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Abstract: This work addresses a set of tuning rules for PID controllers based on Internal Model
Control (IMC) for inverse-response second-order systems with dead time. The transfer function,
and some time-response characteristics for such systems are first described. Then, the IMC-based
methodology is developed by using an optimization objective function that mixes performance and
robustness. A correlation that minimizes the objective function and that allows the user to compute
the controller’s tuning parameter is found. The obtained expressions are mathematically simple,
which facilitate their application in a ten-step systematic methodology. Finally, the proposed tuning
method is compared to other well-known tuning rules that have been reported in literature, for a
wide range of parameters of the process. The performance achieved with the proposed method is very
good not only for disturbance rejection but for set-point tracking, when considering a wide-range of
parameters of the process’ transfer function.

Keywords: process control; PID tuning; internal model control; inverse response; second order plus
dead time)

1. Introduction

Inverse response or non-minimum-phase systems have at least one zero located at the right-hand
side of the complex plane [1]. Their time response to a step input goes, at the beginning, towards the
opposite direction of the steady-state value [2]. Such behavior appears due to the combination of two
opposite-dynamics phenomena: a small-gain fast-dynamics responsible for the inverse response, and a
slow-dynamics with higher gain, which dominates the transient response [3–5].

Since the inverse response phenomenon presents some similar characteristics to those in dead-time
systems, it is usual to find tuning techniques with Smith predictor-like structures [6,7]. Other tuning
techniques present the model of the non-minimum-phase zero as dead time, which allows one to use
traditional tuning techniques developed for time-delayed systems [8]; conservative controllers are
obtained with such an approximation [9–11]. Another traditional way to deal with inverse response
dynamics is to reduce the order of the system and get a first-order model, which allows one to obtain
PI controllers; however, these controllers can cause slower transient responses than the aforementioned
techniques [12].

The development of Proportional-Integral (PI) and Proportional-Integral-Derivative (PID)
controllers for inverse response processes started around the 1970s. Waller and Nygardas [13]
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compared lead-lag compensators to the conventional PID tuning proposed by Ziegler and Nichols [14].
Then, Scali and Rachid [15], Luyben [16], Chien et al. [17], and Sree and Chidambaram [18], among
others, reported different tuning techniques for PI/PID controllers used for inverse-response systems
by considering, in general, set-point changes. One can find some references, such as Chen and
Seborg [19], Shamsuzzoha and Lee [20], and Pai et al. [9] that developed tuning equations for
disturbance rejection. More recently, several PID tuning or controller design methods for processes
whose dynamics include inverse-response, time-delay, and integrating characteristics have been
developed [21–26]. Other authors gone beyond the PID controller and proposed the use of fractional
control for non-minimum phase plus dead time systems [27], and Sliding Mode Controllers applied to
high-order long dead-time inverse-response processes [28].

Other PID design methods based on frequency response techniques have been developed.
For instance, Luyben [29] presented a PI controller tuning procedure for an inverse-response integrating
process; the author states that the controller tuning process for this kind of complex dynamics is not
a trivial task. Chen and Seborg [19] developed a design method for PID controllers based on direct
synthesis; they demonstrated that the design method works very good for several processes, including
those with non-minimum phase characteristics that appear when Pade’s approximation is used for
systems with dead time. Such approximation induces an additional modeling error, which implies a
decrease in the system’s bandwidth [30]. Alfaro et al. [31] used a nondimensional version of equations
proposed by Chen and Seborg [19] and found expressions in order to compute the minimum value of
the tuning parameter, τc, which bounds the maximum sensitivity.

Internal Model Control (IMC) has been used as an alternative for designing and tuning PID
controllers since 1980s [30]. It has resulted to be of particular interest in industry together with the PID
algorithm [32], since the equations for the controller’s parameters can be obtained from the transfer
function of the process and the desired behavior of the closed-loop response; in most cases, only the
closed-loop time constant is required as the user-defined tuning parameter, considering an appropriate
trade-off between performance and robustness [20,33–37]. Additional works, regarding IMC, that have
been developed more recently can be found in [38–44].

This work addresses the design of a tuning methodology for PID controllers, for inverse-response
second-order plus dead time processes, extending the work of Chien and Fruehauf [45], which has been
recently studied in [46], by using dimensional analysis and experimental design. The development of
the tuning technique considers the optimization of an objective function that combines performance
and robustness indexes: the Integral of the Absolute Value of the Error (IAE) and the Integral of the
change in the Manipulated Variable (IMV). The obtained expressions are simple and can be applied by
using the proposed ten-step methodology. The performance of a controller tuned with this method
excels the performance offered by other well-known techniques for a wide range of parameters of
the process.

The first section contains a description of process’ time response. Then, the design process of the
tuning rules is addressed, by using dimensional analysis and experimental design. The third section
contains the application methodology and the performance comparison for a controller tuned with the
new rules and other tuning methods. Then, the robustness analysis for the variability of parameters is
performed. Finally, the conclusions are presented.

2. Inverse Response Second Order Plus Dead Time System Model

The transfer function of an inverse-response second-order system, with total time delay θ, can be
written as

G(s) = [G1(s) + G2(s)]e−θs; (1)

where
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G1(s) =
K1

τ1s + 1
, (2)

G2(s) =
−K2

τ2s + 1
, (3)

are the transfer functions of two opposite-dynamics phenomena: a small-gain fast-dynamics part (3),
and a slow-dynamics part with higher gain (2). K1 and K2 are the gains, and τ1 and τ2 are the time
constants. Substituting (2) and (3) into (1) yields

G(s) =
(K1τ2 − K2τ1)s + (K1 − K2)

(τ1s + 1)(τ2s + 1)
e−θs. (4)

As it can be seen in (4), the process’ transfer function only considers the case with real different
poles because the dynamics comes from parallel balances [47]; this is a common case in industrial
processes containing boilers, heat exchangers, tanks, distillation columns, chemical reactors, waste
incinerators, among others [2,47].

Operating expressions in (4) yields the transfer function of the process which is given by

G(s) = K
(1− ηs)

(τ1s + 1)(τ2s + 1)
e−θs, (5)

where K = K1 − K2, and η =
(K2τ1 − K1τ2)

(K1 − K2)
, η > 0.

For this process, at the beginning, the time response slope’s sign is opposite to the sign of the
gain, and as η increases, so does the inverse-response behaviour; then, control issues arise due to the
fact that the non-minimum phase zero is closer to the imaginary axis [4,15,48,49]. Adding a left-hand
side pole into (5) decreases this inverse-response effect, but the settling time increases. When there
are multiple non-minimum phase zeros, multiple inversions appear; however, such a system is not
commonly found.

3. Design of Tuning Rules

3.1. Internal Model Control

Internal Model Control (IMC) is a technique that uses a simulation of the process, running in
parallel [30], as depicted in Figure 1; where: R(s) is the input reference, D(s) is the disturbance signal,
Y(s) is the output of the system, GP(s) is the process transfer function, GD(s) is the transfer function
that relates the output and the disturbance, GC(s) is the controller transfer function, and GM(s) is the
model of the process that is simulated in parallel. The IMC methodology requires the transfer function
of the model of the process be written as:

GM(s) = GM+(s)GM−(s), (6)

where GM+(s) is a transfer function containing all the non-minimum phase zeros and dead time,
and GM−(s) contains the minimum-phase elements of the system. Then, the IMC controller can be
defined in terms of the invertible part of the transfer function and a user-specified low-pass filter f (s),
as follows

GIMC = G−1
M−(s) f (s). (7)
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Figure 1. Internal Model Control.

The IMC controller’s structure can be reduced to a classical PI/PID control structure. For this
purpose, Chien and Fruehauf [45] defined the filter’s function, for first and second-order systems
(without integrator), as follows

f (s) =
1

τcs + 1
. (8)

They used a parallel PID controller structure which is given by

GC(s) = Kc

(
1 +

1
Tis

+ Tds
)

. (9)

These authors obtained equations for the tuning parameters, which are given for an inverse
response second order plus dead time system by [45]

Kc =

τ1 + τ2 +
ηθ

τc + η + θ

K(τc + η + θ)
, (10)

Ti = τ1 + τ2 +
ηθ

τc + η + θ
, (11)

Td =
ηθ

τc + η + θ
+

τ1τ2

τ1 + τ2 +
ηθ

τc + η + θ

, (12)

where τc is the tuning parameter.

3.2. Optimization Objective Function

In this work, we use the optimization of a performance index that combines the Integral of
the Absolute Value of the Error (IAE) and the Integral of the change in the Manipulated Variable
(IMV). The controller’s main operation in this case favors disturbance rejection (load regulation);
however, reference tracking performance is also evaluated. The objective function is then given by

OF =
∫ ∞

0
|e(t)| dt + γ

∫ ∞

0

∣∣∣∣dMV(t)
dt

∣∣∣∣ dt. (13)

The first term in (13) is the IAE, and the second term is the IMV multiplied by a suppression
factor γ. Increasing or decreasing γ allows one to modify the weight on the manipulated variable;
for instance, when γ = 1, both, the IAE and IMV are of the same importance, and when γ = 0 only
the IAE is considered. Several authors have used this type of objective function in order to measure
the performance of different control strategies [50,51]; typical values of the suppression factor are
0 ≤ γ ≤ 8 [52,53].
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3.3. Scaling and Nondimensionalization

In order to reduce the amount of parameters to be optimized, Equations (5), (10)–(12) are scaled
using dimensional analysis techniques, allowing us to go from the 4 parameters contained in (5) to the 3
parameters found in Equations (18)–(20); this reduces the number of simulation runs and computation
time. Nondimensional equations are written in the form proposed in [49,54] and given by

Ĝ(ŝ) =
(−η̂ŝ + 1)e−θ̂ŝ

(ŝ + 1)(τ̂2 ŝ + 1)
, (14)

KcK =
(1 + τ̂2)(τ̂c + η̂ + θ̂) + η̂θ̂

(τ̂c + η̂ + θ̂)2
, (15)

T̂i =
(1 + τ̂2)(τ̂c + η̂ + θ̂) + η̂θ̂

(τ̂c + η̂ + θ̂)
, (16)

T̂d =
η̂θ̂

(τ̂c + η̂ + θ̂)
+

τ̂2(τ̂c + η̂ + θ̂)

(1 + τ̂2)(τ̂c + η̂ + θ̂)
, (17)

where:

η̂ =
η

τ1
, (18)

τ̂2 =
τ2

τ1
, (19)

θ̂ =
θ

τ1
, (20)

ŝ = τ1s. (21)

This can be interpreted as scaling in time or frequency domains. The typical values for the ratios
between the parameters can be found in literature and are given by [9,49]

0.1 ≤ τ2

τ1
≤ 0.9, (22)

0.1 ≤ η

τ1
≤ 4, (23)

0.01 ≤ θ

τ1
≤ 1. (24)

A central composite experimental design (uniform and circumscribed for rotatability) was
designed in order to provide appropriated values of τ2

τ1
, η

τ1
, and θ

τ1
for each simulation run. This type of

experimental design is selected since it can take account of curvature in a response [55], i.e., a quadratic
surface can be adjusted to the data provided. Gutierrez and de la Vara [56] stated that in order to get
accurate predictions, values of R2 ≥ 70 % are expected; since the selection of parameters out of ranges
provided in expressions (22)–(24) cannot guarantee such R2 value, we developed the tuning method
for the given ranges, which were selected as in [9,49].

Castellanos and Castrillón [57] presented an expression that allows one to compute the limit value
that can be assigned to the controller’s parameter in order to get a fast response, without compromising
stability. Additionally, they reported a typical polynomial-like correlation that allows one to obtain the
value of the tuning parameter that minimizes only the IAE. Such expressions are given by [57]

τ̂cult = − 0.148557 + 0.903364τ̂2 + 0.331659η̂ + 0.390943τ̂2η̂ − 0.19992τ̂2θ̂

+ 0.384281η̂θ̂ − 0.305025τ̂2
2 − 0.0157256η̂2 − 0.207827θ̂2,

(25)
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τ̂cIAE = − 0.540626 + 2.11424τ̂2 + 0.735044η̂ + 1.6421θ̂ + 0.640022τ̂2η̂

+ 0.341155η̂θ̂ − 1.66075τ̂2
2 − 0.0294597η̂2 − 0.962638θ̂2,

(26)

where τ̂cult is the minimum allowable value of the tuning parameter; i.e., lower values of τ̂cult make the
system exhibit unstable behavior; and τ̂cIAE is the value of the tuning parameter that minimizes the IAE.
In the present work we develop the equations for γ > 0 which allow one to use the combined index.

3.4. Tuning Parameter Computation

It is desired to obtain a new expression in order to relate the controller’s tuning parameter
that minimizes the objective function and the ultimate value that can be chosen in order to obtain a
stable response:

τ̂cOF = f (τ̂cult, γ). (27)

A simulation environment was developed using MATLAB R©/Simulink R©. This computational
tool allows one to find the value of the objective function for each data set of parameters of the
process’ transfer function and γ. Since we used a central composite experimental design for rotatability,
the optimization tool correspond to the steepest-descent gradient method [58].

The starting value of τ̂c for each simulation was obtained from (25); the minimum assigned value
for this parameter matched the limit value to obtain a stable system. The simulations considered
unit-step changes in the disturbance variable (disturbance rejection). At the end of the simulation
process, we obtained data shown in Table A1 (Appendix A) that contains the value of τ̂c that minimizes
OF for each data set of the process’ transfer function (from the experimental design) and values of
0 ≤ γ ≤ 8. We found that no significant changes in τ̂cOF were obtained for γ > 4; therefore, the range
0 ≤ γ ≤ 4 was selected and Figure 2 shows τ̂cOF for different values of τ̂cult considering such range
for γ.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

Figure 2. Behavior of τ̂cOF for different values of τ̂cult, using different values of γ. The range of τ̂cult
was selected arbitrarily for illustration purposes.

Using the information provided in Figure 2, data were fitted using a linear regression, and the
polynomial represents a straight line passing through the origin. The correlations obtained are given by
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τ̂cFO|0 = 1.9044τ̂cult, (28)

τ̂cFO|1 = 2.2745τ̂cult, (29)

τ̂cFO|2 = 2.6513τ̂cult, (30)

τ̂cFO|3 = 2.8867τ̂cult, (31)

τ̂cFO|4 = 3.0550τ̂cult. (32)

Equations (28) to (32) are of the form

τ̂cOF = mOF τ̂cult, (33)

where mOF is the slope of the line that relates τ̂cOF and τ̂cult; mOF addtionally represents a stability
margin for the system.

When γ increases, the value of the slope increases, and τ̂cOF increases, which make the system
more robust. This characteristic allows getting a safety factor for the closed-loop system with respect to
an ultimate value τ̂cult; if this value is reached, the time response would acquire sustained oscillations
(marginal stability).

In order to measure the goodness of fit, some statistics need to be computed: the correlation
coefficient (R), that measures the linear correlation between two variables; the coefficient of
determination (R2), that indicates the proportion of the variance that can be explained from the
obtained model; and Durbin-Watson, that is used to check if there is a linear autocorrelation among
the residuals of the model. Table 1 shows the statistics results; it can be noticed that values greater
than 0.98 were obtained for R, and values greater than 97 % were obtained for R2; this shows a strong
goodness of fit. Values between 2 and 2.5 were obtained for Durbin-Watson, which shows that there is
no linear autocorrelation among the model’s residuals.

Table 1. Statistics for the objective function OFγ|i (linear regressions in Figure 2).

OFγ|i
R R2 Durbin-Watson

(Fraction) (%) (Nondimensional)

OFγ|0 0.9965 99.31 2.16
OFγ|1 0.9918 98.36 2.02
OFγ|2 0.9872 97.46 2.19
OFγ|3 0.9857 97.15 2.42
OFγ|4 0.9865 97.33 2.47

It is necessary to obtain an expression that relates the value of mOF with γ. This is done using the
value mOFi found in the linear Equations (28)–(32) for different values of γ. So, for 0 ≤ γ ≤ 4 we get
the plot shown in Figure 3.

Using a nonlinear regression for the plot in Figure 3 we get the expression mOF = f (γ), as follows

mOF =
3.3650

1 + e

(
−

γ− 0.4956
1.9491

) . (34)

The best fit was given by a sigmoid function; the goodness-of-fit is measured again by using R
and R2, both with values greater than 0.99 and 99%, respectively, as shown in Table 2.
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Figure 3. Behavior of mOF with respect to variations in γ. %TO: percentage of transmitter output,
%CO: percentage of controller output, UT: units of time.

Table 2. Statistics for mOF(γ) (nonlinear regression of Figure 3).

R R2

(Fraction) (%)

mOF(γ) 0.9994 99.89

Equation (34) shows the relation between the stability margin mOF and the suppression factor
γ. Then, an expression that allows computing the nondimensional optimal value of the controller’s
tuning parameter in a direct way is given by

τ̂cOF = mOF τ̂cult. (35)

Finally, Equations (10)–(12) are used to compute the PID controller’s parameters using τcOF, with
units of time, that is computed as

τcOF = τ̂cOFτ1. (36)

4. Application Methodology

The application of the Castellanos-Castrillón-Vásquez (CCV) PID tuning method for
inverse-response second-order plus dead time systems can be summarized in the following ten
steps; Figure 4 shows the methodology in the algorithm form.

1. Determine the transfer function of the inverse response second order plus dead time system
and write it in the form of (5).

2. Verify that the transfer function’s parameters are within the specified ranges, established in
(22)–(24); this method is valid only for such ranges.

3. Compute the nondimensional parameters of the process by using Equations (18)–(20).
4. Compute τ̂cult by using (25).
5. Select the value of γ, depending on the user’s needs. If γ = 0, OF = IAE.
6. To compute mOF by using (34), if γ 6= 0.
7. Compute τ̂cOF by using (35).
8. Compute τcOF by using (36).
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9. Compute the controller’s parameters with τcOF using (10)–(12).
10. Check if the controller meets the desired performance.

If the desired performance is not met, the user can go back to Step 5 and change the value
of γ adjusting the index in (13), which accounts for performance of the controlled variable and
behaviour of the manipulated variable; high values γ are useful to protect the actuators, providing
more conservative responses.

Determine

Verify

Compute

Compute

Select

Compute

Compute

Compute

Compute

Meets performance?

END

END

Compute

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

N

Y

Y

N

N

Y

?

Figure 4. CCV PID tuning methodology.

5. Discussion on Performance Analysis

This section contains a comparison for the performance of a controller tuned with the new
proposed CCV method and three other well-known techniques. There are several PI/PID controller
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tuning techniques [59], which are used for processes with specific dynamics characteristics. Regarding,
inverse response processes, one can find that even recent literature still uses classical methods for
comparison purposes or reference them as still valid and used for adjusting controller parameters. One
can find recent literature in which new tuning methods, developed by Waller and Nygardas (WN) [13]
and Chien, Chung, Chen, and Chuang (CCCC) [17] for inverse response systems, are compared
to traditional methods; see for instance [60,61]. Additionally, one can find several works
that compare the performance with one of the most traditional tuning methods developed by
Ziegler and Nichols (ZN) [14] during the 1940s, see for instance [62–64]. The performance indexes are
given by

• IAE =
∫ ∞

0
|e(t)| dt, [=] %TO·UT;

• ISE =
∫ ∞

0
e2(t)dt, [=](%TO)2 · UT;

• IMV =
∫ ∞

0

∣∣∣∣dMV(t)
dt

∣∣∣∣ dt, [=] %CO;

• MP (maximum peak), [=] %TO;

where %TO: percentage of transmitter output, %CO: percentage of controller output, UT: units of time.
A central composite experimental design, as explained in the scaling section, was implemented

in order to select a set of parameters of the process’ transfer function to test the performance and
robustness of the closed-loop, for each controller, over a wide range of values. These values are within
the defined ranges of the ratios given by (22)–(24). A tag Pi was assigned to each set, and their values
are shown in Table 3; these parameters are a subset extracted from the experimental region.

Table 3. Simulation parameters sets for performance and robustness analysis.

Parameters τ̂2 η̂ θ̂

P1 0.2622 3.2095 0.2107
P2 0.5000 2.0500 0.0100
P3 0.5000 2.0500 1.0000
P4 0.5000 4.0000 0.5050
P5 0.7378 3.2095 0.7993

For each simulation, the system was excited with a unit-step input for changes in the disturbance
and changes in the set-point. A value of γ = 4 was assigned for all the simulations in order to
penalize the behavior of the manipulated variable, considered in the second term of the optimization
objective function (13). Table 4 contains the nondimensional controller parameters computed for each
simulation set.

Table 4. Controller parameters for sets P1, P2, P3, P4, P5.

Set
CCV WN ZN CCCC

KcK T̂i T̂d KcK T̂i T̂d KcK T̂i T̂d KcK T̂i T̂d

P1 0.166 1.345 0.278 0.197 1.262 0.208 0.230 1.956 0.489 0.191 1.000 0.262
P2 0.256 1.503 0.336 0.366 1.500 0.333 0.417 1.739 0.435 0.348 1.000 0.500
P3 0.210 1.747 0.533 0.366 1.500 0.333 0.410 3.500 0.874 0.163 1.000 0.500
P4 0.128 1.656 0.458 0.188 1.500 0.333 0.225 2.973 0.743 0.131 1.000 0.500
P5 0.150 1.936 0.580 0.271 1.738 0.425 0.315 3.695 0.924 0.133 1.000 0.738

In order to assess the general performance of the control system (disturbance rejection and
set-point tracking), with a PID controller tuned with the new and the traditional selected methods,
a scoring system was established. For each performance index, a score between 0 and 4 was given
to each tuning method; the controller with the best performance received 4 points, the next received
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3 points, and so forth. When a tuning method generated a marginally stable or unstable response,
it received 0 points in all indexes.

Table 5 contains the results of the performance indexes for each tuning method, when considering
disturbance rejection for the set P4 of parameters of the process’ transfer function. Then, scores were
assigned for each controller, when analyzing each performance index; Table 6 contains the disturbance
rejection scores for the set P4.

Table 5. Performance indexes. Disturbance rejection for the set P4.

Method ISE a IAE b IMV c MP d

CCV 19.9700 19.3400 1.9780 1.9049
WN 22.4500 15.0100 3.0450 2.0593
ZN 38.9600 23.1000 7.8490 3.6781

CCCC 23.4000 14.7000 2.3570 2.1652
a (%TO)2 ·UT; b %TO ·UT; c %CO; d %TO.

Table 6. Scores. Disturbance rejection for the set P4.

Method ISE IAE IMV MP Total

CCV 4 2 4 4 14
WN 3 3 2 3 11
ZN 1 1 1 1 4

CCCC 2 4 3 2 11

All units are points.

Although the controllers were adjusted for disturbance rejection, the set-point tracking capabilities
were also tested. Table 7 shows the results of the performance indexes for each tuning method, when
considering set-point tracking for the set P4 of parameters of the process’ transfer function. Then,
scores were assigned for each controller when analyzing each performance index; Table 8 contains the
set-point tracking scores for the set P4.

Table 7. Performance indexes. Set-point tracking for the set P4.

Method ISE a IAE b IMV c MP d

CCV 9.6500 13.0000 0.8140 0.9957
WN 8,7230 8.0000 10.7500 1.0000
ZN 11,4600 13.0800 4.6960 1.0581

CCCC 8.9600 7.6490 1.2030 1.0048
a (%TO)2 ·UT; b %TO ·UT; c %CO; d %TO.

Table 8. Scores. Set-point tracking for the set P4.

Method ISE IAE IMV MP Total

CCV 2 2 4 4 12
WN 4 3 1 1 9
ZN 1 1 2 2 6

CCCC 3 4 3 3 13

All units are points.

Figures 5 and 6 show the time response for the parameter set P4, for both disturbance rejection
and set-point tracking, respectively.

It can be noticed that the CCV controller has a high settling time; this occurs because of the high
value assigned to the suppression factor (γ = 4), in order to penalize the manipulated variable and
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increase the robustness, smooths the actuator’s behavior. Additionally, it can be noticed how the CCV
controller decreases the inverse response effect.
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Figure 5. Time response disturbance rejection for the set P4. %TO: percentage of transmitter output,
UT: units of time.
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Figure 6. Time response set-point tracking for the set P4. %TO: percentage of transmitter output, UT:
units of time.

This procedure was followed for the other parameter sets. In Appendix B, Tables A2–A9 contain
the performance indexes for disturbance rejection and set-point tracking for the remaining sets of the
parameters P1, P2, P3, and P5. In Appendix C, Figures A1–A8 show the time response for the remaining
sets of parameters: P1, P2, P3, and P5.

All the points obtained by each tuning method using the scoring system were added,
by considering each performance index. Table 9 shows the total scores for disturbance rejection
and Table 10 shows the total scores for set-point tracking.



Processes 2020, 8, 1183 13 of 24

Table 9. Total scores for disturbance rejection for the set P4.

Method ISE IAE IMV MP Total

CCV 17 9 19 17 62
WN 14 16 12 15 57
ZN 6 6 5 6 23

CCCC 13 19 14 12 58

All units are points.

Table 10. Total scores for set-point tracking for the set P4.

Method ISE IAE IMV MP Total

CCV 12 8 20 17 57
WN 19 16 6 14 55
ZN 6 7 9 8 30

CCCC 13 19 15 11 58

All units are points.

As it can be noticed, the proposed CCV method shows the best over-all results for disturbance
rejection, when considering a wide range of parameters of the process’ transfer function. Although the
controller was tuned for disturbance rejection, it still offers a very good performance for set-point
tracking, when considering the same wide range of parameters of the process’ transfer function. In both
operations (servo and regulatory), the CCV method achieves the best performance in both the MP and
IMV indexes, which indicates that this tuning method benefits the durability of the actuator.

Although IMC is based on a pole-zero cancellation, which can lead to poor performance in the
load regulation operation [65] for lag-dominant processes [66], in Appendix D we provide another
simulation for a set of parameters with small dead time and high time constant (η = 0.1, θ = 0.01,
τ2 = 0.9, τ1 = 1) that shows the wide application of the CCV method; this set is in the limits of the
experimental region, but that was not given within the sets selected by the experimental design.

6. Discussion on Robustness Analysis

Romagnoli and Palazoglu [6] stated that there are different techniques to evaluate uncertainties
in a control system. One of them consists in the selection of a range of the parameters of the process’
transfer function, as in [67], in which Arbogast et al. proposed a robust stability factor metric to
examine the effect of plant-model mismatch in the process gain, dead time, and time constant for
self-regulating processes. Such method uses the relation of the values of parameters that bring the
system’s response to marginally stable conditions and the values of the parameters used for tuning.

Following such technique, in this work the robustness analysis consists on the study of the
variability of parameters η̂ and θ̂ from Table 3 by considering a value for the suppression factor γ = 4.
The analysis was done using a Simulink scenario in which small increments for the parameter of
interest were done while keeping constant all the other parameters in the plant and the controller.
Simulations stopped when the output reached a sustained-oscillation response (marginal stability
conditions), hence, the ultimate value was found for each parameter. Results are found in Table 11.
The table indicates the value of the parameter that leads the response to reach sustained oscillations
for each controller and for a particular set of parameters. Therefore, the higher the ultimate value the
more robust is the technique with respect to changes in the parameter that is being analyzed.

The CCV controller is more robust with respect to variations in θ̂, specially in the case when the
dominant time constant and dead time are almost equal, or even equal. The ratio between dead time
and the dominant time constant θ̂ = θ

τ1
, is known as the uncontrollability parameter and when it is

near 1, it is more difficult to control the process [68]. Therefore, the CCV tuning method becomes a
technique suitable for high values of such parameter. On the contrary, for low values of θ̂, the CCV
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controller does not achieve the better results. With respect to η̂, the CCV and CCCC controllers are
more robust; both with similar results. However, the latter gets better results for low values of θ̂.

Table 11. Robustness for sets P1, P2, P3, P4, P5.

Method
Set P1 Set P2 Set P3 Set P4 Set P5

η̂ θ̂ η̂ θ̂ η̂ θ̂ η̂ θ̂ η̂ θ̂

CCV 5.9710 9.0310 3.8950 6.8300 5.3140 11.6650 8.7890 16.6050 8.2950 18.0600
WN 6.3060 5.8040 4.0000 3.6900 3.5860 3.6900 7.7520 7.2350 6.0180 5.8100
ZN 3.8050 0.7400 2.7560 3.8000 2.0930 1.0460 4.8640 1.1530 4.0550 1.7000

CCCC 5.0950 3.6720 5.5650 7.0000 5.5590 7.0000 7.3040 6.4480 7.0650 7.5700

7. Conclusions

In this work, we proposed an IMC-based PID tuning method for inverse-response second-order
plus dead time systems. The tuning rules are based on the optimization of an objective function
that combines performance and robustness. The tuning method has been presented by using an
easy-to-follow ten-step methodology with equations that are mathematically simple.

A correlation that allows one to compute the value of the tuning parameter τc that minimizes the
objective function has been found. The tuning parameter τc, affects the stability of the closed-loop
control system. Small values of τc increase the speed response of the system, but also produce an
oscillatory response, to the point that the system can become unstable. Nondimensionalization reduced
the number of parameters, which allows the reduction of simulations runs, saving computation time.
The central composite experimental design allowed the authors to determine the appropriate number
of simulations, and obtain goodness of fit for the proposed model.

The performance of a PID controller, tuned with the proposed CCV and other literature-existing
tuning rules, was evaluated. The performance achieved with the proposed CCV method was excellent,
not only for disturbance rejection but for set-point tracking, when considering a wide-range of
parameters of the process’ transfer function. For both operations (servo and regulatory), the CCV
method achieves the best performance in both the MP and IMV indexes, which indicates that this
tuning method benefits the durability of the actuator. This is a very important result regarding
continuous plant operation in industrial processes, since it can help avoiding unexpected plant stops
caused by actuator failures.
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Appendix A. Experimental Design Results

Table A1 contains data results from experimental design.
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Table A1. Experimental design results.

τ̂2 η̂ θ̂ τ̂cult τ̂cFO|0 τ̂cFO|1 τ̂cFO|2 τ̂cFO|3 τ̂cFO|4 τ̂cFO|5 τ̂cFO|6 τ̂cFO|7 τ̂cFO|8

0.26 0.89 0.21 0.49 1.10 1.70 1.94 2.10 2.10 2.10 2.57 2.57 3.44
0.26 0.89 0.80 0.55 1.66 2.09 2.39 2.63 2.63 2.75 2.88 2.88 2.88
0.26 3.21 0.21 1.50 2.96 4.25 4.69 5.33 5.87 6.59 7.22 8.05 8.05
0.26 3.21 0.80 2.11 4.07 4.64 5.35 5.70 5.92 6.04 6.90 6.90 7.41
0.74 0.89 0.21 0.89 1.56 2.28 2.65 3.22 3.22 3.41 3.41 3.55 3.55
0.74 0.89 0.80 0.93 2.17 2.54 3.01 3.38 3.55 3.87 4.19 4.19 4.19
0.74 3.21 0.21 2.38 4.22 5.32 5.94 6.46 6.88 6.88 7.81 7.81 7.81
0.74 3.21 0.80 2.87 5.20 5.57 6.40 7.02 7.34 7.75 8.13 8.39 8.70
0.10 2.05 0.50 0.97 2.09 2.74 2.99 3.54 3.78 4.40 4.89 5.36 5.82
0.90 2.05 0.50 2.04 3.51 4.09 4.75 5.27 5.75 5.99 6.13 6.13 6.35
0.50 0.10 0.50 0.19 0.71 1.23 1.62 1.85 1.96 2.00 2.00 2.00 2.10
0.50 4.00 0.50 2.80 5.21 5.94 7.08 7.32 7.60 7.96 8.24 9.60 8.68
0.50 2.05 0.01 1.28 2.16 3.10 5.39 5.80 5.80 5.86 5.86 5.80 5.86
0.50 2.05 0.01 1.71 3.50 3.10 4.48 4.88 5.25 5.59 5.59 5.59 5.59
0.50 2.05 0.50 1.54 3.08 3.71 4.23 4.63 4.97 4.97 4.97 5.35 5.35

Appendix B. Performance Results for Remaining Sets of Parameters

Tables A2–A9 contain performance results for remaining sets of parameters.

Table A2. Performance indexes. Disturbance rejection for the set P1.

Method ISE a IAE b IMV c MP d

CCV 16.7200 13.6500 2.3560 2.0500
WN 17.2200 11.9800 2.9170 1.8622
ZN 30.9500 16.1800 8.2430 3.9959

CCCC 22.4200 11.6200 2.9820 2.5230
a (%TO)2 ·UT; b %TO ·UT; c %CO; d %TO.

Table A3. Performance indexes. Set-point tracking for the set P1.

Method ISE a IAE b IMV c MP d

CCV 6.9980 8.1680 0.7902 1.0007
WN 6.7140 6.4190 7.2390 1.0000
ZN 8.7490 8.5640 4.1430 1.3683

CCCC 7.3370 5.2440 3.6010 1.0039
a (%TO)2 ·UT; b %TO ·UT; c %CO; d %TO.

Table A4. Performance indexes. Disturbance rejection for the set P2.

Method ISE a IAE b IMV c MP d

CCV 6.3040 8.2120 1.9840 1.3950
WN 5.6930 6.4080 2.8620 1.2494
ZN 6.9180 7.0620 4.3250 1.7070

CCCC 8.5510 5.9770 4.0270 2.0238
a (%TO)2 ·UT; b %TO ·UT; c %CO; d %TO.
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Table A5. Performance indexes. Set-point tracking for the set P2.

Method ISE a IAE b IMV c MP d

CCV 4.5670 5.9050 0.7466 1.0010
WN 4.1240 4.1000 12.8100 1.0001
ZN 4.8090 4.1760 1.9400 1.0000

CCCC 5.2480 3.0810 0.8966 1.0822
a (%TO)2 ·UT; b %TO ·UT; c %CO; d %TO.

Table A6. Performance indexes. Disturbance rejection for the set P3.

Method ISE a IAE b IMV c MP d

CCV 7.5120 10.2800 1.6450 1.3635
WN 8.4030 8.8060 3.8160 1.5593
ZN 10.8800 13.1600 38.0600 2.0353

CCCC 7.2170 8.1150 1.6610 1.2914
a (%TO)2 ·UT; b %TO ·UT; c %CO; d %TO.

Table A7. Performance indexes. Set-point tracking for the set P3.

Method ISE a IAE b IMV c MP d

CCV 6.0110 8.4260 0.7220 1.0031
WN 5.8830 6.5500 21.0900 1.3184
ZN 8.0590 12.2700 58.0600 1.3625

CCCC 5.6740 6.2400 1.2470 1.0119
a (%TO)2 ·UT; b %TO ·UT; c %CO; d %TO.

Table A8. Performance indexes. Disturbance rejection for the set P5.

Method ISE a IAE b IMV c MP d

CCV 13.1300 16.7700 1.6610 1.5205
WN 14.2600 11.4000 3.2050 1.8102
ZN 20.9300 17.6900 7.8383 2.5812

CCCC 12.5000 13.5400 1.4470 1.5975
a (%TO)2 ·UT; b %TO ·UT; c %CO; d %TO.

Table A9. Performance indexes. Set-point tracking for the set P5.

Method ISE a IAE b IMV c MP d

CCV 8.9170 13.0100 0.7630 0.9951
WN 7.6430 6.9760 19.3000 1.0624
ZN 9.8820 11.7200 7.1650 1.1496

CCCC 7.6740 7.6310 2.5230 1.0080
a(%TO)2 ·UT; b%TO ·UT; c%CO; d%TO.

Appendix C. Plots for the Remaining Sets of Parameters

Figures A1–A8 contain plots for the remaining sets of parameters.
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Figure A1. Time response disturbance rejection for the set P1. %TO: percentage of transmitter output,
UT: units of time.
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Figure A2. Time response set-point tracking for the set P1. %TO: percentage of transmitter output, UT:
units of time.
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Figure A3. Time response disturbance rejection for the set P2. %TO: percentage of transmitter output,
UT: units of time.
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Figure A4. Time response set-point tracking for the set P2. %TO: percentage of transmitter output, UT:
units of time.
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Figure A5. Time response disturbance rejection for the set P3. %TO: percentage of transmitter output,
UT: units of time.
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Figure A6. Time response set-point tracking for the set P3. %TO: percentage of transmitter output, UT:
units of time.
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Figure A7. Time response disturbance rejection for the set P5. %TO: percentage of transmitter output,
UT: units of time.
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Figure A8. Time response set-point tracking for the set P5. %TO: percentage of transmitter output, UT:
units of time.

Appendix D. Additional Simulation in the Limits of the Experimental Region

We provide another simulation for a set of parameters with small dead time and high time
constant that shows the wide application of the CCV method, see Table A10; this set is in the limits of
the experimental region, but that was not given within the sets selected by the experimental design.

Table A10. Simulation parameters set for lag-dominant simulation (with τ1 = 1).

Parameters τ̂2 η̂ θ̂

P6 0.900 0.100 0.01

The system was excited with a unit-step input for changes in the disturbance and changes in
the set-point. A value of γ = 4 was assigned the simulation in order to penalize the behavior of the
manipulated variable (as in all previous simulations), considered in the second term of the optimization
objective function (13). Table A11 contains the nondimensional controller parameters computed for
this simulation set.
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Table A11. Controller parameters for set P6.

Set
CCV WN ZN CCCC

Kck T̂i T̂d Kck T̂i T̂d Kck T̂i T̂d Kck T̂i Td

P6 1.194 1.901 0.474 9.500 1.900 0.473 9.847 0.710 0.177 1.768 1.000 0.900

Tables A12 and A13 contain the performance indexes for the set of parameters P6. It can be noticed
that the CCV controller offers the lower index for the work of the manipulated value, since we chose the
suppression factor (γ = 4), to smooth the actuator’s behavior and increase the robustness. Additionally,
the CCV controller response do not exhibit overshoot and show the smallest inverse-response effect,
see Figures A9 and A10. This proves the wide application of the CCV tuning method.

Table A12. Performance indexes. Disturbance rejection for the set P6.

Method ISE a IAE b IMV c MP d

CCV 0.349 1.647 1.160 0.379
WN 0.010 0.201 2.287 0.077
ZN 0.007 0.124 5.181 0.104

CCCC 0.084 0.567 1.167 0.224
a (%TO)2 ·UT; b %TO ·UT; c %CO; d %TO.

Table A13. Performance indexes. Set-point tracking for the set P6.

Method ISE a IAE b IMV c MP d

CCV 0.870 1.647 1.538 1.001
WN 0.227 0.206 569.1 1.026
ZN 0.686 1.370 93.13 1.769

CCCC 0.462 0.630 9.152 1.043
a (%TO)2 ·UT; b %TO ·UT; c %CO; d %TO.
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Figure A9. Time response disturbance rejection for the set P6. %TO: percentage of transmitter output,
UT: units of time.
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Figure A10. Time response set-point tracking for the set P6. %TO: percentage of transmitter output,
UT: units of time.
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