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Abstract: One approach for elucidating strain-to-strain metabolic differences is the use of genome-scale
metabolic models (GSMMs). To date GSMMs have not focused on the industrially important area of
flavor production and, as such; do not cover all the pathways relevant to flavor formation in yeast.
Moreover, current models for Saccharomyces cerevisiae generally focus on carbon-limited and/or aerobic
systems, which is not pertinent to enological conditions. Here, we curate a GSMM (iWS902) to expand
on the existing Ehrlich pathway and ester formation pathways central to aroma formation in industrial
winemaking, in addition to the existing sulfur metabolism and medium-chain fatty acid (MCFA)
pathways that also contribute to production of sensory impact molecules. After validating the model
using experimental data, we predict key differences in metabolism for a strain (EC 1118) in two distinct
growth conditions, including differences for aroma impact molecules such as acetic acid, tryptophol,
and hydrogen sulfide. Additionally, we propose novel targets for metabolic engineering for aroma
profile modifications employing flux variability analysis with the expanded GSMM. The model
provides mechanistic insights into the key metabolic pathways underlying aroma formation during
alcoholic fermentation and provides a potential framework to contribute to new strategies to optimize
the aroma of wines.

Keywords: aroma; flux balance analysis (FBA); genome-scale metabolic models; Saccharomyces cerevisiae;
wine fermentation

1. Introduction

Saccharomyces cerevisiae is employed to produce many specialized metabolites for the beverage,
food, cosmetics, and pharmaceutical industries [1]. When producing alcoholic beverages, in particular
wines, sensorial properties are of major importance to quality. Therefore, it is beneficial for the wine
industry to be able to systematically optimize the production of key aroma metabolites. However,
in order to control flavor compound formation and optimize the quality of wine, a better understanding
of the aroma formation during fermentation is essential. This is not a simple task, as the metabolic
pathways leading to flavor and aroma impact molecules are complex and not fully understood.
Despite the large amount of work using systems biology approaches to understand aroma production
during fermentation, we are still only beginning to understand how metabolic changes impact
aroma production [2,3]. Achieving a better understanding will allow more control over alcoholic
beverage production.

Processes 2020, 8, 1195; doi:10.3390/pr8091195 www.mdpi.com/journal/processes



Processes 2020, 8, 1195 2 of 20

When presented with a suitable substrate and processing conditions, S. cerevisiae generates
a complex bouquet of aroma compounds during fermentation, including esters, higher (fusel)
alcohols, and sulfur compounds. The most abundant of these volatile aroma compounds
produced during fermentation are fusel alcohols which serve as precursors to volatile esters.
The latter compounds add fruity aromas to wines [4]. The most significant of the fusel
alcohols include 1-propanol, 3-methyl-1-butanol (isoamyl alcohol), 2-methyl-1-propanol (isobutanol),
2-methyl-1-butanol (active amyl alcohol), 2-phenylethanol, and 4-(2-hydroxyethyl) phenol (tyrosol) [5].
Volatile esters important to the sensory characteristics of wine include two groups: acetate esters,
such as ethyl acetate (sweet aroma), isoamyl acetate (banana), and phenylethyl acetate (rose, flowery
aroma); and medium chain fatty acid (MCFA) ethyl esters, such as ethyl octanoate (sour apple)
and ethyl hexanoate (apple, anise) [6–8]. In contrast to most ester compounds, sulfur-containing
compounds such as methionol and hydrogen sulfide produce undesirable cabbage or rotten-egg
aromas [9]. Hydrogen sulfide produced during fermentation introduces the most prominent sulfur
off-notes in wines [10]. Other sulfur compounds such as methanethiol, a volatile thiol, can also be
responsible for producing undesirable flatulence-like aromas. Despite the interest in refining the aroma
character of wines and other alcoholic beverages, the knowledge of yeast metabolism necessary to
fully control production of aroma molecules has not yet been elucidated [8].

Adjusting environmental conditions such as temperature or changing initial nutrient
concentrations can serve as a means of varying the production of yeast-derived aroma in alcoholic
fermentation for a given strain to some degree. This approach, however, relies on a thorough
understanding of the underlying metabolism of the organism. To gain this understanding, some studies
have used systems biology approaches such as metabolomics, though most of these studies employed
the laboratory strain S288C, which does not contain several genes present in wine and beer S. cerevisiae
strains [11]. Although the fermentation environment significantly influences secondary metabolism,
the response to the environment depends immensely on the yeast strain selected for fermentation [12–14].
When different commercial yeast strains are used and compared, strain specific differences in secondary
metabolite composition in the fermented products can be observed, indicating metabolic and most
likely genetic differences between strains [15–17]. For instance, the kinetics of volatile ester formation
from various yeast strains was studied under varying amounts of initial nitrogen as well as different
initial brix conditions [18,19]. However, most experimental studies that have investigated the impact
of environmental changes on yeast fermentation of wines were restricted by the use of only a small
number of industrially relevant strains or lacked investigation into the genomic and/or metabolic
causes of fermentation behavior [16,20,21].

Genomics studies have focused on the role of genes in regulating aroma producing metabolic
pathways where, for instance, they illustrated the effect of certain alcohol acyl transferases (AATs)
on S. cerevisiae ester production [22–24]. There are two known alcohol acyl transferases—EEB1 and
EHT1—that are responsible for the synthesis of fatty acid ethyl esters [25]. Moreover, Kruis et al. [24]
showed that a third ethyl acetate-forming enzyme, ethanol acetyltransferase 1 (EAT1), contributes to
ester production in S. cerevisiae. EAT1, in addition to facilitating the formation of ethyl acetate,
can perform thioesterase and esterase reactions. Despite those studies being pivotal, it would add
insight to the prospects of genetic engineering approaches to alter wine sensory characteristics if we
could obtain a more comprehensive representation of metabolic behavior during wine fermentation that
would include reactions such as these. In addition, studies have lacked a comprehensive investigation
into the aforementioned classes of compounds simultaneously and holistically. Thus, a broader
assessment of metabolic pathways in commercially relevant S. cerevisiae strains is required to fully
elucidate the regulation of aroma compounds produced during fermentation [10].

One way to obtain insights into complex metabolic pathways is by metabolic modeling. More than
two decades ago, the first flux balance analysis (FBA) models were used to analyze carbon flux and
energy distribution in microbes [26–28]. This included some small network models for S. cerevisiae
that focused on wine fermentations [29–32]. More recently, several genome-scale metabolic models
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(GSMMs) have been developed for yeast that show the potential of these simulations to predict the
impact of genetic changes on cell phenotype [33–37]. In addition, Vargas et al. [38] applied a GSMM
to study wine fermentation over time. While earlier metabolic modeling studies that focused on
simulating yeast metabolism successfully predicted flux distributions, they were not genome scale
representations of yeast metabolism (fewer than 100 reactions) [30,32,39], making it difficult to study
individual fluxes that are likely related to overall aroma formation. Despite the increasingly expanded
coverage of yeast metabolic network models over the last few years, all published GSMMs of yeast
still contain a partial or incomplete representation of the formation of aroma impact molecules.
More specifically, GSMMs up to this point have not included MCFA ester formation, as well as
production of important sulfur-containing compounds such as dimethyl sulfide. Larger GSMMs have
been used to simulate yeast fermentations, but studies applying them have mostly lacked exploration
of enological fermentations where nitrogen was not the growth limiting nutrient and/or the system
was not anaerobic [36,37,39]. Vargas et al. [38] did apply an earlier yeast GSMM model to dynamically
model a wine fermentation, although their study did not cover aroma formation. While there have
been at least 12 GSMMs for yeast released since the first one was published in 2003 by Förster et al. [33],
the available GSMMs still lack a comprehensive coverage of essential metabolic pathways needed to
investigate aroma formation during alcohol fermentation.

In this study, we present an expanded genome-scale metabolic model of S. cerevisiae to incorporate
aroma forming pathways including parts of the Ehrlich pathway, pathways related to ester synthesis,
and parts of the sulfur reduction pathways. A widely used published reconstruction of yeast metabolism
referred to as iMM904 [40,41] was taken as a framework to incorporate known aroma forming reactions,
as well as relevant chemical, non-enzymatic conversions and transport reactions. Our expanded
GSMM was validated using published data from a study that employed a commercial wine yeast
strain EC1118 under enological conditions (synthetic grape juice/must medium using an industrial
wine strain and anaerobic fermentation) [30]. Furthermore, we applied the model to understand the
underlying metabolic differences regarding aroma production under two different growth conditions.
Here, we illustrate the advances and remaining limitations of this expanded GSMM to simulate
metabolism and production of aroma impact molecules under enological conditions.

2. Materials and Methods

2.1. Model Curation and Development

A current model was evaluated as a base model for expansion, a widely adopted stoichiometric
model of the S. cerevisiae metabolic network iMM904 [40,41]. The most recent GSMM, Yeast 8 [42],
was also evaluated as a base model for this work. While predicted fluxes of primary metabolites
with an expanded Yeast 8 model were similar to those using the iMM904 base model, prediction of
secondary metabolites was far superior with the iMM904 base model (data not shown). Furthermore,
Heavner and Price [43] concluded that yeast GSMM performance and predictions varies according to
simulation environments and evaluation metrics. Thus, all subsequent work was performed using the
expanded iMM904 model. iMM904 was expanded by incorporating more fusel alcohol production
routes into the Ehrlich pathway, adding pathways for acetate and medium-chain fatty acid (MCFA)
ester formation reactions, and expanding sulfur reduction pathways. An overview illustrating the
key additions and modifications to the base model to construct the expanded model (iWS902) is
represented in Figure 1 and Table 1, and comprehensive details are provided in the Supplementary
Information Tables S1–S3. Uptake exchange reactions for the sugar, essential amino acids, and other
nutrients were set according to measured flux values from a chemically defined medium during
anaerobic nitrogen-limited fermentations found in the literature (Supplementary Table S1 from Quiros
et al. [30]). No strictly anaerobic growth was predicted with flux balance analysis with this particular
medium composition. Therefore, an extremely low O2 exchange flux of −0.01 mmol g DW−1 h−1 was
assumed for our simulations. This is a reasonable assumption because Aceituno et al. demonstrated
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that a wine fermentation with less than 0.1 mmol O2 g DW−1 h−1 behaved anaerobically [31]. Using the
approach suggested by Heavner et al. [44] for anaerobic conditions, we allowed unrestricted uptake of
ergosterol, lanosterol, zymosterol, 14-demethyllanosterol, and oleate. In addition, pathways including
the oxaloacetate-malate shuttle and glycerol dehydrogenase reaction were unrestricted as described by
Sanchez et al. [45]. Heme A was also removed from the biomass equation because it is not used under
anaerobic conditions. The biomass equation was adapted from a published nitrogen-limited biomass
equation [38].Processes 2020, 8, x FOR PEER REVIEW 7 of 21 
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Figure 1. Representation of the the components of the yeast genome-scale metabolic model (GSMM)
related to aroma formation. Each colored section shows metabolism related to a respective class of
aroma compounds, including the expanded pathways related to amino acid and fatty acid degradation
and sulfur reduction pathways, as well as formation of fusel alcohols, esters, and sulfur compounds
in yeast model metabolism. The entire metabolic network utilized is shown in the Supplementary
Material (Figure S2).

Table 1. Significant higher alcohols or alcohol Coenzyme As (CoAs) and respective esters relevant to
wine aromas.

Alcohol/Alcohol CoA Ester Organoleptic Properties Present in Existing
Model (iMM904)

Ethanol Ethyl acetate Fruity; solvent-like Yes
1-Propanol Propyl acetate Fruity; sweet No, newly added
Isoamylol Isoamyl acetate Banana; pear Yes
Isobutanol Isobutyl acetate Fruity; sweet Yes

2-Phenyl ethanol 2-Phenylethyl acetate Roses; honey; sweet Yes
Tyrosol Tyrosyl acetate Floral; fruity No, newly added

Methionol Methionyl acetate Sulfurous; cabbage; herbal No, newly added
Hexa-1-ol Hexyl acetate Sweet; grape-like No, newly added

Butanoyl-CoA Ethyl butanoate Banana; pineapple No, newly added
Hexanoyl-CoA Ethyl hexanoate Aniseed; apple No, newly added
Butanoyl-CoA Ethyl butanoate Banana; pineapple No, newly added
Decanoyl-CoA Ethyl decanoate Waxy; fruity; sweet; apple No, newly added
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2.2. Flux Balance Analysis

FBA is a widely used approach for studying biochemical networks. This approach allows prediction
of the flux of metabolites through the network [46,47]. It is a technique based on mass balances. For m
metabolites and n reactions, a m × n stoichiometric matrix S can be formulated and, if we neglect the
accumulation of metabolites (pseudo-steady-state assumption), a mass balance for all metabolites can
be written as

S·v = 0 (1)

where v is the flux vector [mmol g DW−1 h−1]. Furthermore, upper and lower bounds for each flux
can be included to define the reversibility of each reaction, as well as to account for experimental
observations of extracellular metabolite fluxes (for example, nutrient utilization or product formation).
Here, constraints on the exchange reactions of the amino acids and nutrients taken up from the
medium are taken from those measured in Quiros et al. [30]. The uptake and secretion fluxes are
expressed in mmol g DW−1 h−1 (note that a negative flux for an exchange reaction means uptake of
the corresponding metabolite). In our study, we simulated two different growth conditions described
by Quiros et al. [30] (both in chemostats at steady state using a defined medium with a glucose feed
concentration of 280 g/L): (i) temperature of 16 ◦C with a growth rate, µ, of 0.1 h−1 (Case I) and
(ii) temperature of 28 ◦C with a µ of 0.25 h−1 (Case II). In addition, we simulated Quiros et al. [30]
(in chemostats at steady state using a defined medium with a glucose feed concentration of 240 g/L):
(i) temperature of 16 ◦C with a growth rate, µ, of 0.1 h−1 (Case III) and (ii) temperature of 28 ◦C with
a µ of 0.25 h−1 (Case IV) (results shown in Figure S1 of the Supplementary Material). In these studies,
the growth rate was fixed by the dilution rate for each case, as the dilution rate is equal to the growth
rate for a chemostat. Though not typical of grape juice that contains relatively equal concentrations of
glucose and fructose, the defined medium used in this study used only glucose. Both cases had a yeast
assimilable nitrogen level (YAN) of 220 mg/L in the chemostat feed. To assess the predictive power
of the model, we performed FBA using only measured experimental consumption rates [30] to set
constraints. Production rates for key metabolites were not constrained; therefore, predictions could
be used to evaluate the predictive performance of our expanded GSMM. However, when assessing
differences in predicted intracellular metabolic fluxes for the two cases, we also constrained secretion
fluxes, in addition to the consumption rates, using data from Quiros et al. [30]. A more detailed overview
of model constraints and conditions are represented in the Supplementary Material (Table S4).

Since metabolic models are usually highly underdetermined (there are many more reactions than
metabolites), a minimized or maximized objective function is applied to the model to solve for all
fluxes. Here, an optimization problem was solved to maximize growth rate (µ), a biologically relevant
objective function, with linear programming as shown below

maxµ cTv, s.t. Sv = 0 LB ≤ v ≤ UB (2)

where LB and UB are vectors containing the lower and upper bounds, respectively, for all of the fluxes
in units of mmol g DW−1 h−1.

2.3. Flux Variability Analysis

Flux variability analysis (FVA) is a technique which identifies the allowable range of flux values
through a given reaction by finding its maximum and minimum flux values for a given optimal
(i.e., maximum) objective value [48]. This analysis method begins by finding the optimal value of the
objective function, as specified in Equation (2), for a given set of constraints. The objective function is
set for each reaction in the network and minimum and maximum flux values for each reaction are
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computed while using the constraints related to the optimal solution [49]. The FVA problem can be
constructed as follows:

min/maxzi = CT
i vi, s.t. Sv = 0 LB ≤ v ≤ UB

CTv ≥ λZ0

(3)

where vi is the flux value for each reaction, both maximum and minimum flux values of a reaction
were calculated to determine the full range. Z0 is the optimal (maximum) value calculated by FBA.
λ, whose value can be between 0 and 1, is a parameter to govern whether the analysis is carried out at
a suboptimal network state (λ < 1) or at an optimal state (λ = 1).

The range of a flux i (δi) is determined in Equation (4) as the difference between the maximum
and the minimum value:

δi = vmax,i − vmin,i (4)

For this analysis, we constrained the model using the same set of experimental uptake and
secretion fluxes as in the FBA (see Section 2.2) (constrained case). Additionally, we performed another
FVA where all substrate and production rates were unconstrained (unconstrained case). Since it is of
interest in this study to maximize aroma production and the complexity of the aroma profile of wines,
it is necessary to increase the flux of certain aroma compounds. It must be noted that FBA allows
for optimization of a single flux. Therefore, this problem was resolved by adding an extra reaction to
the network whereby the 1-propanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 2-methyl-1-butanol
2-phenylethanol, indole-3-ethanol, and 4-(2-hydroxyethyl) phenol were lumped into a reaction using
functions in Cobra Toolbox. Note: these lumped reactions were only added for the FVA. Subsequently,
a transport reaction from the cytosolic lumped product to the same extracellular product was added.
This allows for optimization of all seven fusel alcohols at the same time.

2.4. Computing Environment

Modeling was performed in MATLAB® 2018b (The MathWorks, Inc., Cambridge, MA, USA)
using Cobra Toolbox version 3.0 [50–52] and implemented on a Windows 10 (Microsoft Corporation,
Redmond, WA, USA) Intel® (Intel Corporation, Santa Clara, CA, USA) Core™ i7-7500 CPU @ 2.70
GHz–2.90 GHz processor. Git version 2.19. and curl version 7.61.1 were installed before cloning COBRA
with Github and initializing COBRA in Matlab. The solver used for solving the linear and mixed integer
problems was Gurobi version 9.0 (Gurobi Optimization, LLC, Beaverton, OR, USA). The GSMM was
imported into MATLAB, as an SBML file, and curated using Cobra Toolbox. For network visualization,
the model was exported into OmixTM version 1.9.34 (Omix Visualization GmbH & Co. KG, Lennestadt,
Germany) [53] and Escher (The Regents of the University of California, Oakland, CA, USA) [54].

3. Results

3.1. Coverage of Aroma Pathways in the Model (GSMM)

When examining current GSMMs, it becomes apparent that some essential aroma impact
molecules are missing. Therefore, we addressed this deficiency through literature curation and
pathway incorporation into an existing GSMM (see Figure 1 and Table 1 for details). The existing
model we used contained five relevant (higher) alcohols and their respective esters, which are
shown in Table 1. Higher alcohols, which form the highest concentrations of aroma impact molecules,
are produced predominately via the Ehrlich pathway [10,55]. This three-step pathway (Figure 1) features
(i) a transamination reaction between an amino acid and α-ketoglutarate, (ii) a decarboxylation reaction
facilitated by several pyruvate decarboxylases where an α-keto acid is converted to a branched-chain
aldehyde, and (iii) a reduction step catalyzed by alcohol dehydrogenases reducing the aldehyde to
a higher alcohol [4,56]. Higher alcohols and their respective pathways that were added to the GSMM



Processes 2020, 8, 1195 7 of 20

include 1-propanol, tyrosol, 1-hexanol, and methionol, which have aroma attributes ranging from
sweet, floral, and fruity (tyrosol) to meaty and oniony (methionol).

Two different classes of esters, acetate esters and fatty acid ethyl esters, are formed depending on
their use of acetyl-CoA or acyl-CoA, respectively (Figure 1). Acetate esters are compounds such as
ethyl acetate, isoamyl acetate, isobutyl acetate, 2-methylbutyl acetate, hexyl acetate and 2-phenylethyl
acetate. Many of these acetate esters are contained in existing GSMMs with the exception of hexyl
acetate, which we added to our model. Members of the second class of esters, i.e., fatty acid ethyl esters,
are formed from a reaction between a bonded CoA-MCFA and ethanol as illustrated (see Figure 1).
Fatty acid ethyl esters include compounds such as ethyl butanoate, ethyl hexanoate, ethyl octanoate,
and ethyl decanoate [57].

Sulfur-containing compounds are also formed during alcoholic fermentation. These compounds
are diverse in character from simple thiols (e.g., methanethiol) to sulfides (e.g., hydrogen sulfide)
to thioesters. Given that there is an extensive variety of sulfur-containing compounds that can
arise during alcoholic fermentation and that many volatile sulfur pathways in yeast are still poorly
understood [8], we mainly focused on the assimilation of sulfur and its links to amino acid metabolism.
Sulfur compounds are produced by the sulfate-reduction sequence pathway where, by means of sulfate
permease (SUL1 or SUL2), sulfate is taken up from the medium and reduced to sulfite, followed by
further reduction to sulfide through MET5 and MET10, respectively [9,58]. Next, excess sulfide is
either used to form hydrogen sulfide, which is excreted from the cell or becomes incorporated into the
amino acid synthesis pathway. Sulfide combines with O-acetyl-homoserine to form homocysteine [5].
From here, methionine-γ-lyase can convert the reaction from methionine to a methanethiol, which can
subsequently serve as a precursor to some thioesters and sulfides (Figure 1). We extended the coverage of
known sulfur producing pathways in our GSMM by adding pathways for methionol, methionyl acetate,
and dimethyl disulfide. The other parts of sulfur metabolism were already included in the GSMM.

In order to properly model metabolic impacts of aroma formation, we incorporated and added
to the reconstruction known aroma forming reactions, as well as relevant chemical, non-enzymatic,
conversions and transport reactions. In total, we integrated 58 reactions, 43 metabolites, and three
enzyme-catalyzed reaction-associated genes involved in flavor formation into the base GSMM to form
the newly expanded model iWS902. iWS902 contains eight compartments: cytosol, endoplasmic
reticulum, extra organism, Golgi apparatus, mitochondria, nucleus, peroxisome, and vacuole. Also,
iWS902 is annotated according to BiGG database convention (http://bigg.ucsd.edu/). A comprehensive
table of reactions (enzyme commission number, reaction equation, etc.) (Table S3), their associated
genes (Table S1), and metabolites (Minimum Information Required in the Annotation of Models
(MIRIAM), composition, charge number, compartment, etc.) (Table S2) that were added to the model
are shown in the Supplementary Material (Supplementary Tables S1–S3).

3.2. Validation of Model Predictions

FBA (see Section 2) was used to assess the predictive capability of our modified GSMM model
to simulate yeast fermentation behavior under two relevant growth conditions for the industrially
relevant strain EC1118 in a chemostat, Cases I and II as defined in the Section 2 (for more detail
see Supplementary Table S4). These growth conditions likely mimic a stage of a wine fermentation
corresponding to the end of exponential growth phase for each case. The use of a chemostat facilitated
direct measurement of the growth and consumption/production rates of key metabolites as they are
constant over time. Since the maximum rate of production of key volatile higher alcohols [59] and other
aroma precursors occurs just at the onset of stationary phase as cells are leaving exponential phase,
these data were chosen for evaluating model predictions of aroma and other compounds produced by
the yeast.

GSMM predictions are shown with the experimental data for the two enological fermentation
cases (Figure 2). Here it is illustrated that our model, using the set of constraints developed in this
study, succeeded in predicting the formation of many key metabolites. Furthermore, our simulations
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predicted soundly for major metabolites as well as biomass growth in Case I while predicting somewhat
less accurately for biomass growth in Case II and acetate formation for both cases. More specifically,
the biomass growth rate was predicted to be 24% less than the experimentally determined biomass
growth rate in Case II and 10% less than the experimentally determined biomass growth rate in
Case I. Despite underestimating biomass growth, we were able to successfully predict metabolites
formation for both cases. More specifically, ethanol, carbon dioxide, and glycerol were predicted well,
while carbon dioxide production was predicted to be 29% higher than the experimental flux for Case II.
The model predicted relatively successfully the formation of some metabolites including the production
of volatile aroma metabolites. While for both cases the model predicted production of organic acids
(succinate and lactate) close to experimental production rates, acetate production in both cases was
significantly under-predicted. Applying FBA to our model, we effectively predicted the production
rates of higher alcohols, particularly; 1-propanol, which was added to the GSMM, is predicted
rather closely to experimental production rates for both conditions. Furthermore, the simulated
production rates of other higher alcohols (3-methylbutanol (isoamyl alcohol), isobutanol, 2-phenyl
ethanol, and 2-methyl-1-butanol) show considerable agreement with their experimental production
rates for Case I, although there is a slight over prediction for many of these higher alcohols for Case II.
GSMM predictions for Case III and Case IV are shown in Figure S1 of the Supplementary Material.
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leaving exponential phase, these data were chosen for evaluating model predictions of aroma and 
other compounds produced by the yeast. 

GSMM predictions are shown with the experimental data for the two enological fermentation 
cases (Figure 2). Here it is illustrated that our model, using the set of constraints developed in this 
study, succeeded in predicting the formation of many key metabolites. Furthermore, our 
simulations predicted soundly for major metabolites as well as biomass growth in Case I while 
predicting somewhat less accurately for biomass growth in Case II and acetate formation for both 
cases. More specifically, the biomass growth rate was predicted to be 24% less than the 
experimentally determined biomass growth rate in Case II and 10% less than the experimentally 
determined biomass growth rate in Case I. Despite underestimating biomass growth, we were able 
to successfully predict metabolites formation for both cases. More specifically, ethanol, carbon 
dioxide, and glycerol were predicted well, while carbon dioxide production was predicted to be 
29% higher than the experimental flux for Case II. The model predicted relatively successfully the 
formation of some metabolites including the production of volatile aroma metabolites. While for 
both cases the model predicted production of organic acids (succinate and lactate) close to 
experimental production rates, acetate production in both cases was significantly under-predicted. 
Applying FBA to our model, we effectively predicted the production rates of higher alcohols, 
particularly; 1-propanol, which was added to the GSMM, is predicted rather closely to experimental 
production rates for both conditions. Furthermore, the simulated production rates of other higher 
alcohols (3-methylbutanol (isoamyl alcohol), isobutanol, 2-phenyl ethanol, and 2-methyl-1-butanol) 
show considerable agreement with their experimental production rates for Case I, although there is 
a slight over prediction for many of these higher alcohols for Case II. GSMM predictions for Case III 
and Case IV are shown in Figure S1 of the Supplementary Material. 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Acetate
Case I

Biomass
Case I

Acetate
Case II

Biomass
Case II

Pr
od

uc
tio

n 
Fl

ux
  (

m
m

ol
*g

D
W

-1
hr

-1
) a

nd
  

Bi
om

as
s  

G
ro

w
th

 (h
r-1

)

Experimental

Predicted

Processes 2020, 8, x FOR PEER REVIEW 9 of 21 

 

 

 

Figure 2. Comparison of GSMM simulations (red bars) with experimental data [30] (blue bars). 
Model predicted and experimental values for biomass growth rates, primary metabolite production 
fluxes, and secondary metabolite production fluxes represent conditions for Case I and Case II. 
Experimental data are shown with standard deviation error bars. 

3.3. Analysis of Active Aroma Reactions in Metabolic Network 

After validating the model with existing data, it was then possible to use the model to 
understand the differences in metabolic states of strain EC1118 between Cases I and II. Metabolic 
differences are visually depicted in network maps of our two phenotypes from FBA simulations for 
core carbon metabolism (Figure 3), as well as sulfur and amino acid degradation metabolism 
(Figure 4). Additionally, more complete and integrated networks featuring metabolic flux 
distributions within central carbon metabolism and amino acid metabolism are shown in the 
Supplementary Material (see Figures S3 and S4). For central carbon metabolism the most apparent 
differences are concerning the pyruvate-oxaloacetate node which is a major branch that functions as 
a linking point between glycolysis, gluconeogenesis, and the TCA cycle. Our model predicted that 
there is a difference in the distribution of fluxes regarding the oxaloacetate shuttle where, for Case I, 

0

5

10

15

20

25

30

Carbon Dioxide
Case I

Ethanol
Case I

Glycerol
Case I

Carbon Dioxide
Case II

Ethanol
Case II

Glycerol
Case II

Pr
od

uc
tio

n 
Fl

ux
  (

m
m

ol
*g

D
W

-1
hr

-1
)  

Experimental

Predicted

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Succinate
Case I

Isoamyl
Alcohol
Case I

1-Propanol
Case I

Isobutanol
Case I

2-Phenyl
ethanol
Case I

Succinate
Case II

Isoamyl
Alcohol
Case II

1-Propanol
Case II

Isobutanol
Case II

2-Phenyl
ethanol
Case II

Pr
od

uc
tio

n 
Fl

ux
  (

m
m

ol
*g

D
W

-1
*h

r-1
)  Experimental

Predicted

Figure 2. Cont.



Processes 2020, 8, 1195 9 of 20

Processes 2020, 8, x FOR PEER REVIEW 9 of 21 

 

 

 

Figure 2. Comparison of GSMM simulations (red bars) with experimental data [30] (blue bars). 
Model predicted and experimental values for biomass growth rates, primary metabolite production 
fluxes, and secondary metabolite production fluxes represent conditions for Case I and Case II. 
Experimental data are shown with standard deviation error bars. 

3.3. Analysis of Active Aroma Reactions in Metabolic Network 

After validating the model with existing data, it was then possible to use the model to 
understand the differences in metabolic states of strain EC1118 between Cases I and II. Metabolic 
differences are visually depicted in network maps of our two phenotypes from FBA simulations for 
core carbon metabolism (Figure 3), as well as sulfur and amino acid degradation metabolism 
(Figure 4). Additionally, more complete and integrated networks featuring metabolic flux 
distributions within central carbon metabolism and amino acid metabolism are shown in the 
Supplementary Material (see Figures S3 and S4). For central carbon metabolism the most apparent 
differences are concerning the pyruvate-oxaloacetate node which is a major branch that functions as 
a linking point between glycolysis, gluconeogenesis, and the TCA cycle. Our model predicted that 
there is a difference in the distribution of fluxes regarding the oxaloacetate shuttle where, for Case I, 

0

5

10

15

20

25

30

Carbon Dioxide
Case I

Ethanol
Case I

Glycerol
Case I

Carbon Dioxide
Case II

Ethanol
Case II

Glycerol
Case II

Pr
od

uc
tio

n 
Fl

ux
  (

m
m

ol
*g

D
W

-1
hr

-1
)  

Experimental

Predicted

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Succinate
Case I

Isoamyl
Alcohol
Case I

1-Propanol
Case I

Isobutanol
Case I

2-Phenyl
ethanol
Case I

Succinate
Case II

Isoamyl
Alcohol
Case II

1-Propanol
Case II

Isobutanol
Case II

2-Phenyl
ethanol
Case II

Pr
od

uc
tio

n 
Fl

ux
  (

m
m

ol
*g

D
W

-1
*h

r-1
)  Experimental

Predicted

Figure 2. Comparison of GSMM simulations (red bars) with experimental data [30] (blue bars).
Model predicted and experimental values for biomass growth rates, primary metabolite production
fluxes, and secondary metabolite production fluxes represent conditions for Case I and Case II.
Experimental data are shown with standard deviation error bars.

3.3. Analysis of Active Aroma Reactions in Metabolic Network

After validating the model with existing data, it was then possible to use the model to understand
the differences in metabolic states of strain EC1118 between Cases I and II. Metabolic differences
are visually depicted in network maps of our two phenotypes from FBA simulations for core
carbon metabolism (Figure 3), as well as sulfur and amino acid degradation metabolism (Figure 4).
Additionally, more complete and integrated networks featuring metabolic flux distributions within
central carbon metabolism and amino acid metabolism are shown in the Supplementary Material
(see Figures S3 and S4). For central carbon metabolism the most apparent differences are concerning
the pyruvate-oxaloacetate node which is a major branch that functions as a linking point between
glycolysis, gluconeogenesis, and the TCA cycle. Our model predicted that there is a difference in the
distribution of fluxes regarding the oxaloacetate shuttle where, for Case I, there is a preference for α-
ketoglutaric acid formation, whereas for Case II, there is a preference for the formation of citric acid.
The model also predicts differences in the manner in which acetic acid forms (Figure 3). For Case I,
the simulated metabolism favors using both aldehyde dehydrogenase and acetyl CoA synthase to
produce acetate. However, for Case II, the simulated metabolic flux distribution prefers solely the
aldehyde dehydrogenase route.
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For amino acid metabolism, there are apparent differences in simulated flux distributions when
observing utilization pathways of leucine, valine, and tryptophan (Figure 4). There is a slight difference
in flux distribution between our two cases where simulated routes of leucine and valine in Case I
chose a different path using IPPSm (mitochondrial isopropylmalate synthase) instead of using IPPS
(cytosolic 2 isopropylmalate synthase) to form α-ketoisovaleric acid. This, in turn, impacts the predicted
formation of fusel alcohols such as isobutanol. For tryptophan metabolism in Case II, the model
predicts that there is flux to the production of indole-3-aldehyde, which is a precursor to tryptophol,
in addition to the flux to tryptophan. The model predicts no flux being diverted to tryptophol for Case
I. However, overall, there was not much difference in flux distribution of many of amino acid pathways
responsible the fusel alcohols alcohol between the two cases, although the fluxes are generally higher
in Case II by a factor of two.

When examining sulfur metabolism, there is a stark contrast in predicted flux distribution between
the two cases, especially when examining the flow and utilization of sulfate and the sulfur-containing
amino acids cysteine and methionine, which are highly involved in sulfur metabolism. In Case I, it was
predicted that sulfate is further metabolized and then coupled with serine metabolism to form cysteine,
whereas in Case II, flux to serine is higher and sulfate is not utilized. In addition, the model predicts
fluxes directed toward formation of undesirable sulfur compounds such as hydrogen sulfide and
methanethiol for Case I. However, the model predicts formation of methanethiol only for Case II.

3.4. Exploring Network Flexibility via FVA

In order to be able to modulate aroma production in yeast fermentations, it is important to
know which enzymes and reactions are essential and contribute most to their production. Therefore,
we applied flux variability analysis (FVA) to identify these enzymes and reactions. In brief, the method
computes the minimal and maximal flux values that a metabolic reaction can take without affecting the
cellular objective(s). Total fusel alcohol production was chosen to be maximized here, as an example,
since these aroma molecules are formed in the highest quantity (excluding ethanol) during yeast
fermentation and serve as precursors to other aroma molecules such as acetate esters. To determine the
flux range, we first computed the production of the maximal total fusel alcohol production using FBA.
Next, the total fusel alcohol production was fixed at the value obtained from FBA and used to run
FVA. FVA was performed for two scenarios: (1) the model was constrained based on experimental
data on uptake and secretion rates under Case I conditions from literature [30] and (2) the model was
unconstrained mimicking a “super-rich” medium (see Section 2.3). The resulting flux ranges from FVA
for every reaction can be divided into three groups: (I) essential reactions, where the minimal and
maximal flux is non-zero; (II) non-essential reactions, where the minimal flux is zero and maximum
value is non-zero; and (III) inactive reactions, where both minimum and maximum fluxes are zero.

There are some discernible contrasts in flux variability illustrated between the two scenarios
regarding Group I aroma-associated reactions (Figure 5). The total amount of Group I aroma-associated
variable fluxes is different where there are 19 of these type of reactions in the Constrained Case
(Figure 5a) and 10 reactions in the Unconstrained Case (Figure 5b). Since the Unconstrained Case
represents an extreme rich medium it is expected that in this case the number of essential reactions is
lower. However, 10 of the essential reactions overlap for the two cases. For the Constrained Case, all of
these Group I essential aroma reactions contained a zero to small flux range (<0.2687 mmol gDW−1 h−1)
(Figure 5). In fact, 14 out of 19 reactions have a zero-flux range representing essential reactions that
when slightly changed, the objective, i.e., aroma production, will immediately change as well.
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Figure 5. Flux spans for Group I fluxes for the optimal production of aroma impact fluxes represent
conditions Case I where uptake fluxes are constrained based on experimental data ((a), top) and
unconstrained conditions ((b), bottom). Bars depict the possible range (minimum and maximum)
fluxes (mmol gDW−1 h−1) and dot indicates the average flux calculated by flux variability analysis
(FVA) for reactions.

4. Discussion

Studies have pressed the need for understanding how altering the fermentation environment
induces changes in secondary metabolism, especially when impacting organoleptic properties of
products [10]. This illustrates the demand for suitable tools to aid in understanding the role of
yeast metabolism in aroma formation especially with regard to higher alcohol and ester synthesis.
We improved the GSMM for S. cerevisiae for studying wine fermentation by including aroma forming
pathways previously not contained in existing S. cerevisiae GSMMs. This expanded GSMM permitted the
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comparison of yeast metabolism, specifically aroma formation under varying fermentation conditions.
While this is an important advance over previous models, further curation and adaptation may
be necessary to exhaustively predict yeast-derived aroma compounds, such as those derived from
phenolics, which can sometimes be important to flavor. Despite this, one can apply approaches found
in this study to expand GSMMs in order to investigate aroma in wine or other alcoholic fermentations.
It was also noted here that this model still requires small fluxes of oxygen into the cells in order to
predict cell growth and fermentation. Since other GSMMs [42,44,60] have been developed where this is
not necessary, it would be useful to continue development on this model to incorporate this behavior,
along with the ability to accurately predict yeast-derived aroma production.

Using FBA, our expanded GSMM generated relatively accurate predictions for the secondary
metabolite formation including the production of volatile aroma metabolites. The model did, however,
underestimate the growth rate in both Case I and II (10% in Case I and 24% in Case II). This could
be due to several factors. First of all, the model biomass equation may not reflect the most precise
medium conditions used in the experiment [61]. Second, there is genetic variation between wine yeast
strains that affect the utilization of nitrogen which is needed for biomass growth [62]. This highlights
the need for more environmental, as well as genetically specific biomass equations, including one
for wine applications. Co-factor balance is confirmed based on our observation that the model
with the given constraints predicts growth of biomass. Without co-factor balance, growth cannot
be predicted. While the model predicted production of organic acids (succinate and lactate) close
to experimental production rates for both simulated cases, acetate production in both cases was
under-predicted. Acetate production is known to be coupled to additional ATP generation within
yeast cells. This only happens if the redox balance is restored somewhere else in the metabolic network.
In addition, the under-prediction of the acetate flux could be related to an under estimation of the
maintenance coefficient, reaction—ATPM (see GSMM). This could point to competition with pyruvate
dehydrogenase linked reactions within the network and respiratory pyruvate dehydrogenase (PDC5)
linked reactions where PDCs facilitate more pyruvate from the pathway than necessary diverting it
toward ethanol [63]. In the study by Quiros et al., the flux toward oxaloacetic acid production (OAA)
was not significantly impacted by the variables investigated in the study. However, our results indicate
the routes of OAA production shifted from mitochondrial production to cytosolic when going from
Case I to Case II. This is interesting as it points to environmental effects (e.g., temperature) influencing
the mechanism of acetate production as has been suggested in other studies [64]. High osmolarity
resulting from high sugar concentrations in the feed induce glycerol production [65,66]. In addition,
it is clear from these results that the model is predicting more carbon flux directed towards ethanol and
glycerol production than to cell growth compared to experimental observations, which may indicate
a need for further model curation.

Our GSMM describes production of volatile aroma compounds by linking aroma formation
pathways to central carbon metabolism where precursors are synthesized. The production of fusel
alcohols (under anaerobic conditions) can and will be used as extra capacity to regenerate NAD+.
This results in adding more flexibility in the network in terms of redox co-factor regeneration. Moreover,
it has been proposed that ester production enables control of intracellular redox balance and some
esters are involved in the preservation of plasma membrane fluidity [67,68]. Intracellular esterification
of MCFAs could also help yeast cells to get rid of toxic MCFAs through diffusion out of the plasma
membrane [69]. In any case, extracellular ester production is believed to play a significant evolutionary
role in leading to spread of yeast throughout the environment as esters attract insects by indicating
the presence of rotting fruits [70]. Our expanded GSMM was able to predict the formation of some
these desirable esters (isoamyl acetate, isobutyl acetate, and 2-methylbutyl acetate) (data not shown),
where, under the Case I, there was more predicted ester production than Case II. This result is supported
by studies that have indicated higher alcohol and consequently higher acetate production under higher
temperature conditions [71,72]. Moreover, Saerens et al. [22] showed that alcohol O-acetyltransferase 1
(ATF1) and alcohol O-acetyltransferase 1 (ATF2) expression is positively correlated with temperature
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and thus would boost acetate ester production under certain temperature conditions. Production of
sulfur compounds from sulfur reduction pathways is also represented in our model simulations
(Supplementary Figures S1 and S2). There are some contrasts in flux distribution throughout sulfur
metabolism when comparing the flux distributions found for our two cases. This can be due to
the Case I having methionine or cysteine-limited conditions, thus leading to O-acetylserine and
O-acetylhomoserine limitations, which results in excess sulfide that is diverted to hydrogen sulfide [73].
On the other hand, Case II could contain non-limiting cysteine or methionine concentrations which
would lead to sulfide reacting with O-acetylserine or O-acetylhomoserine to form homocysteine [5].

In order to investigate the metabolic capability and the potential for suggesting metabolic
modification, the solution space of our expanded GSMM was evaluated using FVA. The flexibility of
the GSMM network was explored for a constrained case and an unconstrained case. When examining
the unconstrained case, it is observed that there are three Group I essential aroma reactions; ALCD5xi,
3MOBDC, and PYRDC4 which have zero flux difference. These reactions are also essential with
zero flux range in the constrained case, suggesting unconditional essentiality with zero flux spans.
Moreover, in the genes associated with the three most essential reactions are PDC1, PDC5, PDC6,
ADH1, ADH2, ADH4, ADH5, and SFA1. Many of the Group I aroma-associated reactions are closely
connected to the Ehrlich pathway and several are reactions we added to the GSMM e.g., aldehyde
dehydrogenases (via propanol and tyrosol). Based on these results, we propose that Group I reactions
with zero flux span are of particular interest for metabolic engineering of aroma production, since these
reactions will change aroma production once their fluxes are perturbed even slightly. This applies
especially to the unconditionally essential ones with zero flux spans as these are environmentally
independent (i.e., both present in the constrained case and the unconstrained case). In addition,
our results are supported by studies that have increased higher alcohol production by modulating
alcohol dehydrogenases (ADH1, ADH2) to increase higher alcohol production [74,75]. Taken together,
we can conclude that, under the given experimental conditions, Group I aroma-associated reactions
can serve as potential candidates for steering aroma profiles.

Even with some of these limitations, we have shown that this GSMM incorporating aroma
production pathways is able to predict aroma compound production under different growth conditions
and helps to explain the metabolic fluxes underlying these differences. These predictions were made
using constraints relevant to winemaking or enological conditions, including mostly anaerobic and
nitrogen-limited conditions. With this model, it should be possible now to predict and understand
aroma metabolism in yeast over the course of an entire wine fermentation and as a function of
different commercial yeast strains, thus creating a tool to modify fermentation behavior through culture
conditions and strain selection or development. Although this study was specific to wine aroma
formation, it is expected that the work presented here can be applied to understand and study aroma
formation in other types of alcoholic fermentations as well.

5. Conclusions

In this study, a GSMM for S. cerevisiae was expanded by adding metabolic pathways that
lead to the formation of various aroma compounds. Many aroma compounds producing pathways
particularly related to ester and sulfur formation were incorporated into a widely used GSMM for
S. cerevisiae. This study is distinctive from previous aforementioned studies in that it applies a GSMM
to comprehensively study yeast metabolic impacts on aroma formation under enological conditions.
This expanded model was used for examining aroma formation under enological conditions with input
of published experimental data for two growth conditions. By applying FBA, fermentation performance
such as biomass growth rates and product secretion rates were predicted and compared favorably to
experimental values for a commercial yeast strain. Furthermore, we applied the extended model to
compare key differences in metabolic flux distributions between the two growth condition cases. Finally,
we predicted key essential reactions that are of particular interest for metabolic engineering purposes
aiming to modulate aroma production. Therefore, we have illustrated how this newly expanded GSMM
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can be a helpful tool for winemakers and researchers alike that are interested in understanding aroma
formation during wine formation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/9/1195/s1,
Figure S1. Comparison of GSMM simulations (Red bars) with experimental data [30] (Blue bars). Model predicted
and experimental values for biomass growth rates, primary metabolite production fluxes, and secondary metabolite
production fluxes represent conditions for Case III and Case IV. Experimental data are shown with standard
deviation error bars; Figure S2. Comprehensive metabolic network map of yeast (S. cerevisiae); Figure S3.
Network map of central carbon metabolism (left) and amino acid metabolism (right). Network fluxes were
determined using data from Case I where the network illustrates the optimal solution from FBA. The fluxes were
scaled between −1 and +1 for ease of visualization; Figure S4. Network map of central carbon metabolism (left)
and amino acid metabolism (right). Network fluxes were determined using data from Case II where the network
illustrates the optimal solution from FBA. The fluxes were scaled between −1 and +1 for ease of visualization;
Table S1. Genes added to current GSMM; Table S2. Metabolites added to current GSMM; Table S3. Reactions
added to current GSMM; Table S4. Experimentally measured consumption/production rates of the different
metabolites analyzed from Quiros et al. 2013 and constraints used in the study.
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Abbreviations

FBA Flux Balance Analysis
FVA Flux Variability Analysis
GSMM Genome-scale metabolic model
MCFA medium-chain fatty acid
ALCD22xi aldehyde dehydrogenase (via 2 methylbutanol NAD)
ALCD23xi aldehyde dehydrogenase (via isobutyl alcohol NAD)
ALCD24xi aldehyde dehydrogenase (via isoamyl alcohol NAD)
ALCD26xi aldehyde dehydrogenase (via tryptophol NAD)
ALDD2y aldehyde dehydrogenase (via acetaldehyde NADP)
ALCD3xi aldehyde dehydrogenase (via propanol NAD)
ALCD5xi aldehyde dehydrogenase (via tyrosol NAD)
INDPYRD indole-3 pyruvate decarboxylase
3MOBDC 3 methyl 2 oxobutanoate decarboxylase
3MOPDC 3 methyl 2 oxopentanoate decarboxylase
PYRDC3 pyruvate decarboxylase (aldehyde forming)
PYRDC4 pyruvate decarboxylase (hydroxyl phenyl)
ILETA isoleucine transaminase
VALTA valine transaminase
LEUTA leucine transaminase
OMCDC 2 oxo 4 methyl 3 carboxypentanoate decarboxylation
IPMD 3 isopropylmalate dehydrogenase
ACHBSm 2 aceto 2 hydroxybutanoate synthase (mitochondrial)
ACLSm acetolactate synthase (mitochondrial)
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