliminates shortcomings associated with previously
implemented methods that applied one of the ensuing two notions: (i) allocating any quantity of
objects in every membrane to every thread block or (ii) first designating an active membrane system in
which the quantity of objects in every membrane achieves the highest quantity of threads in a GPU
thread block.

When the quantity of objects in one membrane is large, performance drops due to the limitations
of registers and the local and shared memory available for each thread or thread block. In our
previous study, active membrane systems were represented as a matrix [21]. This study used a matrix
representation to assign an object to a thread. This would decrease the usage of a thread capability.
Our algorithm addresses these problems by representing membrane systems as matrices. When a
membrane contains many objects, this enables its efficient distribution among different thread blocks
to improve communication between objects.

Conversely, when the total number of objects is low, the algorithm assigns objects from different
membranes to a single thread block. These efforts allow maximizing using of GPU computational
resources. Additionally, mapping membrane objects to different matrices enable the assignment of
dependent objects to the same thread, thereby decreasing unnecessary communication between threads
and to enhance performance.

Therefore, the main contribution of this paper is to develop a classification algorithm based
on the communication rate to manage dependent objects and membranes in membrane computing

Processes 2020, 8, 1199 3 of 21

implemented on GPU. This study defined a weighted network based on communication rate and
assigned them to sub-matrices for execution by the same threads and thread blocks to improve the
communication between thread blocks, reduce kernel invocations, and maximize GPU occupancy.

This approach can be applied to solve NP-hard problems such as traveling salesman, knapsack,
and satisfiability. The traveling salesman problem is one of the combinatorial optimization problems
and applied to the design of network structure, machine scheduling system, the manufacturing of
cellular, and the assignment of frequency. Boolean satisfiability problem is used to solve problems such
as in mathematics, artificial intelligence, data mining, and circuit design. The knapsack problem is
another combinatorial optimization problem that aims to maximize the value of items under backpack
capacity constraints, and it is being applied to solve decision problems.

With the increase in the number of inputs, the time complexity of solving these problems also will
increase significantly. With the proposed classification algorithm, the efficiency and effectiveness of the
parallelism of GPU will reduce the computational complexity. It is feasible to generate all solutions
and then screen out the suitable solutions in polynomial time or even linear time.

2. Background

2.1. Active Membrane Systems

Multiple parts, such as a skin and the membranes, are compartmentalized inside an active
membrane system. In each membrane, various sets of objects (comparable to biochemical materials)
and groups of evolutionary rules (identical to responses) exist inside of membranes’ compartments
(Figure 1).

Processes 2020, 8, x FOR PEER REVIEW 3 of 21

implemented on GPU. This study defined a weighted network based on communication rate and
assigned them to sub-matrices for execution by the same threads and thread blocks to improve the
communication between thread blocks, reduce kernel invocations, and maximize GPU occupancy.

This approach can be applied to solve NP-hard problems such as traveling salesman, knapsack,
and satisfiability. The traveling salesman problem is one of the combinatorial optimization problems
and applied to the design of network structure, machine scheduling system, the manufacturing of
cellular, and the assignment of frequency. Boolean satisfiability problem is used to solve problems
such as in mathematics, artificial intelligence, data mining, and circuit design. The knapsack problem
is another combinatorial optimization problem that aims to maximize the value of items under
backpack capacity constraints, and it is being applied to solve decision problems.

With the increase in the number of inputs, the time complexity of solving these problems also
will increase significantly. With the proposed classification algorithm, the efficiency and effectiveness
of the parallelism of GPU will reduce the computational complexity. It is feasible to generate all
solutions and then screen out the suitable solutions in polynomial time or even linear time.

2. Background

2.1. Active Membrane Systems

Multiple parts, such as a skin and the membranes, are compartmentalized inside an active
membrane system. In each membrane, various sets of objects (comparable to biochemical materials)
and groups of evolutionary rules (identical to responses) exist inside of membranes’ compartments
(Figure 1).

Figure 1. P-system structure. This system consists of membranes, objects, rules, and charges. Rules
react to evolve objects and membranes. Charges respond to control processing.

Active membrane systems are described as 𝜋 = (𝑂, 𝐻, 𝜇, 𝜔 , … , 𝜔 , 𝑅), where,

(1) m is the preliminary degree of the membrane system, equivalent to the number of membranes,
m ≥ 1;

(2) O is the object alphabet;

(3) H is a predetermined group of membrane labels;

(4) µ is a membrane arrangement that includes m membranes labeled 1,…,m, each having a
preliminary neutral polarization and tagged with components from H;

(5) 𝜔 , … , 𝜔 are strings over O, designating the multisets of objects positioned in the m
compartments of µ;

(6) R is a predetermined group of rules described as:

Figure 1. P-system structure. This system consists of membranes, objects, rules, and charges. Rules
react to evolve objects and membranes. Charges respond to control processing.

Active membrane systems are described as π = (O, H,µ,ω0, . . . ,ωm, R), where,

(1) m is the preliminary degree of the membrane system, equivalent to the number of membranes,
m ≥ 1;

(2) O is the object alphabet;
(3) H is a predetermined group of membrane labels;
(4) µ is a membrane arrangement that includes m membranes labeled 1, . . . ,m, each having a

preliminary neutral polarization and tagged with components from H;
(5) ω0, . . . ,ωm are strings over O, designating the multisets of objects positioned in the m compartments

of µ;
(6) R is a predetermined group of rules described as:

(a) Evolution rules for the object, [a→ u]αh , in which h ∈ H; α ∈ {+,−, 0} are electrical charges,
a ∈ O, and u is a string over O that designates a multiset of objects connected with
membranes that depend on the label and the charge related with the membranes;

Processes 2020, 8, 1199 4 of 21

(b) “In” communication rules for the object from an environment entering into a membrane,

a[]αh → [b]βh , in which h ∈ H; α, β ∈ {+,−, 0}; a, b ∈ O, when an object enters a membrane,
it is likely that this object modifies, where the preliminary charge, α, is transformed to β;

(c) “Out” communication rules for the object from a membrane entering into an environment,

[a]αh → []
β
hb , in which h ∈ H; α, β ∈ {+,−, 0}; a, b ∈ O, when an object is discharged

from a membrane, it is likely that this object modifies, where the preliminary charge,
α, is transformed to β;

(d) Dissolving rules for membrane, [a]αh → b, in which h ∈ H; α ∈ {+,−, 0}; a, b ∈ O, a membrane
with a particular charge is dissolved in a reaction with a probably altered object;

(e) Division rules for membrane, [a]αh → [b]βh[c]
γ
h , in which h ∈ H; α, β,γ ∈ {+,−, 0}; a, b, c ∈ O,

in response to an object, the membrane is divided into two membranes; the label remains
unceasing, but the charge could modify, and the objects inside the membrane are duplicated,
except for a, which may be altered in each membrane.

These rules are implemented in accordance with the ensuing conceptions: Every rule is
implemented in a maximally parallel mode, denote that one membrane object is consumed by
at the most one rule in every phase. If an object is able to be consumed by beyond one rule, it must
be picked in a non-deterministic means and then consumed by that rule. Whichever object that
able to evolve based on any rule should evolve in one step. Rules (b) through (e) are not able to be
implemented concurrently in one computational step, and the rules connected with membranes with
the label, h, are implemented merely to those membranes. Active membrane systems are explained in
detail by Rozenberg et al. [37].

2.2. Compute Unified Device Architecture (CUDA)

Processes on threads, thread blocks, and kernels were programmed by using CUDA [34]. Cores are
consumed to execute threads, in which groups of thread blocks apportioned to one streaming
multiprocessor (SM) and are considered a kernel to be performed on the SMs. Every thread block is
implemented on a single SM. The same shared memory able to be consumed by all threads within a
thread block. In comparison, mutual access to shared memory is unacceptable between thread blocks.
Kernel re-invocation is ensued between thread blocks to apply thread synchronization. Meanwhile,
thread synchronization within a thread block transpires through barrier synchronization.

Atomic operations in the same kernel are applied for synchronization between thread blocks [21,38,39]
and demonstrated ineffectiveness. Every thread acquires fast memory across registers and slow memory
across local memory. Global memory is also slow, though it is reachable through threads in every part
of the thread block.

2.3. Applied Methods in Previous Research

Suppose that there are m membranes and n objects. Assume that aij signifies the ith object in the jth
membrane. Previously the methods to GPU simulation of active membrane systems represented every
membrane to a single thread block and every membrane object to related threads within that thread
block (Figures 2 and 3, line 0) [31–33]. If the quantity of objects within every membrane is insignificant,
then the quantity of active threads in every thread block is negligible relative to the quantity of available
threads. This leads to the inefficient use of computational resources and minimizes GPU occupancy.

Processes 2020, 8, 1199 5 of 21Processes 2020, 8, x FOR PEER REVIEW 5 of 21

Thread 0 … Thread (n-1)

a 0(m-1) … a (n-1)(m-1)

Thread 0 … Thread (n-1)

a 00 … a (n-1)0

Figure 2. A membrane is assigned to one thread block, and objects are assigned to threads within each
thread block [31–33].

Mapping individual membranes to single thread blocks will develop a mechanism in which the
communication among membranes requires interaction among thread blocks. Thread-block
synchronization necessitates the invocation of separate kernels. Inter-block synchronization without
launching a second kernel has been attempted using atomic operations and the threadfence() function;
however, the overhead of this approach is high [21,38,39]. Therefore, distinct kernel invocation is
required for thread-block synchronization, making it impossible to perform division and
communication rules in a single kernel with no invocation of a second (Figure 3, lines 9, 11, and 13).

Figure 3. Algorithm 1 for active membrane systems on the GPU [31–33].

Previously, division rules could not be executed without the invocation of a separate kernel,
given that a newly produced membrane can be allocated to another thread block (Figure 3, line 13).
The algorithm presented here introduces a new representation of membrane systems in GPUs. The
dissolution, communication, and dividing rules are executable within the same kernel without the
necessity of invoking a separate one. A comparison between the two algorithms can be found in
Section 3.2.

Figure 2. A membrane is assigned to one thread block, and objects are assigned to threads within each
thread block [31–33].

Processes 2020, 8, x FOR PEER REVIEW 5 of 21

Thread 0 … Thread (n-1)

a 0(m-1) … a (n-1)(m-1)

Thread 0 … Thread (n-1)

a 00 … a (n-1)0

Figure 2. A membrane is assigned to one thread block, and objects are assigned to threads within each
thread block [31–33].

Mapping individual membranes to single thread blocks will develop a mechanism in which the
communication among membranes requires interaction among thread blocks. Thread-block
synchronization necessitates the invocation of separate kernels. Inter-block synchronization without
launching a second kernel has been attempted using atomic operations and the threadfence() function;
however, the overhead of this approach is high [21,38,39]. Therefore, distinct kernel invocation is
required for thread-block synchronization, making it impossible to perform division and
communication rules in a single kernel with no invocation of a second (Figure 3, lines 9, 11, and 13).

Figure 3. Algorithm 1 for active membrane systems on the GPU [31–33].

Previously, division rules could not be executed without the invocation of a separate kernel,
given that a newly produced membrane can be allocated to another thread block (Figure 3, line 13).
The algorithm presented here introduces a new representation of membrane systems in GPUs. The
dissolution, communication, and dividing rules are executable within the same kernel without the
necessity of invoking a separate one. A comparison between the two algorithms can be found in
Section 3.2.

Figure 3. Algorithm 1 for active membrane systems on the GPU [31–33].

Mapping individual membranes to single thread blocks will develop a mechanism in which the
communication among membranes requires interaction among thread blocks. Thread-block synchronization
necessitates the invocation of separate kernels. Inter-block synchronization without launching a second
kernel has been attempted using atomic operations and the threadfence() function; however, the overhead
of this approach is high [21,38,39]. Therefore, distinct kernel invocation is required for thread-block
synchronization, making it impossible to perform division and communication rules in a single kernel
with no invocation of a second (Figure 3, lines 9, 11, and 13).

Previously, division rules could not be executed without the invocation of a separate kernel,
given that a newly produced membrane can be allocated to another thread block (Figure 3, line 13).
The algorithm presented here introduces a new representation of membrane systems in GPUs.
The dissolution, communication, and dividing rules are executable within the same kernel without
the necessity of invoking a separate one. A comparison between the two algorithms can be found in
Section 3.2.

Processes 2020, 8, 1199 6 of 21

3. Methods

3.1. Proposed Approach

Here, we represent membrane systems as matrices that can be divided into sub-blocks to balance
the number of threads used in GPU thread blocks [35,36]. The objects in the membranes are subsequently
assigned to matrix entries (Figure 4), thereby increasing the efficiency with which the matrix allocates
the threads in the thread blocks. In this condition, the quantity of threads in each thread block is not
reliant on the quantity of objects inside each membrane. Still, rather objects in a single membrane can
be allocated to threads in dissimilar thread blocks, and objects from distinctive membranes can be
allocated to threads in one thread block. The new representation and the proposed method have the
following advantages:

(1) The computational workload associated with the membranes is distributed between thread blocks
such that the workload is balanced, and higher performance is achieved.

(2) It is possible to decrease communication between threads within one thread block.
(3) It is probable to automatically allocate membranes that demand to communicate with each other

to the same thread block. In some instances, membranes with more significant dependencies are
assigned to the same thread blocks to decrease inter-block communication, despite the possibility
that this could decrease GPU occupancy.

Processes 2020, 8, x FOR PEER REVIEW 6 of 21

3. Methods

3.1. Proposed Approach

Here, we represent membrane systems as matrices that can be divided into sub-blocks to balance
the number of threads used in GPU thread blocks [35,36]. The objects in the membranes are
subsequently assigned to matrix entries (Figure 4), thereby increasing the efficiency with which the
matrix allocates the threads in the thread blocks. In this condition, the quantity of threads in each
thread block is not reliant on the quantity of objects inside each membrane. Still, rather objects in a
single membrane can be allocated to threads in dissimilar thread blocks, and objects from distinctive
membranes can be allocated to threads in one thread block. The new representation and the proposed
method have the following advantages:

1) The computational workload associated with the membranes is distributed between thread
blocks such that the workload is balanced, and higher performance is achieved.

2) It is possible to decrease communication between threads within one thread block.

3) It is probable to automatically allocate membranes that demand to communicate with each other
to the same thread block. In some instances, membranes with more significant dependencies are
assigned to the same thread blocks to decrease inter-block communication, despite the
possibility that this could decrease GPU occupancy.

Figure 4. Representation of a membrane system as matrices.

a 00 … a (n-1)0
a 01 … a (n-1)1

… … …

… … …

… … …

a 0(m-1) … a (n-1)(m-1)

Thread (0,0) … Thread (NTx-1, 0)
Thread (0,1) … Thread (NTx-1, 1)

…

…

…

…

…

…

…

…

…

Thread (0,NTy-1) … Thread (NTx-1, NTy-1)

b 00 … b (n-1)0
b 01 … b (n-1)1

… … …

… … …

… … …

b 0(m-1) … b (n-1)(m-1)

 c 00 … c (n-1)0
c 01 … c (n-1)1

… … …

… … …

… … …

c 0(m-1) … c (n-1)(m-1)

a 00 … a (n-1)0
b 00 … b (n-1)0
c 00 … c (n-1)0

a 00 … a (n-1)(m-1)
b 00 … b (n-1)(m-1)
c 00 … c (n-1)(m-1)

Figure 4. Representation of a membrane system as matrices.

Processes 2020, 8, 1199 7 of 21

This paper proposes mapping membrane objects to different matrices (Figure 4), allowing several
matrices (sub-matrices) to be assigned to threads in thread blocks. It is more efficient to map objects that
share dependencies to the same entry positions within different matrices, given that matrix entries at the
same position are assigned to the same thread. Therefore, objects that share dependence are mapped to
the same thread, decreasing the communication between threads and reducing synchronization time.

An example of a mapping involving three matrices is illustrated in Figure 4 and described as
follows. Threads in a thread block can be represented as a two-dimensional matrix with NTx × NTy
threads within NBx × NBy thread blocks. Objects ai,j, bi,j, and ci,j (I = 0, . . . , n–1; j = 0, . . . , m–1) share
dependence and are mapped to three different matrices in the same entry position, (i,j), for execution
within a single thread, (i,j). Membranes, m, having n objects of dependent variables, ai,j, bi,j, and ci,j,
and map those objects by assigning them to a single row of a given matrix. Consequently, for m
membranes with n dependent objects, ai,j, bi,j, and ci,j, each dependent object is mapped to three m × n
matrices in the same entry position, (i,j), for execution on a single thread, (i,j). To avoid initiating
multiple matrix operations simultaneously, it is possible to consider these matrices as a single matrix
virtually divided into three sub-matrices.

To maximize occupancy, active threads, and the warps per SM should be equal to the maximum
warps per SM, MaxWarpsm, and the maximum number of threads per SM, MaxThrsm [34]. The maximum
number of resident thread blocks per SM, MaxBlksm, is also limited depending upon GPU computational
capability [34]. Therefore, the minimum number of threads per thread block necessary to achieve high
or full occupancy, MinThrBlkHighOccup, is calculated as:

MinThrBlkHighOccup = MaxThrsm/MaxBlksm (1)

With MinThrBlkHighOccup, the threads in each thread block achieve high occupancy; however,
when the number of threads per thread block increases, more dependent threads can be allocated to a
thread block, decreasing inter-block communication. In this case, the active threads per thread block
can be maximized to the number of resident threads per thread block allowed, MaxThrBlk, based on
GPU computational capability [34]. Therefore, to achieve high occupancy, the number of active threads
per thread block, ThrBlk, equal to NTx × NTy (Figure 4) can be determined as follows:

NTx ×NTy = ThrBlk =

MinThrBlkHighOccup ; If threads number increasing, not effects on
interblock communications

Up to MaxThrBlk; If threads number increasing, decreases
interblock communications

(2)

The proposed approach for balancing occupancy and synchronization between threads and thread
blocks (Balancing_Occup_Sync_Approach) is described below.

Step 1: Assign objects and membranes to a matrix and assign each sub-matrix, NTx × NTy,
in Equation (2) (Figure 4) to each thread block to achieve high occupancy.

Step 2: After assigning the membrane system to a matrix, if the communication rate between
threads or thread blocks is high:

According to the object- and membrane-weighted network (described later), dependent objects
are assigned to the same entry positions within different sub-matrices, and more than one sub-matrix is
assigned to each thread block (Figure 4), allowing objects having shared dependencies to be assigned to
the same thread. The quantity of sub-matrices per thread block, NumSubMatBlk, is equal to the quantity
of objects per thread, ObjThr, and can continue to increase without lowering occupancy. This number is
represented as:

NumSubMatBlk = ObjThr = Min (MaxDepObj, ObjThrHighOccup) (3)

Processes 2020, 8, 1199 8 of 21

The MaxDepObj represents the maximum number of objects that share dependence, and ObjThrHighOccup
represents the maximum quantity of objects that can be allocated to every thread while maintaining
high occupancy. The number of membranes assigned to the thread block should be close to the
estimated number of membranes capable of being assigned to the same thread block while maintaining
100% occupancy.

MembBlk ≈MembBlkHighOccup (4)

The ObjThrHighOccup and the MembBlkHighOccup will be determined in Equations (5) and (9).
To improve the assignment of dependent objects and membranes, the weighted network described
here allows determination of the degree of dependency between objects and membranes to identify
the best assignment.

Step 3: If the communication rate between thread blocks (in this step, communication between
threads within the same thread block is not considered) remains high after the previous two steps:

Assign additional objects sharing dependency exceeding ObjThrHighOccup from Equation (3) to the
same threads to enable the assignment of more dependent membranes to the same thread blocks and
potentially decrease communication rates. Assigning objects exceeding ObjThrHighOccup to each thread
decreases occupancy. It decreases the rate of communication and synchronization time between thread
blocks. However, this sacrificing occupancy is useful to improve performance because the thread block
synchronization is a too time-consuming process. However, decreasing the communications between
threads inside the same thread blocks by sacrificing occupancy is not recommended.

Step 4: If Step 3 does not decrease communication rate and synchronization between thread blocks,
then kernel re-invocation is required. In this case, it is more advantageous to keep occupancy high,
using Step 2 to decrease the communication rate as much as possible without sacrificing occupancy.
However, to maintain adequate synchronization and communication between thread blocks, kernel
re-invocation is necessary.

The ObjThrHighOccup in Equation (3) represents the maximum number of objects per thread when
occupancy remains high and is determined by:

ObjThrHighOccup = min (ObjThrConsSh, ObjThrConsReg, ObjThrConsLoc) (5)

The number of objects capable of being assigned per thread to achieve high occupancy
(Equation (5)) is constrained by the available shared memory, ObjThrConsSh, and the limited amount
of shared memory per SM, MaxShsm. The maximum number of threads per SM necessary to achieve
high occupancy, MaxThrsm [34], and the average amount of shared memory utilized by each object,
AveShObj, is represented as:

ObjThrConsSh = MaxShsm/(MaxThrsm × AveShObj) (6)

If the objects exceed the number of SM registers (spilled registers) stored in local memory,
performance will decrease relative to the slow local-memory access. Therefore, it is necessary to
consider the limitations associated with the number of registers per SM. The number of objects capable
of being assigned per thread to achieve high occupancy (Equation (5)) is constrained by the available
registers, ObjThrConsReg, and the limited number of registers per SM, MaxRegsm. The number of
threads per SM necessary to achieve the high occupancy, MaxThrsm, depends upon GPU computational
capability [34]. The average number of registers utilized by each object, AveRegObj, is represented as:

ObjThrConsReg = MaxRegsm/(MaxThrsm × AveRegObj) (7)

The number of objects capable of being assigned per thread to achieve high occupancy
(Equation (5)) is constrained by the available local memory, ObjThrConsLoc, and the limited amount
of local memory per thread, MaxLocsm [34]. The maximum number of threads per SM necessary to

Processes 2020, 8, 1199 9 of 21

achieve high occupancy, MaxThrsm [40], and the average amount of local memory utilized by each
object, AveLocObj, is represented as:

ObjThrConsLoc = MaxLocsm/(MaxThrsm × AveLocObj) (8)

The AveShObj from Equation (6), the AveRegObj from Equation (7), and the AveLocObj from
Equation (8) are estimated by assigning each membrane object to a single thread, every membrane
to a single thread block, and compiling the code using CUDA-C following management of compiler
parameters. These parameters include the number of registers per thread, AveRegObj, the spilled registers
stored in local memory per thread, AveLocObj, and the amount of shared memory per SM, which should
be divided by the number of objects assigned to each SM to obtain AveShObj. For MembBlkHighOccup,
the same calculations can be undertaken from Equation (4) through Equation (8) for ObjThrHighOccup
from Equation (3) as:

MembBlkHighOccup = min { MaxShsm/(BlkSM × AveShMemb), MaxRegsm/(BlkSMHighOccup × AveRegMemb)} (9)

The maximum shared memory per SM, MaxShsm, and the maximum number of registers per SM,
MaxRegsm, depend upon GPU computational capability [40]. BlkSM can be obtained by dividing the
maximum possible resident threads per SM, MaxThrsm, by the number of active threads per thread
block, ThrBlk, giving NTx × NTy from Equation (2). The average amount of shared memory consumed
per membrane, AveShMemb, and the average quantity of registers utilized per membrane, AveRegMemb,
can be estimated by assigning each membrane object to one thread, every membrane to a single thread
block, and compiling the code using CUDA-C following management of compiler parameters.

Object- and membrane-weighted network:
A weighted network is employed to appropriately assign objects having shared dependencies

and membranes from Steps 2 and 3 of the Balancing_Occup_Sync_Approach. This network, a
p
→ b,

represents a reaction on the object a that occurs at the rate, p, and affects the amount of object b.
For example, if object a evolves according to the evolution rule, a100

→ b3 assumes that in each step,
the number of objects a increases by one, and after 100 steps (with a rate of 0.01 per step), there would
be 100 copies of the object a and the rule would evolve and generates three copies of object b. Therefore,

in the weighted network, the transition is written as a
0.01
−−→ b. In Step 2, each NumSubMatBlk or ObjThr of

objects from Equation (3) is assigned to each thread to improve performance. The ObjThr objects with
higher levels of shared dependency within the weighted network are assigned to the same entry of
sub-matrices and assigned to the same thread (Figure 5).

Processes 2020, 8, x FOR PEER REVIEW 9 of 21

These parameters include the number of registers per thread, AveRegObj, the spilled registers stored
in local memory per thread, AveLocObj, and the amount of shared memory per SM, which should be
divided by the number of objects assigned to each SM to obtain AveShObj. For MembBlkHighOccup, the
same calculations can be undertaken from Equation (4) through Equation (8) for ObjThrHighOccup from
Equation (3) as:

MembBlkHighOccup = min { MaxShsm/(BlkSM × AveShMemb), MaxRegsm/(BlkSMHighOccup × AveRegMemb)} (9)

The maximum shared memory per SM, MaxShsm, and the maximum number of registers per SM,
MaxRegsm, depend upon GPU computational capability [40]. BlkSM can be obtained by dividing the
maximum possible resident threads per SM, MaxThrsm, by the number of active threads per thread
block, ThrBlk, giving NTx × NTy from Equation (2). The average amount of shared memory consumed
per membrane, AveShMemb, and the average quantity of registers utilized per membrane, AveRegMemb,
can be estimated by assigning each membrane object to one thread, every membrane to a single
thread block, and compiling the code using CUDA-C following management of compiler parameters.

Object- and membrane-weighted network:

A weighted network is employed to appropriately assign objects having shared dependencies
and membranes from Steps 2 and 3 of the Balancing_Occup_Sync_Approach. This network, 𝑎 → 𝑏,
represents a reaction on the object a that occurs at the rate, p, and affects the amount of object b. For
example, if object a evolves according to the evolution rule, 𝑎 → 𝑏 assumes that in each step, the
number of objects a increases by one, and after 100 steps (with a rate of 0.01 per step), there would be
100 copies of the object a and the rule would evolve and generates three copies of object b. Therefore,
in the weighted network, the transition is written as 𝑎 .⎯ 𝑏. In Step 2, each NumSubMatBlk or ObjThr of
objects from Equation (3) is assigned to each thread to improve performance. The ObjThr objects with
higher levels of shared dependency within the weighted network are assigned to the same entry of
sub-matrices and assigned to the same thread (Figure 5).

Figure 5. The proposed object-weighted network and classification. Objects that have higher
communication rates are organized within the same groups (dashed ellipses). The number of objects
per group should satisfy Equation (3) and objects are assigned to the same entry positions within the
matrices, enabling execution by the same thread.

To organize related objects within the same groups, begin with those objects having the highest
communication rates in the weighted network (Figure 5) and assign them to the same group until the
number of objects per thread does not exceed that from Equation (3). For example, according to the
rates associated with the objects in Figure 5, a and f (rate 0.95) and f and c (0.9) are assigned to the first
group, then b and x (0.9) are assigned to the second group, given that there is no link between b and
f. This is followed by d and k (0.85) being assigned to the third group. Subsequently, f and z (0.8) and
c and e (0.8) will be assigned to the first group. Up to this point, b and x were assigned to the second
group, and d and k were assigned to the third group. Now, object b from the second group and object
d from the third group (0.75) are classified in the same group, and the third group is dissolved. This

Figure 5. The proposed object-weighted network and classification. Objects that have higher
communication rates are organized within the same groups (dashed ellipses). The number of objects
per group should satisfy Equation (3) and objects are assigned to the same entry positions within the
matrices, enabling execution by the same thread.

To organize related objects within the same groups, begin with those objects having the highest
communication rates in the weighted network (Figure 5) and assign them to the same group until the

Processes 2020, 8, 1199 10 of 21

number of objects per thread does not exceed that from Equation (3). For example, according to the
rates associated with the objects in Figure 5, a and f (rate 0.95) and f and c (0.9) are assigned to the
first group, then b and x (0.9) are assigned to the second group, given that there is no link between
b and f. This is followed by d and k (0.85) being assigned to the third group. Subsequently, f and z
(0.8) and c and e (0.8) will be assigned to the first group. Up to this point, b and x were assigned to the
second group, and d and k were assigned to the third group. Now, object b from the second group and
object d from the third group (0.75) are classified in the same group, and the third group is dissolved.
This continues until all objects are classified according to their communication rates in the weighted
network and the limitation to the number of objects per thread from Equation (3) has been reached.

We have also defined a membrane-weighted network (Figure 6). Here, []i
p
→ [] j denotes

a membrane, i, communicating with a membrane, j, at the rate, p. Similar to the object-weighted
network, membranes that have higher communication rates are organized within the same group until
Equation (4) is satisfied. Each group is then assigned to sub-matrices, NTx × NTy, from Equation (2) to
be executed in the same thread block (Figure 4).

Processes 2020, 8, x FOR PEER REVIEW 10 of 21

continues until all objects are classified according to their communication rates in the weighted
network and the limitation to the number of objects per thread from Equation (3) has been reached.

We have also defined a membrane-weighted network (Figure 6). Here, [] → [] denotes a
membrane, i, communicating with a membrane, j, at the rate, p. Similar to the object-weighted
network, membranes that have higher communication rates are organized within the same group
until Equation (4) is satisfied. Each group is then assigned to sub-matrices, NTx × NTy, from Equation
(2) to be executed in the same thread block (Figure 4).

Figure 6. The proposed membrane-weighted network and classification. Membranes having higher
communication rates are organized within the same groups (dashed ellipses). The number of
membranes per group should satisfy Equation (4), and the membranes assigned to the sub-matrices,
NTx × NTy, will be executed in the same thread block.

Previous approaches mapped one membrane to one thread block without considering the
communication between membrane objects [30–33] (Figure 3). Given that each membrane was
assigned to one block, communication among membranes necessitated re-invocation of separate
kernels and decreased performance. According to Balancing_Occup_Sync_Approach, a trade-off is
made between maintaining high occupancy and reducing communication rates. Object- and
membrane-weighted networks are also proposed to automatically classify objects and membranes
having shared dependencies within the same threads and thread blocks. These methods enhance
algorithm performance by balancing occupancy, decreasing communication rates between thread
blocks, and executing dissolution and dividing rules within the same kernel, thereby minimizing the
need to re-invoke separate kernels.

3.2. Proposed Algorithm

The proposed algorithm for GPU simulation of active membrane systems is presented below
(Figure 7). This algorithm represents membrane systems as matrices (Figure 7, line 0). Membrane
objects are assigned to one matrix, with sub-matrices, NTx × NTy, from Equation (2), allowing
maintenance of high occupancy levels due to their being grouped within individual thread blocks
(Figure 4). The proposed approach uses Balancing_Occup_Sync_Approach to appropriately classify
objects and membranes according to their communication rates by applying methods associated with
an object- and membrane-weighted networks to the sub-matrices. This allows assignment of
membranes having shared dependencies to the same thread block, enabling division and
communication rules to be performed within the same kernel without needing to invoke others
(Figure 7, lines 9, 14, and 19 are performed in the same kernel for selection and evolution rules, i.e.,
Kernel_Sel_Exe_allKindRules). When limited resources preclude assignment of all membranes having
shared dependence on the same thread block, portions of the membranes can be assigned in ways
that enhance thread-block communication rates. In these cases, inter-block communication occurs
using separate kernels (Figure 7, lines 28, 30, and 32), but at decreased rates relative to previous
approaches (Figure 3). When q inter-block communications are occurring for MaxIter steps, the time
consumed for these processes is kept in an array (Array_Int_Blk_Com_Iter[q] = {Iteration of first inter-

Figure 6. The proposed membrane-weighted network and classification. Membranes having higher
communication rates are organized within the same groups (dashed ellipses). The number of membranes
per group should satisfy Equation (4), and the membranes assigned to the sub-matrices, NTx ×NTy,
will be executed in the same thread block.

Previous approaches mapped one membrane to one thread block without considering the
communication between membrane objects [30–33] (Figure 3). Given that each membrane was
assigned to one block, communication among membranes necessitated re-invocation of separate
kernels and decreased performance. According to Balancing_Occup_Sync_Approach, a trade-off

is made between maintaining high occupancy and reducing communication rates. Object- and
membrane-weighted networks are also proposed to automatically classify objects and membranes
having shared dependencies within the same threads and thread blocks. These methods enhance
algorithm performance by balancing occupancy, decreasing communication rates between thread
blocks, and executing dissolution and dividing rules within the same kernel, thereby minimizing the
need to re-invoke separate kernels.

3.2. Proposed Algorithm

The proposed algorithm for GPU simulation of active membrane systems is presented below
(Figure 7). This algorithm represents membrane systems as matrices (Figure 7, line 0). Membrane
objects are assigned to one matrix, with sub-matrices, NTx × NTy, from Equation (2), allowing
maintenance of high occupancy levels due to their being grouped within individual thread blocks
(Figure 4). The proposed approach uses Balancing_Occup_Sync_Approach to appropriately classify
objects and membranes according to their communication rates by applying methods associated with an
object- and membrane-weighted networks to the sub-matrices. This allows assignment of membranes
having shared dependencies to the same thread block, enabling division and communication rules to

Processes 2020, 8, 1199 11 of 21

be performed within the same kernel without needing to invoke others (Figure 7, lines 9, 14, and 19
are performed in the same kernel for selection and evolution rules, i.e., Kernel_Sel_Exe_allKindRules).
When limited resources preclude assignment of all membranes having shared dependence on the
same thread block, portions of the membranes can be assigned in ways that enhance thread-block
communication rates. In these cases, inter-block communication occurs using separate kernels (Figure 7,
lines 28, 30, and 32), but at decreased rates relative to previous approaches (Figure 3). When q inter-block
communications are occurring for MaxIter steps, the time consumed for these processes is kept in
an array (Array_Int_Blk_Com_Iter[q] = {Iteration of first inter-block communication, Iteration of
the second inter-block communication, . . . , Iteration of the qth inter-block communication}) [41].
Notice that for inter-block communication, the accurate time would be established by tracking
the communication, aside from the dissolution and division rules that ensue among thread blocks.
Entire thread blocks would be dismissed and synchronized by kernel invocation before initiation of
thread-block communication. When it is not possible to determine the number of iterations necessary
for thread-block communication, kernels invocation in any iteration are recommended.

Processes 2020, 8, x FOR PEER REVIEW 11 of 21

block communication, Iteration of the second inter-block communication,…, Iteration of the qth inter-
block communication}) [41]. Notice that for inter-block communication, the accurate time would be
established by tracking the communication, aside from the dissolution and division rules that ensue
among thread blocks. Entire thread blocks would be dismissed and synchronized by kernel
invocation before initiation of thread-block communication. When it is not possible to determine the
number of iterations necessary for thread-block communication, kernels invocation in any iteration
are recommended.

Figure 7. Pseudocode of the proposed approach for active membrane systems on GPU.

GPUs execute threads in warps in which each warp is a group of 32 threads. Thread discrepancy
appears while threads in a warp follow dissimilar implementation paths as compared to others. Thus,
when allocating objects to groups in which every group allocated to one thread, every group of 32
having a similar path would be allocated to 32 threads in a single warp whenever achievable to
prevent branch deviation. In cases where branch deviation is inevitable, several approaches could be
implemented to decrease its consequence, including branch distribution [42,43] and runtime data re-
mapping across multiple warps [44]. In the algorithm presented here, dependent objects are assigned
to the same thread whenever possible (Figure 7, line 0). This decrease both communication rates and
synchronization time between threads compared to previous approaches that failed to consider
shared dependence between objects before the thread assignment. Initial parameters are also assessed
before execution to ensure that sufficient memory is allocated (Figure 7).

Figure 7. Pseudocode of the proposed approach for active membrane systems on GPU.

GPUs execute threads in warps in which each warp is a group of 32 threads. Thread discrepancy
appears while threads in a warp follow dissimilar implementation paths as compared to others.
Thus, when allocating objects to groups in which every group allocated to one thread, every group of

Processes 2020, 8, 1199 12 of 21

32 having a similar path would be allocated to 32 threads in a single warp whenever achievable to
prevent branch deviation. In cases where branch deviation is inevitable, several approaches could
be implemented to decrease its consequence, including branch distribution [42,43] and runtime data
re-mapping across multiple warps [44]. In the algorithm presented here, dependent objects are assigned
to the same thread whenever possible (Figure 7, line 0). This decrease both communication rates and
synchronization time between threads compared to previous approaches that failed to consider shared
dependence between objects before the thread assignment. Initial parameters are also assessed before
execution to ensure that sufficient memory is allocated (Figure 7).

The initial information required concerning the active membrane system, π = (O, H, µ, w0,...,
wm, R), includes initial multisets, (w0,...,wm), the number of regions or membranes, m, membrane
structure, µ, a group of rules, R, and MaxIter, a maximum number of iterations,. Halted conditions are
encountered when NumIter, the number of iterations achieves MaxIter, or the configuration achieves a
termination position (a condition in which no additional rules can be implemented).

Inputs are transmitted from host (CPU) to device (GPU), where the device begins execution
of computations in parallel. This process comprises two main steps: rules selection and execution.
When rules are selected (Figure 7, lines 5 and 6), the relevance of every rule is examined, including
the accessibility of every object participating in the left-hand side of the rule (the reaction object).
Additionally, for those rules requiring single or additional mutual objects, a single rule is selected
non-deterministically, given that each membrane object can be used by at most one rule. Finally, all rules that
are applicable are added to a list, ListOfSelectedRules, for the application in the rule-execution step. In the
rule-execution step, all relevant rules are activated, and the quantity of objects, membranes, and other
variables are revised consistent with the outcomes associated with rule implementation (while there is
no inter-block communication and no demand for kernel invocation, this step implemented from lines
7 to 24 (Figure 7); else, this step is implemented from lines 7 to 34 (Figure 7).

Using this method, it is feasible to implement membranes and objects having shared dependencies
(membranes that interact amongst each other or membranes produced through division rules) from
within a similar thread block. Consequently, communication between thread blocks and kernel
invocation is unnecessary, allowing the execution of rules incorporating evolution, communication
(“in”, “out”), dissolving, and division to be implemented using the similar kernel (Figure 7,
Kernel_Sel_Exe_allKindRules) and intensifying execution. Both selection and execution steps for
all rules can be accomplished in Kernel_Sel_Exe_allKindRules (Figure 7, lines 4 to 24) until a termination
criterion is reached. Previous methods required the invocation of separate kernels before executing
communication, dissolution, and division rules (Figure 3).

For dissolving rules (Figure 7, lines 18 to 20), the algorithm estimates the number of resources
that will be discharged following membrane dissolution. While a single membrane is dissolved,
the assigned threads will be idle. If the quantity of unemployed threads following dissolution is
sizeable, it is advisable to re-invoke the kernel with no launching of unemployed threads or blocks.
Else, the program resumes with no kernel re-invocation. The benefit of the proposed method is that the
assignment of multiple membranes to one thread block enables other membranes to continue to exist
in a given thread block following the dissolution of others. Previous methods wherein one membrane
was assigned per thread block resulted in thread blocks being unused following the dissolution of the
associated membrane.

4. Results and Discussion

The simulations designated in this section were implemented on a computer with an Intel Core
i7-3820 and an NVIDIA GeForce GTX680 GPU. The code was designed using NVIDIA CUDA 4.1
and Visual C++ 2008. The program comprises of two parts: the host (CPU) and the device (GPU).
The host/CPU portion of the code is responsible for controlling program execution, allocating memory
in the host or device, and obtaining results from the device. GPU processing is scaled in seconds,
and MaxIter is set high enough to assure transient factors do not affect GPU speed. Simulation

Processes 2020, 8, 1199 13 of 21

timescales for different numbers of objects with the same iterations vary from milliseconds to hours.
Therefore, various variable iterations are used to achieve the same CPU (sequential) time for all object
combinations that have been considered (Table 1). However, a similar speedup is observed with
MaxIter set to 10,000 for object combinations on the GPU, indicating that speed does not depend
on MaxIter.

Simulations were undertaken to show the effect of mapping objects to different matrices (Figure 4)
to decrease communication rates between threads. To perform this simulation, previous approaches
were followed for defining a membrane system having objects with shared dependencies [31].
The membrane system with active membranes is defined as π = (O, H,µ,ω0, . . . ,ωm, R), with m
elementary membranes located within the skin along with the set of rules

µ = [[]0, []1, . . . , []m−1]m (10a)

and:
R :
[
aib2

i c3
i → a2

i b4
i c6

i

]
h
, i = 0, . . . , n− 1; h = 0, . . . , m− 1. (10b)

The preliminary 3 × n objects (specifically, ai, bi, ci; i = 0, . . . , n − 1) inside of the membrane
ωi, 0 ≤ i < m, are produced arbitrarily, the quantity of objects within the skin, ωm, is zero,
and dependencies exist between objects ai, bi, ci; i = 0, . . . , n− 1. This membrane system allows control
of the number of rules, n, and the number of different types of objects, 3n, in each membrane to
measure algorithm performance against these variables. Furthermore, it is also possible to change the
number of membranes, m, for simulations. The initial multiplicities for objects, ai, bi, ci; i = 0, . . . , n− 1,
are randomly generated in each membrane, e.g., a2

1 denotes that two objects from a1 existing, meaning
that the multiplicity of a1 is 2. The number of each object is a random integer between 0 and UnOb,
where UnOb is a user-defined integer (for these simulations, UnOb = 10). For example, given six objects,
3n (n = 2) objects, ai, bi, ci; i = 0, . . . , n − 1 (i.e., a0, b0, c0, a1, b1, c1), can be available in each membrane
(Table 1). The initial multiplicity of each object is a random number between zero and UnOb, where a
multiplicity equal to zero signifies that the object is not available in the membrane in the initial
step. The number of membranes, m, is 16,382 but is capable of being set differently. This system
contains dependencies between objects, ai, bi, ci, since producing objects a2

i b4
i c6

i according to the rules,

R :
[
aib2

i c3
i → a2

i b4
i c6

i

]
h
, depends upon consuming aib2

i c3
i . These rules can be applied in each step,

given that the objects required for their application are available and the communication rates between
a0, b0, c0, a1, b1, c1 and ai, bi, ci are one. Simulating membrane systems over small, sequential timespans
enables discovery of the average application rate associated with each rule per step, which can
subsequently be used to obtain the communication rate between objects and measure the classification
for parallel implementation.

4.1. Comparison Between Previous and Proposed Methods

Comparisons between previous methods (Figures 2 and 3) and the proposed method are
undertaken by mapping several matrices (Figures 4 and 7) and using the classifications of dependent
objects within the active membrane systems as illustrated (Table 1, Figure 8).

The size of the block is a vital aspect of achieving improved performance in algorithms-by-blocks.
Sub-optimal performance occurs when the unconventional techniques are utilized to minimize data
transfers, to enhance data affinity and an incorrect selection of parameters. In this study, the maximum
value for the block size is a trade-off between several aspects such as the capability of parallelism in
which smaller block size is transformed into a better concurrency, and a larger block component results
in less concurrency.

Processes 2020, 8, 1199 14 of 21

Table 1. Comparing the proposed approaches with decreased communication for 16,382 membranes, different objects inside each membrane for the system as in
Equation (10).

Iterations, Objects, CPU Time Previous Approaches on the GPU (Figure 3) [31–33] Proposed Approach with Matrices on the GPU
(Figure 7)

Proposed Approach
with One Membrane/

Thread Block

Max
Iteration

Objects/Membranes
(n × 3)

CPU
Time (s) Membrane/Block

Active
Threads/Block
(Objects in the

Membrane)

GPU
Occupancy

(%)

Time
(s)

Speed
up Membrane/Block Optimum

(NTx, NTy)
Time

(s)
Speed

Up
Time

(s) Speed Up

780,000 6 1000 1 6 25 7187 0.14 64 (2, 64) 11 89 807 8.9
390,000 12 1000 1 12 25 6284 0.16 32 (4, 32) 10 91 683 9.2
180,000 24 1000 1 24 25 5157 0.2 16 (8, 16) 10 92 526 9.8
92,000 48 1000 1 48 50 618 1.6 8 (16, 8) 10 93 59 10.4
43,000 96 1000 1 96 75 346 2.8 4 (32, 4) 10 99 30 11.5
21,000 192 1000 1 192 100 188 5.3 2 (64, 2) 9.4 106 16 11.7
9500 384 1000 1 384 100 121 8.2 1 (128, 1) 8.3 120 10 12.1
4700 768 1000 1 768 100 119 8.3 1/2 (128, 1) 8.2 121 9.8 12.1
2300 1536 1000 1 1024 100 118 8.4 1/4 (128, 1) 7.6 130 9.7 12.1

Processes 2020, 8, 1199 15 of 21
Processes 2020, 8, x FOR PEER REVIEW 15 of 21

Figure 8. Comparison of previous and new methods for GPU optimization of active membrane
systems. Execution times are associated with previous methods (Figure 3) and the algorithm
presented in this paper (Figure 7).

According to Table 1, for 6, 12, and 24 objects (threads), one warp was required, for 48 objects,
two warps were necessary, for 96 objects, three warps were needed, and for more than 96 objects,
four warps were required, resulting in occupancies of 25%, 50%, 75%, and 100%, respectively. With
one membrane allocated to each thread block, when the quantity of objects per membrane increases,
both the active threads per thread block and the occupancy increase due to the increased speed.
Assumed that the collection of implementation units accessible within the system, the size of the
block significantly affects the degree of parallel implementation on the sub-problems and decreases
the unoccupied times. In data transfer effectiveness, a small block size is transformed into a larger
quantity of data transmissions of a condensed dimension. On the contrary, a greater block dimension
transforms into better efficient bandwidth and consequently benefits the ultimate performance of the
application. Therefore, considering merely the possible parallelism aspect, the optimum block size
somewhat relies on the entire matrix dimension.

Since there is no inter-block communication present in the membrane system described in
Equation (10), the number of active threads per thread block, ThrBlk, and the dimensionality of the
sub-matrices according to Table 1, Equations (1) and (2) is NTx × NTy = ThrBlk = MinThrBlkHighOccup =
128. The number of active threads per thread block does not depend on the quantity of objects per
membrane. When the number of objects is low, more than one membrane is assigned to each thread
block to achieve MinThrBlkHighOccup = 128 active threads per thread block. For this reason, occupancy,
regardless of the quantity of objects is 100% (when adequate membranes are available), as opposed
to results seen from previous approaches.

The number of objects per thread, ObjThr, equal to NumSubMatBlk can be obtained from Equation
(3). In Equation (3), ObjThrHighOccup is calculated from Equation (5). In the simulation, when a
membrane with 128 objects is assigned to 128 threads in every thread block, the amount of consumed
shared memory per thread block is 2560 bytes (ShBlk = 2560), the number of used registers per thread
is 10 (RegThr = 10), and the amount of used local memory per thread is zero (LocThr = 0) (values were
obtained by compiling the code in CUDA using the PTXAS option). The used shared memory per
thread, ShThr, is obtained by dividing ShBlk by the number of threads per thread block, giving ShThr =
2560/128 = 20 bytes. For the estimated memory usage and since one thread is assigned per object,
AveLocObj = LocThr = 0, AveShObj = ShThr = 20 bytes, and AveRegObj = RegThr = 10. The values MaxThrsm = 2048,
MaxLocsm = 512 KB, MaxRegsm = 64 KB, and MaxShsm = 48 KB were obtained from [40], corresponding
to a GPU computational capability of 3. By applying these values to Equations (6)–(8), ObjThrConsSh =
2.4 KB, ObjThrConsLoc = ∞ (unconstrained by this factor), and ObjThrConsReg = 32. According to Equation

102

103

 104

 105

 106

 107

 108

 10

1

Figure 8. Comparison of previous and new methods for GPU optimization of active membrane systems.
Execution times are associated with previous methods (Figure 3) and the algorithm presented in this
paper (Figure 7).

Previous approaches assigned membrane objects to one thread block. Therefore, the number
of assigned membranes per thread block for all objects was 1, and the maximum number of active
membranes per thread was equal to the number of objects per membrane (Table 1). For a GPU with a
computational capability of 3, the maximum number of threads per SM is 2048 (MaxThrsm = 2048),
the maximum warp per SM is 64 (MaxWarpsm = 64), and the maximum number of thread blocks per SM
is 16 (MaxBlksm = 16). Therefore, the MinThrBlkHighOccup from Equation (1) is 128. Each warp contains
32 threads. The occupancy is the ratio of active warps per SM to the highest achievable warps that can
be resident to the SM. To achieve maximum occupancy, at least four warps should be active per thread
block (MaxWarpsm/MaxBlksm = 4).

According to Table 1, for 6, 12, and 24 objects (threads), one warp was required, for 48 objects,
two warps were necessary, for 96 objects, three warps were needed, and for more than 96 objects,
four warps were required, resulting in occupancies of 25%, 50%, 75%, and 100%, respectively. With one
membrane allocated to each thread block, when the quantity of objects per membrane increases,
both the active threads per thread block and the occupancy increase due to the increased speed.
Assumed that the collection of implementation units accessible within the system, the size of the
block significantly affects the degree of parallel implementation on the sub-problems and decreases
the unoccupied times. In data transfer effectiveness, a small block size is transformed into a larger
quantity of data transmissions of a condensed dimension. On the contrary, a greater block dimension
transforms into better efficient bandwidth and consequently benefits the ultimate performance of the
application. Therefore, considering merely the possible parallelism aspect, the optimum block size
somewhat relies on the entire matrix dimension.

Since there is no inter-block communication present in the membrane system described in
Equation (10), the number of active threads per thread block, ThrBlk, and the dimensionality of the
sub-matrices according to Table 1, Equations (1) and (2) is NTx×NTy = ThrBlk = MinThrBlkHighOccup = 128.
The number of active threads per thread block does not depend on the quantity of objects per membrane.
When the number of objects is low, more than one membrane is assigned to each thread block to achieve
MinThrBlkHighOccup = 128 active threads per thread block. For this reason, occupancy, regardless of the
quantity of objects is 100% (when adequate membranes are available), as opposed to results seen from
previous approaches.

Processes 2020, 8, 1199 16 of 21

The number of objects per thread, ObjThr, equal to NumSubMatBlk can be obtained from Equation (3).
In Equation (3), ObjThrHighOccup is calculated from Equation (5). In the simulation, when a membrane
with 128 objects is assigned to 128 threads in every thread block, the amount of consumed shared
memory per thread block is 2560 bytes (ShBlk = 2560), the number of used registers per thread is
10 (RegThr = 10), and the amount of used local memory per thread is zero (LocThr = 0) (values were
obtained by compiling the code in CUDA using the PTXAS option). The used shared memory
per thread, ShThr, is obtained by dividing ShBlk by the number of threads per thread block, giving
ShThr = 2560/128 = 20 bytes. For the estimated memory usage and since one thread is assigned per
object, AveLocObj = LocThr = 0, AveShObj = ShThr = 20 bytes, and AveRegObj = RegThr = 10. The values
MaxThrsm = 2048, MaxLocsm = 512 KB, MaxRegsm = 64 KB, and MaxShsm = 48 KB were obtained from [40],
corresponding to a GPU computational capability of 3. By applying these values to Equations (6)–(8),
ObjThrConsSh = 2.4 KB, ObjThrConsLoc = ∞ (unconstrained by this factor), and ObjThrConsReg = 32.
According to Equation (5), ObjThrHighOccup = 32. The objects sharing dependencies in the membrane
system from Equation (10) are ai, bi, and ci. Therefore, MaxDepObj = 3. With ObjThrHighOccup = 32,
and MaxDepObj = 3, according to Equation (3), NumSubMatBlk = ObjThr = 3.

Given these results, n objects from each membrane are assigned to n/3 threads. According to Step 2
of Balancing_Occup_Sync_Approach (Figure 7, line 0), all three dependent objects are assigned to one
thread. For a case involving six objects within a membrane, all six would be assigned to NTx = 2 threads,
meaning that NTy = 64 membranes are needed for assignment to the same thread block, resulting
in NTx × NTy ≈ 128 threads according to Equation (2). Communication between threads is a very
time-consuming process. Since objects having shared dependencies can be executed on the same
thread using the method described here, the communication rate between threads decreases, thereby
increasing performance. For example, given 1536 objects, the increase in speed achieved by previous
approaches and relative to sequential-computation methods is 8.4-fold. In contrast, the method
described in this paper utilizing multiple matrices results in a 130-fold increase.

When the most favorable block size is restored for a particular matrix size, the advantages of
the several implementations of the runtime are predominantly determined by the quantity of objects
and membranes necessary to perform a given operation. For “Balancing_Occup_Sync_Approach”
(Figure 7), the inputs (the number of objects, membranes, and rules) are determined when the membrane
system is designed. If there are errors in these inputs, especially on the rules, the system could behave
abnormally, and the expected output won’t be generated. As a precaution to avoid errors on the input,
we validated the algorithm before it was implemented on the GPU. In this study, the processing time
depends on communication between objects and membranes that are triggered by the rules. As Table 1
and Figure 8 demonstrated, when there is maximum occupancy with minimal communication between
thread blocks, time efficiency and performance improved.

In cases involving large numbers of objects per membrane, occupancies resulting from the
application of either method eventually reach 100% (Table 1). In these situations, the impact associated
with decreasing communication rates between threads through the use of matrices, wherein objects
having shared dependencies are assigned to the same threads can be observed. Given 384 objects,
the increase in speed relative to sequential processing methods and using previous algorithms is 8.2-fold
compared to a 106-fold increase using the method described here. This translates to a 12.9-fold increase
in processing speed achieved by this algorithm relative to the algorithm used previously, mainly based
upon improving communication between threads without adversely impacting occupancy. GPUs are
low-cost, low-power consumption, and high performance concerning conventional multiprocessors.
Many current desktop computers have equipped with the GPU enable graphics cards, which can
improve the performance of processing without additional costs [28,45]. Thus achieving speed up
even around 5× by GPU can be valuable work.

The results are quantified in the last two columns of Table 1 and confirm our prediction for
improvement because of decreasing communication between threads inside each membrane discussed
in this paragraph.

Processes 2020, 8, 1199 17 of 21

The proposed object-weighted network, membrane-weighted network, and classification
algorithms are not constrained and limited to the specific type of membranes. Membranes can
have different objects with different sizes and various types of rules. Object classification can be applied
to each membrane individually. The membrane classification can be applied between membranes
with different sizes. Thus, proposed approaches are not only for some particular class and regular
membrane systems.

The dimension of sub-matrices depends on the number of objects in the membrane. When the
number of objects increases, the dimension of sub-matrices will also increase. Table 1 and Figure 8
shows that when the number of objects increases, the performance of the proposed approach is also
improving. Typically, a better parallel speedup is obtained for large problem sizes. The efficiency of
the parallel program increases with the size of the matrix.

4.2. Effects of the Number of Objects and Membranes

In this section, the significance of the quantity of objects in every membrane and the quantity of
membranes in the system on the GPU effectiveness with previously implemented approaches (Figure 3)
are discussed. It is disclosed that while the quantity of objects per membrane and the quantity of
membranes in an active membrane system are sizable, the performance in terms of time efficiency
attained by the GPU related to a CPU is high. The reason is that once the quantities of objects and
membranes increase, the utilization of the computational resource of the GPU also surges. Additionally,
by seizing the benefit of the shared memory, the simulation speediness is amplified, because by gaining
access to the shared memory, it is significantly quicker compared to the global memory. The quantity
of membranes and the quantity of objects in every membrane can be altered.

Consequently, the proportion of the utilization of computational resources could also be altered.
To use all the computational resources of the GPU, the quantity of objects and the quantity of membranes
should be big. Simulation results (milliseconds) for a defined benchmark for 1000 iterations (MaxIter)
on a computer with an Intel Core-i7-3820, 3.60-GHz CPU with 8 GB RAM and an NVIDIA GTX 680
GPU are illustrated in Tables 2 and 3.

Table 2. Comparison of CPU and GPU performance for different numbers of objects inside each
membrane for a model with 8192 membranes in algorithm 1 (Figure 3) [41].

Number of
Objects

Sequential on
CPU (ms)

GPU Shared
Memory (ms)

GPU Global
Memory (ms)

Speedup GPU
Shared Memory

Speedup GPU
Global Memory

2 62 129 145 0.48 0.42
4 140 130 157 1.07 0.89
8 296 131 186 2.25 1.59

16 608 133 236 4.57 2.57
32 1217 135 240 9.01 5.07
64 2449 137 248 17.87 9.87
128 4898 140.6 319 34.83 15.35
256 10,077 264 652 38.17 15.45
512 20,155 518 1244 38.90 16.20

1024 40,300 1067 2520 37.76 15.99

Processes 2020, 8, 1199 18 of 21

Table 3. Comparison of CPU and GPU performance for different numbers of membranes for a model
with 512 objects [41].

Number of
Membranes

Sequential on
CPU (ms)

GPU Using Shared
Memory (ms)

GPU Using Global
Memory (ms)

Speedup GPU
Shared Memory

Speedup GPU
Global Memory

2 4.7 2.01 2.02 2.3 2.3
4 16 2.05 2.3 7.8 6.9
8 31 2.15 2.7 14.4 11.4

16 47 2.25 3.4 20.8 13.8
32 78 2.37 5.6 32.9 13.9
64 156 4.7 11.1 33.1 14.0
128 296 8.5 20.9 34.8 14.1
256 624 17.4 44 35.8 14.1
512 1201 35.07 84.4 34.2 14.2

1024 2449 69.26 167 35.3 14.6
2048 4914 137.7 331 35.6 14.8
4096 10,031 272 637 36.8 15.7
8192 20,161 520 1252 38.7 16.1

16,384 40,286 1033 2488 38.9 16.1
32,768 80,589 2047 4977 39.3 16.1

As disclosed in Table 2, while the quantity of objects n in every membrane m, is small, for instance,
n = 2 and m = 8192, the CPU demonstrates better performance with shorter implementation time
compared to the GPU. When the quantity of objects is increased to, for instance, n = 512, subsequently,
the GPU has improved performance compared to CPU. This investigation utilizes the benefit of
shared memory that faster compared to when operating merely with global memory. With shared
memory, improved performance can be attained. Objects, intermediary outcomes for regulating the
relevance of rules, and consequences of rule implementations that have an effect on objects are kept in
shared memory. Notice that while accessible shared memory is not sufficient for keeping objects and
intermediary outcomes of employing rules in a thread block, it is prone to distribute data in global
memory into smaller sub-blocks so that in each phase, one sub-block loaded into shared memory can
utilize the fast-memory-access benefit of shared memory.

Table 3 illustrates the effect of the number of membranes on GPU performance. When the number
of membranes increases, then the usage of GPU computational resources increases also, and the GPU
has better performance than the CPU.

5. Conclusions

Previous studies mapped each membrane and its corresponding objects to one thread block
and the associated threads, resulting in decreased efficiency when the number of membrane
objects was smaller than the number of threads per thread blocks required to achieve maximum
occupancy. Kernel invocation, which is a time-consuming process, was needed when communication
and division rules happen between membranes. In previous approaches, each membrane was
assigned to one thread block, and synchronization required re-invocation of separate kernels.
Here, active membrane systems were modeled as matrices divided into sub-blocks according to
the described Balancing_Occup_Sync_Approach and using object- and membrane-weighted networks
to match the number of threads in each thread block, ensuring full thread utilization and decreased
communication rates between threads and thread blocks. This approach alleviates problems
encountered in previous studies by assigning several membranes to one thread block when the
number of membrane objects is small. Our method increases processing speeds 93-fold as compared to
sequential methods simulating active membrane systems with 48 objects (Table 1). Given the many
similarities between membrane systems, the algorithm presented in this paper for active membrane
systems involving GPUs should be transferable for application in other membrane-system variations.
Moreover, the concepts described and associated with weighted-network classification can also be
used in different fields to improve GPU simulations. We acknowledge the essentials of analyzing

Processes 2020, 8, 1199 19 of 21

the gaps between theoretical speedup limitations and experimental results of GPU implementation
of membrane computing. Still, unfortunately, it wasn’t under the scope of this study, and it will be
considered in our future works.

Author Contributions: Conceptualization, A.M. and R.C.M.; Methodology, A.M. and R.C.M; Visualization, A.M.;
Writing—original draft preparation, R.C.M., and A.M.; Writing—review and editing, A.M. and R.C.M.; Funding
acquisition, R.C.M. All authors have read and agreed to the published version of the manuscript.

Funding: This paper is supported by University Kebangsaan Malaysia (UKM), UKM Grant Code: GGP-2019-023.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, G.; Pérez-Jiménez, M.J.; Gheorghe, M. Real-life Applications with Membrane Computing; Springer
Science and Business Media LLC: Berlin, Germany, 2017.

2. García-Quismondo, M.; Hintz, W.D.; Schuler, M.S.; Relyea, R.A. Modeling diel vertical migration with
membrane computing. J. Membr. Comput. 2020, 2, 1–16. [CrossRef]

3. Song, T.; Pang, S.; Hao, S.; Rodríguez-Patón, A.; Zheng, P. A Parallel Image Skeletonizing Method Using
Spiking Neural P Systems with Weights. Neural Process. Lett. 2018, 50, 1485–1502. [CrossRef]

4. Wang, B.; Chen, L.; Wang, M. Novel image segmentation method based on PCNN. Optics 2019, 187, 193–197.
[CrossRef]

5. Orozco-Rosas, U.; Montiel, O.; Sepúlveda, R. Mobile robot path planning using membrane evolutionary
artificial potential field. Appl. Soft Comput. 2019, 77, 236–251. [CrossRef]

6. Andreu-Guzmán, J.A.; Valencia-Cabrera, L. A novel solution for GCP based on an OLMS membrane
algorithm with dynamic operators. J. Membr. Comput. 2019, 2, 1–13. [CrossRef]

7. Liu, C.; Du, Y. A membrane algorithm based on chemical reaction optimization for many-objective
optimization problems. Knowledge-Based Syst. 2019, 165, 306–320. [CrossRef]

8. Liu, C.; Du, Y.; Li, A.; Lei, J. Evolutionary Multi-Objective Membrane Algorithm. IEEE Access 2020, 8,
6020–6031. [CrossRef]

9. Maroosi, A.; Muniyandi, R. Accelerated execution of P systems with active membranes to solve the N-queens
problem. Theor. Comput. Sci. 2014, 551, 39–54. [CrossRef]

10. Maroosi, A.; Muniyandi, R.; Sundararajan, E.; Zin, A.M. A parallel membrane inspired harmony search for
optimization problems: A case study based on a flexible job shop scheduling problem. Appl. Soft Comput.
2016, 49, 120–136. [CrossRef]

11. Paun, G. Tracing some open problems in membrane computing. Rom. J. Inf. Sci. Tech. 2007, 10, 303–314.
12. Zhang, G.; Perez-Jimenez, M.J.; Gheorghe, M. Membrane Computing—Key Concepts and Definitions.

Recent Adv. Theory Appl. Fit. Landsc. 2017, 25, 1–9. [CrossRef]
13. García-Quismondo, M.; Gutiérrez-Escudero, R.; Pérez-Hurtado, I.; Pérez-Jiménez, M.J.; Riscos-Núñez, A.

An overview of P-Lingua 2.0. In Proceedings of the WMC’09: Proceedings of the 10th international conference
on Membrane Computing, Curtea de Arges, Romania, 24–27 August 2009; pp. 264–288.

14. Maroosi, A.; Muniyandi, R.C. Accelerated Simulation of Membrane Computing to Solve the N-queens
Problem on Multi-core. In Proceedings of the Haptics: Science, Technology, Applications; Springer Science and
Business Media LLC: Berlin, Germany, 2013; Volume 8298, pp. 257–267.

15. Maroosi, A.; Muniyandi, R.C. Membrane computing inspired genetic algorithm on multi-core processors.
J. Comput. Sci. 2013, 9, 264–270. [CrossRef]

16. Orozco-Rosas, U.; Picos, K.; Montiel, O. Hybrid Path Planning Algorithm Based on Membrane
Pseudo-Bacterial Potential Field for Autonomous Mobile Robots. IEEE Access 2019, 7, 156787–156803.
[CrossRef]

17. Perez-Hurtado, I.; Perez-Jumenez, M.; Zhang, G.; Orellana-Martín, D. Simulation of Rapidly-Exploring
Random Trees in Membrane Computing with P-Lingua and Automatic Programming. Int. J. Comput.
Commun. Control. 2018, 13, 1007–1031. [CrossRef]

18. Ciobanu, G.; Wenyuan, G. P Systems Running on a Cluster of Computers. In Computer Vision; Springer
Science and Business Media LLC: Berlin, Germany, 2004; Volume 2933, pp. 123–139.

Processes 2020, 8, 1199 20 of 21

19. Kulakovskis, D.; Navakauskas, D. Automated Metabolic P System Placement in FPGA. Electr. Control.
Commun. Eng. 2016, 10, 5–12. [CrossRef]

20. Quiros, J.; Verlan, S.; Viejo, J.; Millan, A.; Bellido, M.J. Fast hardware implementations of static P systems.
Comput. Inform. 2016, 35, 687–718.

21. Maroosi, A.; Muniyandi, R. Enhancement of membrane computing model implementation on GPU by
introducing matrix representation for balancing occupancy and reducing inter-block communications.
J. Comput. Sci. 2014, 5, 861–871. [CrossRef]

22. Ravie, C.; Ali, M. Enhancing the Simulation of Membrane System on the GPU for the N-Queens Problem.
Chin. J. Electron. 2015, 24, 740–743. [CrossRef]

23. Martínez-Del-Amor, M.A.; García-Quismondo, M.; Macías-Ramos, L.F.; Valencia-Cabrera, L.; Riscos-Núñez, A.;
Perez-Jimenez, M.J. Simulating P Systems on GPU Devices: A Survey. Fundam. Inform. 2015, 136, 269–284.
[CrossRef]

24. Valencia-Cabrera, L.; Martínez-Del-Amor, M.Á.; Pérez-Hurtado, I. A Simulation Workflow for Membrane
Computing: From MeCoSim to PMCGPU Through P-Lingua; Springer Science and Business Media LLC: Berlin,
Germany, 2018; pp. 291–303.

25. Fujita, K.; Okuno, S.; Kashimori, Y. Evaluation of the computational efficacy in GPU-accelerated simulations
of spiking neurons. Computing 2018, 100, 907–926. [CrossRef]

26. Idowu, R.K.; Muniyandi, R. Enhanced Throughput and Accelerated Detection of Network Attacks Using a
Membrane Computing Model Implemented on a GPU. In Quality of Experience and Learning in Information
Systems; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 253–268.

27. Martınez-del-Amor, M.A.; Riscos-Núnez, A.; Pérez-Jiménez, M.J. A survey of parallel simulation of P systems
with GPUs. Bull. Int. Membr. Comput. Soc. (IMCS) 2017, 3, 55–67.

28. Raghavan, S.; Rai, S.S.; Rohit, M.; Chandrasekaran, K. GPUPeP: Parallel Enzymatic Numerical P System
simulator with a Python-based interface. Biosystems 2020, 196, 104186. [CrossRef]

29. Martínez-Del-Amor, M.A.; Perez-Hurtado, I.; Orellana-Martín, D.; Perez-Jimenez, M.J. Adaptative parallel
simulators for bioinspired computing models. Futur. Gener. Comput. Syst. 2020, 107, 469–484. [CrossRef]

30. Guerrero, G.D.; Cecilia, J.M.; García Carrasco, J.M.; Martínez del Amor, M.Á.; Pérez Hurtado de Mendoza, I.;
Pérez Jiménez, M.J. Analysis of P systems simulation on CUDA. Conf. Days Parallelism 2009, 20, 289–294.

31. Cecilia, J.M.; Garcia, J.M.; Guerrero, G.D.; Martínez-Del-Amor, M.A.; Pérez-Hurtado, I.; Perez-Jimenez, M.J.
Simulation of P systems with active membranes on CUDA. Briefings Bioinform. 2009, 11, 313–322. [CrossRef]

32. Cecilia, J.M.; García, J.M.; Guerrero, G.D.; Martínez-Del-Amor, M.A.; Perez-Hurtado, I.; Perez-Jimenez, M.J.
Simulating a P system based efficient solution to SAT by using GPUs. J. Log. Algebraic Program. 2010, 79,
317–325. [CrossRef]

33. Cecilia, J.M.; Garcia, J.M.; Guerrero, G.D.; Martínez-Del-Amor, M.A.; Perez-Jimenez, M.J.; Ujaldon, M.
The GPU on the simulation of cellular computing models. Soft Comput. 2011, 16, 231–246. [CrossRef]

34. Cheng, J.; Grossman, M.; McKercher, T. Professional CUDA C Programming; John Wiley & Sons, Inc.:
Indianapolis, IN, USA, 2014.

35. Cui, X.; Chen, Y.; Mei, H. Improving performance of matrix multiplication and FFT on GPU. In Proceedings
of the IEEE 2009 15th International Conference on Parallel and Distributed Systems, Shenzhen, China, 9–11
December 2009.

36. Huang, Z.; Ma, N.; Wang, S.; Peng, Y. GPU computing performance analysis on matrix multiplication. J. Eng.
2019, 2019, 9043–9048. [CrossRef]

37. Paun, G.; Rozenberg, G.; Salomaa, A. The Oxford Handbook of Membrane Computing; Oxford University Press:
Oxford, UK, 2010.

38. Xiao, S.; Feng, W.-C. Inter-block GPU communication via fast barrier synchronization. In Proceedings of the
2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), Atlanta, GA, USA, 19–23
April 2010; 2010; pp. 1–12. [CrossRef]

39. Sun, X.; Wu, C.C.; Chen, L.R.; Lin, J.-Y. Using Inter-Block Synchronization to Improve the Knapsack Problem
on GPUs. Int. J. Grid High Perform. Comput. 2018, 10, 83–98. [CrossRef]

40. Nvidia Developer. CUDA C Programming Guide, Version 10.2. Available online: https://docs.nvidia.com/

cuda/cuda-c-programming-guide/index.html (accessed on 4 August 2020).

Processes 2020, 8, 1199 21 of 21

41. Maroosi, A.; Muniyandi, R.; Sundararajan, E.; Zin, A.M. Parallel and distributed computing models on a
graphics processing unit to accelerate simulation of membrane systems. Simul. Model. Pr. Theory 2014, 47,
60–78. [CrossRef]

42. Fukuhara, J.; Takimoto, M. Branch Divergence Reduction Based on Code Motion. J. Inf. Process. 2020, 28,
302–309. [CrossRef]

43. Kim, Y.; Kim, J.; Chae, D.; Kim, D.; Kim, J. µLayer: Low Latency On-Device Inference Using Cooperative
Single-Layer Acceleration and Processor-Friendly Quantization. In Proceedings of the EuroSys ’19: Proceedings
of the Fourteenth EuroSys Conference 2019, Dresden Germany, 25–28 March 2019.

44. Lin, H.; Wang, C.-L.; Liu, H. On-GPU Thread-Data Remapping for Branch Divergence Reduction. ACM Trans.
Arch. Code Optim. 2018, 15, 1–24. [CrossRef]

45. Gong, Q.; Greenberg, J.A.; Stoian, R.-I.; Coccarelli, D.; Vera, E.M.; Gehm, M.E. Rapid simulation of X-ray
scatter measurements for threat detection via GPU-based ray-tracing. Nucl. Instruments Methods Phys. Res.
Sect. B Beam Interactions Mater. Atoms 2019, 449, 86–93. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

