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Abstract: Raman spectroscopy has the potential to revolutionise many aspects of biopharmaceutical
process development. The widespread adoption of this promising technology has been hindered by
the high cost associated with individual probes and the challenge of measuring low sample volumes.
To address these issues, this paper investigates the potential of an emerging new high-throughput
(HT) Raman spectroscopy microscope combined with a novel data analysis workflow to replace
off-line analytics for upstream and downstream operations. On the upstream front, the case study
involved the at-line monitoring of an HT micro-bioreactor system cultivating two mammalian cell
cultures expressing two different therapeutic proteins. The spectra generated were analysed using
a partial least squares (PLS) model. This enabled the successful prediction of the glucose, lactate,
antibody, and viable cell density concentrations directly from the Raman spectra without reliance on
multiple off-line analytical devices and using only a single low-volume sample (50–300 µL). However,
upon the subsequent investigation of these models, only the glucose and lactate models appeared to
be robust based upon their model coefficients containing the expected Raman vibrational signatures.
On the downstream front, the HT Raman device was incorporated into the development of a cation
exchange chromatography step for an Fc-fusion protein to compare different elution conditions.
PLS models were derived from the spectra and were found to predict accurately monomer purity
and concentration. The low molecular weight (LMW) and high molecular weight (HMW) species
concentrations were found to be too low to be predicted accurately by the Raman device. However,
the method enabled the classification of samples based on protein concentration and monomer
purity, allowing a prioritisation and reduction in samples analysed using A280 UV absorbance and
high-performance liquid chromatography (HPLC). The flexibility and highly configurable nature
of this HT Raman spectroscopy microscope makes it an ideal tool for bioprocess research and
development, and is a cost-effective solution based on its ability to support a large range of unit
operations in both upstream and downstream process operations.
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1. Introduction

Process analytical technology (PAT) has been a major talking point within the biopharmaceutical
sector since the release of the FDA’s guidance for industry on PAT in 2004 [1]. The guidance
encouraged a shift away from a fixed process that could result in product quality deviations towards
an adaptive process ensuring a consistent product quality through sensors supporting advanced
control strategies. Although there has been significant progress made towards achieving this goal,
commercial manufacturing still heavily relies upon laborious off-line analytics and rudimentary control
strategies. A major issue is the disconnect between early-stage research and development (R&D)
activities and late-stage commercial manufacturing operations within the therapeutic drug lifecycle.
These operations differ widely in terms of scale, where R&D operations utilise small volumes in
the range of µL to L and commercial manufacturing processes operate with volumes in the range
of 500 to 20,000 L. This large-scale difference can limit the universal application of a proposed PAT
technology in the early stages of the drug development pipeline, therefore reducing the adoption of
these core technologies within late-stage process development and commercialisation. To help bridge
this gap, this paper focuses on the application of multivariate data analysis (MVDA) to better leverage
at-line spectral measurements generated by a novel Raman spectroscopy microscope and utilise this
information to support research and development (R&D) activities within the biopharmaceutical sector.

1.1. PAT for Upstream Processing

1.1.1. USP Monitoring and Analytics

Therapeutic proteins are highly complex and fragile molecules, and any upstream process
deviations can lead to changes in the physiochemical, biological, and immunogenic properties of the
molecule [2]. Therefore, controlling the bioreactor micro-environment is of paramount importance to
ensure the product heterogeneity remains within a predefined specification defined by commercial
good manufacturing practice (GMP) operations. To support this objective, the bioreactor is monitored
and controlled through three classes of measurements, defined as on-line/in-line, at-line, or off-line [3].
The physical environment within the bioreactor, which includes the pH, temperature, and dissolved
oxygen, utilises accurate and well-established on-line measurements with minimum time delays,
enabling the real-time control of these variables. At-line and off-line monitoring involves removing a
physical sample from the bioreactor for measurement in a separate analyser, enabling the monitoring
of the chemical and biochemical environment. At-line measurements infer the close proximity of the
analyser to the bioreactor, resulting in a shorter delay in the measurement availability, ranging from
minutes to hours, whereas off-line measurements involve longer delay times of up to a day or even a
week, depending on the analyser and delay before processing the sample. The traditional monitoring of
upstream processing (USP) activities requires three different analysers: The first is an at-line biochemical
analyser that measures the daily metabolite concentrations, including glucose and lactate, and typically
takes between 5 and 10 min per sample. The second is an at-line cell counter that measures the cell
densities and viabilities every 1 or 2 days with an analysis time of 5–10 min per sample. The third
analyser is an off-line protein A HPLC column that measures the protein concentration and product
quality; this is the slowest analytical device, as the sample needs to be purified before loading onto
the column, and these measurements are typically only available after the experiment is complete.
The manual sampling procedure and slow response time of these analysers limit the ability of these
measurements to be used for control strategies. The additional drawback of these traditional methods
is that they are destructive and therefore require separate samples for each analyser.

A recent report targeting the biopharmaceutical industry has identified and prioritised the top
bioreactor variables requiring investment in at-line/in-line monitoring technologies to facilitate effective
in-process control strategies [4]. This priority list includes the cell viability, viable cell density (VCD),



Processes 2020, 8, 1179 3 of 31

glucose concentration, amino acids, and product concentration, defined as the bioreactor’s critical
process parameters (CPPs), in addition to the glycosylation profile and charge profile, defined as the
critical quality attributes (CQAs). These variables are all currently measured by slow and laborious
off-line analytical analysers. PAT aims to change the reliance of biopharmaceutical companies on these
slow off-line analytical measurements.

1.1.2. PAT within USP Mammalian Cell Cultures

PAT ultimately aims to integrate aspects of chemical, physical, microbiological, mathematical,
and risk analyses to ensure robust biopharmaceutical operation [5]. There are various on-line and
in-line PAT technologies suitable for USP mammalian cell culture monitoring. Capacitance sensors
have gained popularity recently and provide robust measurements of viable cell density. These probes
measure the radio frequency impedance in the cell broth and can distinguish between live and
dead cells based on the assumption of living cells having intact spherical cell walls. Konakovsky
et al. demonstrated the ability of capacitance probes to accurately predict VCD for mammalian
cell cultures using a robust partial least squares (PLS) model that could be transferred between
clones and across scales [6]. The majority of other PATs are spectroscopic, and are advantageous due
to their ability to measure multiple components within the bioreactor. Examples include infrared
spectroscopy, which measures reflectance, transflectance, and transmission events during near-infrared
(NIR) or mid-infrared (MIR) irradiation. NIR was demonstrated by Hakemeyer et al. to predict
numerous mammalian cell culture variables, including the cell viability, product concentration, glucose,
and lactate, with the predictions validated across multiple scales, ranging from 2.5 to 1000 L [7].
Additionally, Sandor et al. compared the ability of NIR and MIR for mammalian cell monitoring
and concluded that MIR has a higher accuracy for individual analyte concentrations, such as glucose
and lactate, but recommended NIR as a better tool for the on-line monitoring of mammalian cell
systems based on its ability to measure cell densities through light scattering effects, which is not
possible with MIR excitation [8]. Ultraviolet and visible spectroscopy is another tool and one of
the oldest forms of spectroscopy based upon the Beer–Lambert law. However, this technology has
limited demonstrations within USP which have primarily focused on predicting the total cell density,
as shown by Ude et al. [9]. Fluorescence spectroscopy is another valuable tool that takes advantage
of the fluorescence nature of many biological components excited by visible or UV light. Typically,
within mammalian cell cultures, 2D fluorescence spectroscopy is employed. Ohadi et al. demonstrated
the ability of this technique to predict numerous variables, including the product concentration and
glucose, and also to distinguish between living and dead cells, therefore making it an attractive tool for
the in situ monitoring of mammalian cell cultures [10]. Another major advantage of this technology is
the ability to exploit the auto-fluorescence nature of various variables, such as amino acids, vitamins,
and proteins, including selected molecules or targets tagged using fluorescence markers. Calvet et al.
used a type of fluorescence spectroscopy called Excitation Emission Matrix spectroscopy to generate a
three-dimensional contour plot of the excitation wavelength vs. emission wavelength vs. fluorescence.
The method generates accurate fingerprints for multicomponent systems and was demonstrated by
Calvet et al. to identify the composition changes of tryptophan and tyrosine in a complex media
applicable to industrial mammalian cell cultures [11]. The primary benefit of these spectroscopic tools
is that they are non-destructive, non-invasive, and highly informative, making them highly suitable for
mammalian cell culture monitoring.

1.1.3. Applications of Raman Spectroscopy in USP

In comparison to other spectroscopic methods, Raman spectroscopy has gained attention in recent
years due to its suitability for the analysis of aqueous samples due to its low water interference and high
specificity. Raman spectroscopy excites the sample using a monochromatic light source, causing small
vibrational frequency shifts in the sample. The inelastic scattering of this light source generates
Raman spectra containing quantitative and qualitative information, including the composition,
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chemical environment, and structural information related to the sample. The major challenge with
Raman spectroscopy is the low signal to noise ratio due to the weak Raman scattering signals compared
to the incident wavelength. These weak signals can be corrupted by strong fluorescence signals
associated with the analysis of biological samples [12]. Alternative methods such as Surface Enhanced
Raman Spectroscopy (SERS) have been developed to overcome these issues. Different types of Raman
Spectroscopy, including Resonance Raman Spectroscopy, Raman Optical Activity, and surface-enhanced
Raman spectroscopy (SERS), as well as their applications, are extensively described in a review by
Buckley and Ryder [13].

Within USP, the biopharmaceutical industry has focused on Raman spectroscopy as one of
the leading PAT technologies to monitor fermentation systems cultivating different expression
systems, such as bacterial [14], fungal [12], and mammalian cell culture systems, including NS0
and HEK293 cell lines [15,16]. However, the majority of Raman spectroscopy monitoring operations
focus on Chinese hamster ovary (CHO) mammalian cell lines, and have demonstrated the ability
of this technology to predict the previously prioritised CPPs of glucose, lactate, VCD, and product
concentration [15,17,18]. The proven ability to monitor these variables has led to the development
of adaptive control strategies, as demonstrated by Craven et al., who applied a nonlinear model
predictive controller to maintain the glucose concentration of a mammalian cell culture at a fixed
set-point [19]. Additional control demonstrations include the application of a closed-loop control
strategy using in-line Raman spectroscopy to minimise lactate accumulation through glucose feed
rate additions, which resulted in the additional benefit of increasing the product concentration by
approximately 85% [15]. More recently, Raman spectroscopy has shown promise as a replacement tool
for the pH control of mammalian cell cultures [20]. However, the feasibility of this is questionable,
given the relatively long acquisition time of each Raman spectra, which was between 16 and 20 min,
in comparison to traditional pH probes with a response time of seconds. Raman spectroscopy has
also been used to monitor the glycosylation patterns of a monoclonal antibody, which, as previously
discussed, is a high-priority CQA. Li at al. utilised Raman spectroscopy for the real-time monitoring
of a monoclonal antibody, and were able to distinguish between glycosylated and non-glycosylated
molecules [21]. The ability to monitor product quality in real-time opens up significant opportunities
for USP optimisation and advanced feedback control solutions.

1.2. PAT for Downstream Processing (DSP)

1.2.1. DSP Monitoring and Analytics of Mammalian Therapeutic Products

Typical PAT for downstream processing predominantly includes various sensors for the
single-variable monitoring of CPPs. These include pH and conductivity probes, pressure and
flow rate sensors, and UV spectroscopic measurements and other sensors, which are analysed through
means of univariate analysis and/or operator knowledge. Additional information, especially regarding
the CQAs of the product, is obtained through off-line analysis, which allows the determination of
process and product-related quality attributes. Whereas univariate monitoring is suitable for the
monitoring of process variables, it rarely carries enough information to be able to measure CQAs
such as product multimers; product charge variants; host cell-related impurities, such as host cell
proteins (HCPs), DNA, and lipids, in addition to impurities such as resin leachables. CQAs are
monitored using univariate off-line/at-line analytical techniques, with efforts being made to enable
online implementation.

Multiple-antibody CQAs, such as the high molecular weight (HMW) and low molecular weight
(LMW) species content, charge, and glycosylation variants, are most commonly performed utilising
at-line/off-line HPLC utilising various column chemistries, including size-exclusion (SE-HPLC) and
ion-exchange (IEX-HPLC) liquid chromatography. In SE-HPLC, different-sized product species
are separated based on their differential retention time, and content percentages are calculated as
the area under curve (AUC) for peaks corresponding to the UV absorption signal of the elution
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product [22]. As standard SE-HPLC has long run times (commonly 20 min per sample), efforts have
been made to increase the speed of analysis and implement SE-HPLC-based methods on-line [23].
Decreasing the time needed for sample analysis to less than 5 min was made possible by utilising
ultra-high-performance liquid chromatography (UHPLC) with sub-2µm particles [24,25], and these
approaches were further developed by coupling to mass spectroscopy [26]. Alternative approaches
to UHPLC were also described, such as membrane chromatography, with an analysis time as low as
1.5 min [27]. The real-time analysis of aggregates and charge variants during cation exchange (CEX)
chromatography using HPLC has been described by Tiwari et al. [28]. Patel et al. describes the use of
on-line UHPLC for the detection of charge variants in continuous processes, which can be adapted for
aggregate analysis [29]. Although the feasibility of these approaches has been demonstrated, on-line
HPLC/UHPLC has not yet been widely adopted.

Another important set of antibody product CQAs are host-related impurities, such as host
cell proteins (HCPs), DNA, and lipids; and process-related impurities, such as free protein A
ligands. HCPs and protein A ligands are typically detected through various immunological assays,
including traditional ELISA and high-throughput microfluidic assays. The processing time can be
decreased by moving from a traditional ELISA to an automated ELISA using liquid-handling systems
and automated microfluidic systems [30]; these still do not allow real-time analysis, as the time needed
to run these assays is in the order of hours. Efforts have been made to develop immunological methods
capable of on-line measurements utilising a flow cell, although the analysis time of above 30 min
per sample would not suit the current downstream requirements [31]. As the system described in
Kumar et al. was developed for upstream applications with lower requirements for time of analysis,
additional changes to the systems, such as parallel flow cells, could potentially be made to enable
Downstream Processing (DSP) application.

Although there has been progress in adapting traditional at-line methods to allow real-time
control, most methods still suffer from long run times. In order to expand process control and enable
the real-time monitoring of CQAs, multivariate approaches and PAT are necessary.

1.2.2. Applications of PAT in DSP

Various spectroscopic methods, including infra-red (IR), mid-IR (MIR), Raman, Fourier-transform
IR, fluorescence, and UV spectroscopy, have been applied to downstream processing. As described
extensively in a review by Rudt. et al. [32], and more recently in Rolinger et al. [33], each of these
spectroscopic techniques has its own set of advantages and applications.

Examples of spectroscopic methods applied to DSP monitoring include the use of UV-spectroscopy
with PLS modelling to automatically control the loading phase of protein A chromatography
by monitoring the concentration of the monoclonal antibody (mAb) product in the load [34].
UV spectroscopy has been also shown to monitor mAb aggregate and monomer concentrations [35],
although during the investigated runs the monomer and aggregate peaks showed a good separation,
which might not always be the case and could decrease the otherwise high sensitivity of predictions.
These studies benefited from the utilisation of variable pathlength spectroscopym enabling accurate
in-line measurements even at high concentrations. The same device was recently applied to the on-line
monitoring of ultrafiltration/diafiltration (UF/DF) as part of a multi-sensor PAT capable of monitoring
concentration in addition to the apparent molecular weight using dynamic light scattering (DLS) to
monitor changes in aggregation during the process [36].

Other spectroscopic methods have been described in relation to DSP, such as mid (MIR) and near
(NIR) infrared spectroscopy. NIR was used to determine mAb concentration in real-time, enabling the
dynamic loading of protein A chromatography [37]. Capito et al. used MIR to monitor product
concentration, aggregate, and HCP content, although this was developed as an at-line method, as the
samples were processed (dried) prior to measurements [38], limiting the use of the tool for on-line
monitoring. Additionally, there have been attempts to overcome the limitations of individual spectral
techniques by integrating multiple different inputs. In a study by Walch et al., standard detectors
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(UV, pH, conductivity) were implemented alongside additional techniques including fluorescence
spectroscopy, MIR, light scattering, and refractive index measurement to monitor the protein A
chromatography. These inputs were then analysed through PLS regression, producing predictive
models for mAb concentration, monomer purity, aggregate content, and host related impurities (HCPs,
DNA). This has resulted in accurate predictions for titre and monomer purity, but less so for HCPs,
DNA, and % aggregate, especially when the sample matrix was changed [39].

1.2.3. Applications of Raman Spectroscopy in DSP

The applications of Raman spectroscopy in DSP include the measurement of product concentration,
product aggregation, glycosylation, and membrane fouling. Predicting the product concentration
of mAb was first shown by Andre et al. using an immersion probe [40], and further expanded by
Feidl et al. through the development of a Raman flow cell [41,42]. Determining the titre is especially
relevant for continuous perfusion processes, as it allows the dynamic loading of subsequent capture
steps, as demonstrated in [43]. However, the titre determination from harvest can arguably be achieved
by the use of delta UV spectroscopy comparing the A280 absorbance of the feed and eluate [44],
which might be easier to implement as it does not require MVDA modelling. Therefore, if Raman
spectroscopy is to be widely adopted in DSP, it must provide additional information.

There are studies demonstrating the ability of Raman spectroscopy to distinguish between samples
with a high content of aggregate mAb species. Typically, these studies are performed at high mAb
concentrations and/or high aggregate contents for the purpose of proof-of-concept studies, in addition
to studies of aggregation in the formulated drug products. Zhou et al. monitored the thermally induced
aggregation of intravenous IgG (IVIG) at high concentrations (51 mg/mL), describing the various
spectral features present upon aggregation, in particular shift in the tyrosine peak at 830 and 850 cm−1

and the tryptophan peak at 1550 cm−1 for the IVIG, using Raman spectroscopy coupled with DLS [45].
Thermally induced aggregation was described in another study, where five antibodies with various
propensities to aggregate were analysed using the perturbation-correlation moving windows method,
visualising changes in the spectra during heating. By studying multiple different mAbs, differences
were observed in the aggregation mechanism and associated spectral features [46], which might
potentially make it difficult to develop models that could be utilised across multiple antibody formats.
The presence of subtle differences in the sequence and structure of mAbs resulting in significantly
different spectra is further supported by a study using SERS for the label-free identification of different
antibody products by PLS-DA [47]. Although not explicitly described in the study, the described
spectral differences might not only stem from the varying structural features, but also from the
composition of the formulation buffer, product concentration, etc., for which the study did not adjust.
In order to utilise Raman spectroscopy for aggregate analysis, quantitative predictive models are
needed. Initial steps towards such models are described by Zhan et al., where mixtures of HMW
and monomer were used to generate a model, which was then validated with independent samples
generated through incubation at 40 ◦C. The model was able to predict the validation samples with
a root mean square error of prediction (RMSEP) of 1.8% [48]. To monitor HMW and LMW species
during chromatography runs, the methods need to be sensitive enough to allow detection at relevant
concentrations (<10 mg/mL) and low aggregate contents (<10%). In all the above-mentioned studies,
the samples typically had either high concentrations and/or high aggregate contents, which might not
make these models suitable for the monitoring of standard preparative chromatography. Furthermore,
the models need to be robust enough to deal with the changing background of co-eluting impurities
and changes in buffer composition, which is common in gradient elution and is yet to be described.

Other CQAs might also have a potential to be monitored by Raman spectroscopy.
Spectral differences in antibody glycosylation have been described in simple systems (glycosylated
vs. non glycosylated proteins) [49–51], suggesting potential for elucidating more subtle differences in
glycosylation that are relevant to bioprocessing. Another interesting area that could be investigated
using Raman spectroscopy is the detection of HCPs, for which there are currently no published studies.
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Early efforts have been made using FT-IR by Capito et al. with limited sensitivity [52], which does not
allow for widespread use. Overall, detecting HCPs might require more complex approaches, such as
Raman labels, since HCPs are a structurally diverse group of proteins and therefore lack a distinct
Raman signature.

Raman spectroscopy can also be utilised in process monitoring. Virtanen et al. describes using
Raman spectroscopy in membrane fouling monitoring, where an immersion probe was placed into a
cross-flow filtration unit, and fouling over time by vanillin, a model organic foulant, was monitored
using PCA [53]. The applicability of this approach to DSP needs to be evaluated separately using
relevant molecules, as potential issues might include the weaker signal of proteins compared to small
organic molecules, as well as the more complex background matrix.

Overall, the application of Raman spectroscopy to DSP is a relatively young field and is expected
to be further advanced in the future, as innovations in instrumentation as well as advanced techniques
such as SERS become available and widely implemented.

1.3. High-Throughput Raman Spectroscopy and Its Advantages for Bioprocess Development

The acquisition set-up and type of system utilised in Raman spectroscopy typically depends on
the application and on whether it requires at-line or in-line/on-line measurement. Common set-ups
include immersion probes, flow cells, single cuvette systems, microscope slides, and high-throughput
systems. Here, we present a high-throughput Raman spectroscopy microscope based on standard
96-well plates, which allows combined use for both upstream and downstream development.

Raman spectroscopy in USP is commonly based on an optic fibre immersion probe for each
bioreactor, although multiple probes can be connected to a single Raman spectrometer. Alternatively,
HT scale-down models such as ambrTM 15 (Sartorius Stedim, Göttingen, Germany) with at-line
(Rowland-Jones and Jaques 2019) or integrated Raman measurement can be utilised for model
building, although the latter has only been introduced recently. These systems work well for upstream
applications, but might lack versatility to allow their use in other areas of bioprocess development.

An alternative approach is the use of a high-throughput Raman device which is suitable for
model generation for both upstream and downstream applications. The HT Raman devices described
in the literature include commercial devices such as the RamanRxn1™ High Throughput Screener
(HTS) (Kaiser Optical Systems, Ann Arbor, MI, USA) [54], the InVia confocal microscope (Renishaw,
Wotton-under-Edge, UK) presented in this work, the Lab Ram HR Evolution confocal microscope
(Horiba Jobin Yvon, Kyoto, Japan) [55], and custom-built devices assembled using parts from various
manufacturers [56,57]. Data acquisition is performed using well plates, typically 96-well plates,
however settings can be adjusted to allow acquisition for other high-throughput labware or bespoke
applications. Automatic plate mapping allows autonomous operation, allowing the screening of a
large number of samples.

Whereas using HT Raman is more laborious when coupled with standard bioreactors
requiring manual sampling, it is highly suitable for experiments using scale-down micro-bioreactors,
where sampling is typically automated. A major advantage of these systems is the small sample
requirement equal to 50–100 µL that is necessary for a measurement enabling the primary CPPs and
CQAs to be predicted. This reduces the reliance on multiple analysers, thus reducing the capital and
operational costs while providing near real-time information on difficult-to-monitor variables such as
product concentration. Similarly, HT Raman is also suitable for model building in DSP. Samples can be
generated through elution fractionation during preparative chromatography, where fractionating into
a standardised labware minimises the number of manual steps.

The research outlined in this paper investigates the predictive capabilities of an HT Raman
microscope combined with advanced data analytics to support both USP and DSP research and
development operations. The paper demonstrates the ability of this technology to monitor the CPPs
within an HT microbioreactor system in addition to monitoring monomer and product concentration
within the development of a CEX chromatography step. At the core of these activities is the application
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of MVDA models to convert these multiple-dimensional spectral data sets into quantitative information
necessary for monitoring. This involved negating the influence of corrupting fluorescence through
baseline and scattering correction algorithms, in addition to the evaluation of the models’ coefficients,
enabling more robustness in predictive models. In summary, this technology was found to be highly
versatile and applicable across a wide range of unit operations in bioprocess development, provided the
correct MVDA models are implemented.

2. Materials and Methods

2.1. Product Materials

Three different molecules were used in this study; in the USP experiments, cell line A produced
an antibody-peptide fusion protein, and cell line B produced a modified IgG1 molecule. In the DSP
study, an Fc-fusion protein was investigated. All the molecules utilised in this work were developed
internally and provided by AstraZeneca, Cambridge, UK.

2.2. Cell Line and Cell Culture Propagation

Cell line A and cell line B in the USP work, and the cell line utilised in the DSP work, used a
Chinese hamster ovary (CHO) host expressing high levels of therapeutic protein. These cell lines were
provided by AstraZeneca and are proprietary and commercial products. No human cells were involved
in this work. The cell lines were cultivated in chemically defined CHO media, maintained at 37 ◦C
under 5% carbon dioxide, shaken at a constant rpm, and passaged 2–3 times per week for propagation
and scale-up for inoculation.

2.3. Bioreactor Systems and Cell Culture Process

Two cell lines were cultivated in an advanced micro-bioreactor (ambrTM 15) system (Sartorius
Stedim) with 24 single vessels split into two separate culture stations, where each vessel was operated
with a 11–15 mL working volume. Cell line A was cultivated in vessels 1–12, and cell line B was
cultivated in vessels 13–24. The experimental set-up investigated the impact of both different dissolved
oxygen (DO2) set-points in addition to DO2 fluctuations on both cellular growth and protein production.
The DO2 set-point was controlled to 40% and was fluctuated every 15 min to either 10% or 20% by
purging with nitrogen. For cell line A, vessels 1 and 2 were maintained at a DO2 set-point of 40%,
vessels 3 and 9 were controlled to 10%, and vessels 3 and 10 were controlled to 20%. Vessels 5 and 11
were fluctuated between 40–10%, and vessels 6, 7, 11, and 12 were fluctuated between 40% and 20%.
Cell line B followed the same experimental set-up as cell line A for vessels 13–24. The temperature and
pH of all the vessels was controlled to 35.5 ◦C and 7, respectively, and the agitation rate was adjusted
to ensure that the DO2 concentration set-points were maintained. The feeding strategy involved five
equally spaced additions of the feed after the initial feed day indicated. The initial seeding density was
<10 × 105 cells mL−1. The culture pH was controlled to 7 through the addition of sodium carbonate
and sparging with CO2 gas, with its control strategy implementing a pH dead-band equal to 0.1.
Antifoam volumes of 20 µL were added as required. Daily at-line samples were analysed for the
glucose and lactate concentrations using the 2950D Biochemistry Analyser (YSI, Yellow Springs, OH,
USA) and every second day for the viable cell density (VCD) and viability using the Vi-Cell Automated
cell viability analyser (Beckman Coulter, Brea, CA, USA).

2.4. Titre Analysis

Volumetric antibody-peptide fusion titres in cell culture supernatants were quantified by protein
A affinity chromatography using a protein A ImmunoDetection sensor cartridge (Applied Biosystems,
Warrington, UK) coupled with an Agilent 1200 series HPLC (Agilent, Berkshire, UK). Peak areas
relative to a reference standard calibration curve were used to calculate the titres. These samples were
measured on days 2, 4, 6, 8, and 10 for the ambrTM 15 system.
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2.5. CEX Sample Generation

The Fc-fusion protein used in the DSP part of this study was generated using a CHO host provided
by AstraZeneca, UK, Cambridge. Chromatographic experiments were carried out using an ÄKTA
Avant controlled with Unicorn Software version 7.1 (Cytiva, Marlborough, MA, USA). The protein feed
was purified using MabSelect Sure Protein A chromatography resin (Cytiva, Marlborough, MA, USA),
subjected to a low-pH treatment, and purified further using CaptoAdhere resins (Cytiva, Marlborough,
MA, USA) in flow-through mode. Screening experiments were conducted to determine the optimal
conditions to purify fusion proteins on Poros 50 HS resin (Thermo Fisher Scientific, Bedford, MA)
using varying conditions of the elution buffer. The elution was performed either in gradient mode
from 0–0.5 M of NaCl in 20 mM of sodium citrate or step mode using 20 mM of sodium citrate (for
calibration set (T1) and validation set 1 (P1)) and 50 mM of sodium citrate (for validation set 2 (P2))
with NaCl in the range 133–210 mM, at a pH range of 5.8–6.2 and a loading concentration of 10–20 g/L.
The elution was fractionated into 1 mL fractions, where each fraction constituted a separate sample for
spectral measurements.

2.6. Protein Concentration and Analytical Size Exclusion Chromatography

Sample concentration was determined off-line by A280 UV spectrometry using Trinean (Unchained
Labs, Pleasanton, CA, USA) with the corresponding extinction coefficient. Only samples with a product
concentration above 0.5 mg/mL were used for the Raman measurements. The monomer purity
was monitored with high-performance size exclusion chromatography (HP-SEC) using a TSK-GEL
G3000SWXL column (7.8 mm× 30 cm) from Tosoh Bioscience (King of Prussia, PA, USA) with an
Agilent 1200 HPLC system (Agilent Technologies, Santa Clara, CA, USA). The column was operated at
a flow rate of 1 mL/min with a mobile phase consisting of 0.1 M of sodium phosphate and 0.1 M of
sodium sulphate, pH 6.8. Protein was monitored by the absorbance at 280 nm, and the sample purity
was estimated by integrating the chromatograms.

2.7. Spectral Data Acquisition

All the spectral measurements were performed using the InVia confocal Raman microscope
(Renishaw, Wotton-under-Edge, UK) equipped with a 785 nm laser. Prior to spectral measurements,
the acquisition settings were optimised in respect to the focal point, sample volume, laser output,
and duration of measurements. Measurements of the cell culture were performed in the range of 381
to 1534 cm−1 using a 10% laser power (30 mW), 30 s acquisition time, 5 accumulations, and line-focus
using a 5X objective (Leica Microsystems, Wetzlar, Germany). For each sample, 350 µL of culture
was spun down to remove cells, and 300 µL of supernatant was used for the acquisition. The data
acquisition was performed using polypropylene (PP) 96-well plates (Greiner Bio-one, Stonehouse,
UK) using the Microplate mapping option of the WiRe 5.2 software (Renishaw, Wotton-under-Edge,
UK). Data acquisition for the CEX samples was performed similarly to the cell culture samples,
with a difference in acquisition range (605–1741 cm−1). Additional experiments were performed
comparing the signal from the PP 96-well plates with the signal from stainless steel plates, which
were custom-made. The acquisition was further optimised using a long-distance 50X objective (Leica
Microsystems, Wetzlar, Germany), increasing the laser power to 100%, and decreasing the acquisition
time to 10 s and 3 accumulations.

2.8. Spectral Data Pre-Processing and Model Set-Up

The Raman data recorded by the HT InVia Raman microscope for both the USP and DSP
applications were pre-processed and modelled in Python 3.7.1. PLS was used to develop the
predictions of the variables in both the USP and DSP case studies. In the analysis of the USP variables
and the product concentration in the DSP case study, the background fluorescence was removed by
fitting and subtracting a 1st order polynomial to each individual spectrum using the open-source
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Rampy library [58] (Le Losq 2018). The baseline corrected spectra were subsequently normalised
by applying a standard normal variate (SNV) algorithm, which corrects for scattering effects due to
slight changes in the path length of the Raman device in addition to correcting for changes in the cell
culture composite such as viscosity. Prior to the SNV, the data were smoothed using a Savitzky–Golay
smoothing filter. For the monomer concentration in the DSP case study, the PLS model was developed
using the raw spectra. In the USP application, the calibration data set consisted of cell cultures: 1–5 and
7–11 (cell line A), 13–17 and 19–23 (cell line B), and the validation runs equal to cell cultures 6 and
12 (cell line A) and 8 and 24 (cell line B). In the DSP application, the individual CEX runs differed in
the elution buffer conditions, where the calibration set consisted of elution fractions from runs using
20 mM of sodium citrate, with varying levels of sodium chloride (0–0.5 M). There were two district
validation sets—the first (P1) was in an identical buffer range to that of the calibration set and consisted
of 40 samples, whereas the second (P2) consisted of elution fractions using elution buffer containing
50 mM of sodium citrate as well as a wider salt range (133–210 mM), and consisted of 22 samples.
The optimum number of latent variables for each of the PLS models was identified by minimising both
the root mean square error (RMSE) based on the calibration data set and the root mean square error of
prediction (RMSEP) based on the validation data set.

2.9. Partial Least Squares Model Generation

The PLS model implemented the nonlinear iterative partial least squares (NIPALS) algorithm, as
outlined in detail by Wold et al. [59]. The preprocessed spectral data (XSpectra) were first decomposed
into N latent variables, generating a matrix of scores, T, and loadings, P, with E as the residuals.
The off-line concentration of the glucose concentration (YVariable) was decomposed in a similar fashion,
generating a matrix of scores, U, and loadings, Q, with F as the residuals:

XSpectra = TPT + E, (1)

YVariable = UQT + F. (2)

The inner-relationship B vector is generated by relating the scores of the XSpectra to the scores of
the YVariable, calculated as:

B = XT
Spectra(T)

(
XT

SpectraXSpectra

)−1
. (3)

The PLS model works iteratively through each latent variable and, upon convergence, generates a
matrix of regression coefficients β equal to:

β = W
(
PTW

)−1
diag(B). (4)

The predicted Y variable (
.

YVariable) is calculated with the cumulative sum of the regression
coefficients, taking N latent variables, defined by Goldrick et al. 2018 as [12]:

.
YVariable = XSpectra

∑N

n=1
β. (5)

3. Results and Discussion

This paper evaluates the performance of a novel HT-Raman spectroscopy device applied to two
critical USP and DSP operations within biopharmaceutical manufacturing. This evaluation includes
the development of a Raman spectroscopy model generation workflow shown in Figure 1, outlining the
necessary steps to ensure that a robust MVDA model is generated. The novelty of the presented
workflow is that, in addition to quantifying the performance of the MVDA model using traditional
RMSE and RMSEP metrics, it suggests interpreting the model’s coefficients and comparing them to the
expected Raman vibrational signatures of the variable investigated to ensure that the accuracy of the
predictions are independent of the metabolism-induced concentration correlations. This novel Raman
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spectroscopy model generation workflow is demonstrated on two case studies, the first involves the
at-line monitoring of an HT micro-bioreactor system cultivating two mammalian cells expressing two
different therapeutic proteins. The second application of this device involves the development of a
cation exchange chromatography step for an Fc-fusion protein to compare different elution conditions.
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3.1. Demonstration of HT Raman Spectroscopy Microscope to USP

In this work, the HT InVia Raman microscope was applied to two essential R&D unit operations
within biopharmaceutical manufacturing. The first investigated the application of MVDA to
transform the Raman spectra from a USP operation to predict the primary metabolite concentrations,
cellular growth characteristics, and therapeutic protein concentrations of a mammalian cell culture
performed on a micro-bioreactor system. The off-line variables investigated in this work were recorded
every 48 h and are shown in Figure 2. In total, there were 12 cell culture runs from cell line A and 12
cell culture runs from cell line B, with the majority of these harvested early on day 10 due to the high
accumulation of lactate, as shown in Figure 2C. The high lactate production was due to controlled
fluctuations in the DO2 set-point that involved manipulating the DO2 to between 10–40% and studying
the influence of these fluctuations on the growth and productivity. The adjustments to the DO2

set-points resulted in the majority of the cells maintaining their lactate production state from day 4 to
10. The influence of these DO2 concentration fluctuations on lactate production is outside the scope
of this paper. Apart from the lactate concentration, the glucose, VCD, and antibody concentrations
shown in Figure 2 represent the typical ranges expected for mammalian cell cultures, providing an
ideal data set to investigate the performance of this HT-Raman spectroscopy device. The analysis of
the experimental Raman spectra followed the workflow shown in Figure 1, and the MVDA model
chosen was a PLS model defined by Section 2.9. The data split used to build this PLS model is shown
in Figure 2, with runs 1–5 and 7–11 (cell line A) and 13–17 and 19–23 (cell line B) used for calibration,
and runs 6 and 12 (cell line A) and 18 and 24 (cell line B) used for validation.
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Figure 2. Time series plots of off-line analytics recorded on a micro-bioreactor system for (A) glucose
concentration, (B) viable cell density (VCD) concentration, (C) lactate concentration, and (D) antibody
concentration. Cell line A is indicated by the solid lines with the red lines and squares representing
the calibration cell cultures: 1–5 and 7–11. The validation runs are indicated by the blue lines with
diamonds, and represent cell cultures 6 and 12. Cell line B is indicated by the dashed lines with the green
lines and squares representing the calibration cell cultures: 13–17 and 19–23. The validation runs are
indicated by the yellow lines with diamonds and represent cell cultures 18 and 24. The micro-bioreactor
system had 24 parallel bioreactors with an initial working volume of 13.5 mL, operated using a pH
set-point of 7, DO2 concentrations of between 10–40%, and a temperature maintained at 35.5 ◦C.

The spectral analysis was carried out using the remaining off-line analytic sample, equivalent to
300 µL. This material was split up into three separate wells on a 96-well plate, providing triplicate 100 µL
samples for the HT InVia Raman microscope device. The selected sample volume of 100 µL was found
to produce the most consistent spectra, although smaller volumes can be accommodated. The raw
spectral data is shown in Figure 3A and highlights the significant baseline increase as the culture
progresses from day 0 (inoculation) to day 10. An approximate 15-fold increase is observed in the
average baseline of the Raman spectra recorded on day 0 compared to day 10. Corrupting fluorescence
still remains a major problem for Raman spectroscopy, particularly during upstream processing
operations, where broad fluorescence background signals have been shown to mask out important
Raman peaks and thus prevent the extraction of useful correlations [12]. To minimise the influence of
fluorescence in this work, a baseline removal algorithm was implemented, followed by the application
of a scattering correction algorithm referred to as standard normal variate (SNV). The application of
SNV is highly recommended when using a HT Raman spectroscopy microscope, as it corrects for
minor path length differences between the laser source and the sample due to small volume changes,
resulting in the baseline displacement of the spectrum along the vertical axis. These pre-processed
spectral data are shown in Figure 3B and were used to develop the PLS models of glucose, VCD,
lactate, and antibody concentrations. Alternative methods to remove strong fluorescence signals
include taking the 1st derivate of the spectra, followed by SNV. This was demonstrated by Berry et
al., who observed a significant baseline shift during the on-line monitoring of a CHO cell culture
system and generated highly accurate models of multiple process parameters including glucose, lactate,
and VCD (Berry et al. 2015).
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Figure 3. Raman spectra recorded by the high-throughput Raman spectroscopy microscope for each of
the 24 micro-bioreactor cell culture runs on day 0–10 shown in the form of (A) the raw spectral data and
(B) the baseline-corrected spectra, using a 1st order polynomial function followed by the application of
a standard normal variate (SNV) scattering scatter algorithm and a Savitzky–Golay smoothing filter.
Each spectrum was generated using 5 accumulations each with a 30 s acquisition time, recorded using
10% laser power (30 mW).

Four separate PLS models were developed to correlate the pre-processed spectra shown in
Figure 3B to the concentrations of glucose and lactate, VCD, and the antibody concentration. The model
was calibrated using cell culture runs 1–5 and 7–11 (cell line A) and 13–17 and 19–23 (cell line B),
and validated with runs 6 and 12 (cell line A) and 18 and 24 (cell line B). The prediction performances
of the optimum PLS models for each variable are summarised in Table 1. The choice of latent variables
was based on minimising the root mean square error (RMSE) for the calibration data sets and the root
mean square error of the prediction (RMSEP) values for the validation data sets, which ensured an
accurate model with a good prediction performance. However, a low RMSE and RMSEP does not
always equate to a robust model.

Table 1. Summary of the partial least squares (PLS) latent variable selection and model statistics for the
off-line variables of glucose, VCD, lactate, and antibody concentration.

Off-Line Variable Latent Variable
Selection

Calibration
(RMSE)

Validation
(RMSEP)

Calibration
(R2) Validation (R2)

Glucose
(g L−1) 7 0.19 0.38 0.97 0.88

VCD
(1 × 106 cells mL−1) 7 1.78 3.49 0.99 0.96

Lactate
(g L−1) 7 0.59 1.16 0.96 0.94

Antibody
(g L−1) 7 0.17 0.09 0.99 0.94

Note: RMSE = root mean square error, RMSEP = root mean square error of prediction.
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A comparison of the experimental recorded off-line variables to those predicted by the PLS models
is shown in Figure 4. The PLS model for glucose concentration is shown to accurately predict the
off-line measurements between the range of 1 and 5 g L−1, as shown in Figure 4A. The RMSE and
RMSEP of glucose concentration are equal to 0.19 and 0.38 g L−1, respectively, which is equivalent to
±4.75% and ±9.5% of the glucose range investigated. Additionally, these values are below the typical
measurement error of offline analysers of ∼0.5 g L−1. These predictions are comparable to the glucose
predictions demonstrated by Rowland-Jones and Jaques [60], who observed an RMSE of 0.24 g L−1 and
an RMSE of cross validation equal to 0.32 g L−1 using a similar type of Raman microscope during the
at-line monitoring of a mammalian cell culture system in a miniature bioreactor system. The lactate
predictions were slightly higher than those reported by Rowland-Jones and Jacques [60], who reported
an RMSE of approximately 0.25 g L−1 and an RMSE cross validation of 0.30 g L−1. However, the lactate
predictions considered in this work were across a much wider concentration range, and demonstrate
the ability of this tool to accurately predict lactate in excess of 12 g L−1. The prediction accuracy of
this HT-Raman microscope for both glucose and lactate is highly comparable to the on-line Raman
spectroscopy sensors for mammalian cell culture systems reported in the approximate RMSEP range
of 0.2–0.9 g L−1 for glucose concentration and 0.1–04 g L−1 for lactate [17,18,61]. The accuracy of these
at-line predictions is comparable with the accuracy of the off-line nutrient analyser, and therefore
has the potential to replace these analysers and help facilitate the development of an at-line glucose
control strategy.
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(B) viable cell density (VCD), (C) lactate concentration, and (D) antibody concentration.
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Four separate PLS models were built utilising 7 latent variables for each variable investigated,
and calibrated using cell culture runs 1–5 and 7–11 from cell line A (indicated by the red squares) and
runs 13–17 and 19–23 from cell line B (indicated by the green squares). The model was validated using
cell culture runs 6 and 12 from cell line A (indicated by the blue diamonds) and runs 18 and 24 from
cell line B (indicated by the yellow diamonds). The spectral data utilised in each PLS model were
baseline-corrected spectra using a 1st order polynomial function, followed by the application of an
SNV scattering scatter algorithm and a Savitzky–Golay smoothing filter.

Conventionally, the RMSE and RMSEP are the gold standard for model comparison and, provided
the validation data set is independent, these metrics typically provide a good measure of the model’s
robustness. However, to further validate these model predictions the model coefficients should be
scrutinised to ensure the model robustness, as outlined by the Raman spectroscopy model generation
workflow defined in Figure 1. Within this work, the generated model was a PLS model, and the
regression coefficients of the PLS model are shown in Figure 5. To assess whether the dominant
wavenumbers highlighted by the PLS regression weights shown in Figure 5 are related to the variable
of interest, a table containing the majority of the Raman vibrational peak assignments associated with
each variable is shown in Table 2. This table highlights the associated Raman vibrational shifts expected
after excitation from each variable due to changes in the molecular bond length such as stretching,
which can be symmetric or asymmetric, or the bending of the molecular bond angles due to a wagging
or a rocking motion. By comparing the expected Raman signature profile of these variables to the
dominant peaks calculated by the PLS regression coefficients, the model’s robustness can be evaluated.
This ensures that the generated PLS model is specifically built to predict the variable investigated and
not due to the metabolism-induced concentration correlations of other variables.
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Figure 5. PLS regression coefficients (β) of each PLS model generated for (A) glucose, (B) viable
cell density, (C) lactate, and (D) antibodies, with the wavenumbers corresponding to the Raman
molecular signature of each variable highlighted by the shaded areas. The cut-off points for these
PLS regression coefficients are glucose: β > 0.02; VCD: β > 0.2; lactate: β > 0.05; and antibody:
β > 0.015. The spectral data utilised in each PLS model were baseline-corrected spectra using a 1st
order polynomial function, followed by the application of an SNV scattering scatter algorithm and a
Savitzky–Golay smoothing filter.
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For glucose, the dominant regression coefficients were characterised by peaks that had a regression
coefficient equal to or above 0.2 (i.e., β > 0.02). Wide peaks were characterised by the start, max, and end
wavenumber of these peaks and by the max wavenumber value for narrow peaks. The majority of
these peaks are shown to correctly align with the peaks associated with glucose, based on previously
published literature defining the wavenumbers associated with glucose [62–68]. This includes the
three distinct peaks in the 871–988 cm−1 range, which are indicated in Figure 5A as a single peak
at wavenumber 928 cm−1, which aligns with multiple literature references for the specific Raman
scattering bands associated with glucose. The other dominant peaks at 1373, 1061, and 517 cm−1 all
align with the expected peaks for glucose and further strengthen the predictions of the generated PLS
model. Another interesting observation was outlined by Söderholm et al. [64], who demonstrated
a small peak shift of approximate 2–5 wavenumbers depending on the glucose concentration in an
aqueous solution with varying water contents; this demonstrates why, in Table 2, some of the regression
peaks do not align precisely with those quoted in the literature. An additional evaluation of specific
Raman bands for individual metabolites was defined by Singh et al. 2015 [65], who investigated
the supernatants of a CHO cell culture grown in shake flasks using a Raman spectroscopy device.
They used a classical least squares algorithm to determine, with a high degree of accuracy, the specific
bands associated with both glucose and lactate. For glucose, they determined that there are seven
characteristic peaks related to glucose, which are located at the wavelengths 435, 516, 990, 1076, 1121,
1374, and 1460 cm−1, which all align with the dominant PLS regression coefficients features shown
in Figure 5A. The alignment of these PLS regression coefficients with the expected Raman peaks of
glucose provides additional confidence in this generated MVDA model. Similar observations were
observed for the main regression peaks of lactate shown in Figure 5C that were highlighted for all
the PLS regression coefficients above 0.05 (i.e., β > 0.05). The majority of these bands correspond
to the Raman vibrational bands characterising lactate in the literature, as demonstrated in Table 2.
Furthermore, Singh et al. characterised the main lactate-associated Raman peaks by wavenumbers 855,
922, 1045, 1085, and 1456 cm−1, which align almost perfectly with those shown in Figure 5C. Similar to
the glucose model, the correct alignment of the PLS regression coefficients with the expected lactate
vibration bands provides the necessary confidence in the PLS model to enable subsequent predictions
and deploy the MVDA model.

Figure 3B demonstrates the ability of this HT Raman spectroscopy to accurately predict the VCD
across the expected range of mammalian cell cultures. The RMSEP for the VCD was 3.49 × 106 cells per
mL−1, which is equivalent to the ±9% measurement range investigated, and was found to accurately
predict both high and low VCD concentrations for both cell lines, as shown in Figure 3B. The prediction
accuracy is similar to that reported by Rowland-Jones et al., which was equal to 4.49 × 106 cells per
mL−1. These VCD predictions are also comparable to on-line Raman spectroscopy systems monitoring
mammalian cell culture systems reporting predictions in the range of 1–5 × 106 cells per mL−1 [18,61].
The accuracy of these VCD measurements demonstrates the potential of this technology to replace
the traditional off-line cell counter based on the accuracy of these predictions between the two cell
lines investigated. However, as outlined in the Raman spectroscopy model generation workflow, it is
necessary to evaluate the regression coefficients of the model.

The PLS regression coefficients of VCD are shown in Figure 5B, with the main peaks identified as
those above 0.02 (i.e., β > 0.02), which are also indicated in Table 2. It is interesting to note that the
primary peaks identified are also closely associated with the expected Raman vibrational bands of
lactate. These highly correlated metabolite concentrations are problematic, as, although the RMSE
and RMSEP of this PLS model are low, it is difficult to deconvolute this strong association with lactate.
The correlation coefficient between the off-line lactate and off-line VCD concentrations was equal to
0.88, and therefore would help explain the location of these dominant lactate peaks corresponding to
the calculated VCD regression coefficients. This is particularly evident when comparing the dominant
lactate PLS regression peak shown at wavenumber 855 cm−1 in Figure 5C, which corresponds to the
strong peak shown in the VCD at this precise wavenumber shown in Figure 5B. This high correlation is
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most likely due to the high accumulated lactate on days 6, 8, and 10, shown in Figure 2C, which resulted
in a significant drop in the corresponding VCD values shown in Figure 2B. Based on a subsequent
analysis of the PLS regression coefficients, it would be recommended to not deploy this PLS model for
VCD and to generate additional experiment runs that do not result in a strong correlation between the
off-line analytics of VCD and lactate.

The most promising application of this HT-Raman spectroscopy device is the ability to accurately
predict the at-line product concentration, as shown in Figure 4D. The PLS model generated had an
RMSE equal to 0.09 g L−1, and the RMSEP was equal to 0.17 g L−1, which is equivalent to ±4.5%
and ±8.5% of the glucose range investigated. The accuracies of these predictions were similar to the
RMSEP reported by Rowland-Jones et al. equal to 0.57 g L−1 [60], and slightly better than the RMSEP
reported by on-line systems equal to 0.75–1.21 g L−1 [18]. The majority of previous research on Raman
spectroscopy focuses on the nutrient concentration and cell concentrations, however the ability to
measure product concentration opens up significant opportunities for the development of advanced
control strategies. One demonstration was shown by Rowland-Jones and Jaques [60], who adapted
nutrient and glucose feed additions through at-line predictions of glucose and VCD using a similar
type of HT Raman spectroscopy microscope. This is one of the first demonstrations of PAT applied
to control a miniature bioreactor system. The subsequent evaluation of the regression coefficients
for the generated PLS model shown in Figure 5D highlights some issues with the robustness of this
model. The dominant PLS regression coefficients for antibody were taken as those above 0.015 (i.e.,
β > 0.015). These peaks are shown to be primarily associated with either glucose or lactate. The strong
lactate peak shown at wavenumber 855 cm−1 is evident from Figure 5D, and in addition to the strong
glucose peak shown in Figure 5A at wavenumber 1373 cm−1 which can be observed at a similar
location in the antibody wavenumber of 1368 cm−1. Furthermore, the wavenumbers of 535, 1041,
and 1456 cm−1 associated with lactate are also dominant for the PLS regression coefficients of the
antibody. The strong association of antibody with both glucose and lactate can be partially explained
by the high correlation coefficient (R2) between the antibody and lactate equal to 0.77 and the antibody
and glucose equal to −0.47. The issues with these metabolite-induced concentration correlations have
been previously outlined by Rhiel et al. [69], who demonstrated that, due to the complex nature of
the majority of bioprocesses, some analyte predictions using spectroscopic methods are based upon
correlations between other variables. This was observed by Rheil et al. [69] during the analysis of
the main metabolites of a CHO cell culture using a MIR probe. They demonstrated a similar strong
independence between the majority of metabolite concentrations, which negatively affected their
predictions. The strong correlation between the variables investigated in this research poses a major
risk in subsequent predictions, where deviations in either glucose or lactate concentrations outside
of the concentrations investigated in this work would drastically influence the antibody and VCD
predictions. Subsequent experimental work is therefore needed to build more robust models that
should include the spiking of these variables to build an independent data set to calibrate and validate
these MVDA models.

Table 2. The dominant PLS regression peaks of glucose, lactate, VCD, and antibody and their
corresponding Raman spectroscopy vibrational signatures based on previous literature values detailing
reference wavenumbers for variables of interest.

Variable PLS Regression Peak (β) Wavenumber [cm−1]
[USP Model]

Reference
Wavenumber of
Analyte [cm−1]

Assignment Reference

start max end
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Table 2. Cont.

Variable PLS Regression Peak (β) Wavenumber [cm−1]
[USP Model]

Reference
Wavenumber of
Analyte [cm−1]

Assignment Reference

Glucose *

442 446 450
443 - [62]
450 δ (C-C-O) [63]
451 - [64]

510 517 521
514 - [62]
516 - [65]
518 δ (C-CO) [63]

559 562 567 - - -
583 588 590 585 δ (C-C-O) [63]
716 718 721 - - -

871 928 988

893 ν (C-C) [63]

895 δ (C-H), δ
(C-OH) [66]

898 - [62]
910 δ (C-H) [63]
913 - [62]
914 - [67]
990 - [65]

1006 1002 - [67]

1010 1019 1024 1018 δ (COH) [68]
1032 - - -

1059 1062 1066 1060 ν (CO) [63,66,68]

1128

1120 δ (COH) [63]
1121 - [65]
1122 - [67]
1124 ν (CO) [68]
1125 ν (C-C) [66]
1130 - [62]

1358 1373 1395

1360 w (CH2) [63]
1370 δ (C-H) [66]
1372 w (CH2) [68]
1373 - [62]
1374 - [65]

1490 - - -

Lactate **

381 402 417 - - -

535 540 w (CO2-) [70,71]

840 855 866
855 - [65]
860 ν (C-CO2-) [70,71]

926 930 r(CH3) [70,71]
1040 1045 ν (C-CH3) [65,70,71]
1084 1085 ν (C-O) [65,70,71]
1419 1420 ν (CO2-) [70,71]

1456
1455 δ (CH3) [70,71]
1456 - [65]

VCD ***

538 540 lactate (w
(CO2-)) [70,71]

840 855 866
855 - [65]

860 lactate ν

(C-CO2-) [70,71]

924 930 lactate (r
(CH3)) [70,71]

1040 1045 lactate (ν
(C-CH3)) [65,70,71]

1084 1085 lactate (ν
(C-O)) [65,70,71]

1420 1420 lactate (ν
(CO2-)) [70,71]

1456
1455 lactate (δ

(CH3)) [70,71]

1456 - [65]
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Table 2. Cont.

Variable PLS Regression Peak (β) Wavenumber [cm−1]
[USP Model]

Reference
Wavenumber of
Analyte [cm−1]

Assignment Reference

Antibody
****

538 540 lactate (w
(CO2-)) [70,71]

843 855 864
855 - [65]

860 lactate ν

(C-CO2-) [70,71]

1041 1045 lactate (ν
(C-CH3)) [65,70,71]

1362 1368 1384

1360 glucose (w
(CH2)) [63]

1370 glucose (δ
(C-H)) [66]

1372 glucose (w
(CH2)) [68]

1373 - [62]
1374 - [65]

1453 1456 1466
1455 lactate (δ

(CH3)) [70,71]

1456 - [65]

Note: w = wagging, δ = bending, ν = stretching, r = rocking. Cut-off points for PLS regression coefficient are
glucose: * β > 0.02; lactate: ** β > 0.05; VCD *** β > 0.2; antibody **** β > 0.15.

This ability to monitor these CPPs through at-line measurements opens up additional opportunities
for the development of advanced control strategies for miniature bioreactor systems. The reduction
in the necessary sample volume could enable more frequent at-line sampling, such as every 6 or 12
h, enhancing the monitoring and control of these miniature bioreactor systems. The application of
advanced control strategies earlier in the process development cycle encourages the integration of PAT
within future scale-up and commercial operations.

3.2. Application of Raman Spectroscopy to DSP

In this study, an HT InVia Raman Microscope was used to determine the total concentration
and monomer purity of Fc-fusion protein during CEX chromatography purification in order to guide
sample prioritisation for further analytical methods, such as the HPLC-SEC-based determination of
monomer purity and UV absorbance at 280 nm for the total protein concentration.

The data set was based on a total of 18 individual CEX runs, including both step and gradient
elution, resulting in total of 201 individual elution fraction samples, each of which were measured in
duplicate, producing a total of 402 spectra. Only elution fractions above 0.5 mg/mL were included
in the data set (as measured off-line by A280), as that was the previously estimated sensitivity of
the device.

The PLS models were built as described in Section 2.9, and followed the Raman spectroscopy
model generation workflow defined in Figure 1. The number of latent variables for the PLS model
were based on minimising the RMSE and RMSEP. The validation and calibration sets showed a range
of elution buffer conditions, where the PLS calibration set consisted of elution fractions from runs using
20 mM of sodium citrate, with varying levels of sodium chloride (0–0.5 M). There were two district
validation sets—the first (P1) was in the identical buffer range as the calibration set and consisted of
40 samples, whereas the second (P2) consisted of elution fractions using elution buffer containing
50 mM of sodium citrate, as well as wider salt range (133–210 mM), and consisted of 22 samples.
The product concentrations in the data sets ranged from 0.5 to 33.1 mg/mL for T1, 0.7 to 19.41 mg/mL
for P1, and 1.7 to 33.2 mg/mL for P2. The monomer purity ranged from to 70% to 100% for all three
data sets, with up to 20% HMW species and up to 20% LMW species. These two data sets were chosen
in order to test the robustness of the model to changes in salt concentrations and sample matrices
typically seen in purification processes.
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The PLS model describing product concentration is shown in Figure 6. Using seven LVs, the model
has resulted in an excellent degree of fit (Table 3), with an R2 (T1) = 0.99 for the calibration sample
set (4A) and R2 (P1) = 0.99 and R2 (P2) = 0.98 for the validation sets P1 (4B) and P2 (4C), respectively.
The RMSEP of 1.09 mg/mL for P1 and 3.54 for P2 corresponds to 6.1% and 11.2% of the range.
A higher error for validation set P2 is expected, due to wider range of buffer conditions relative to the
calibration set.
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model, with the exception that only samples with concentrations above 1.5 mg/mL were used. The 
model uses eight LVs. The summary of model statistics is shown in Table 3. The PLS calibration 
model for monomer purity resulted in an R2 (T1) = 0.98 (5A), R2 (P1) = 0.86 (5B), and R2 (P2) = 0.34 (7C), 
as shown in Figure 7. The RMSEP for monomer purity for P1 and P2 corresponds to 4.27% and 
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of 90% or higher, where a total of 92% of the samples were classified correctly as either true positives 
(80%) or true negatives (13%), as is shown in Figure 7D. 

Figure 6. Prediction performance of the PLS model predicting product concentration with (A) displaying
a parity plot for validation set T1, (B) parity plot for calibration set P1, (C) parity plot for calibration set
P2, and (D) confusion matrix that classifies the product concentration predictions above or below 1.5 g
L−1 in comparison to the experimental product concentrations. In the confusion matrix (D), the top left
cell indicates true positives, the top middle cell indicates false positives, the middle left cell indicates
false negatives, and the middle cell indicates true negatives. In each of these matrix cells, the value
indicates the number and percentage of samples in each category. In the total matrix cell columns and
rows, the total number of samples is given, with the percentage indicating the number of true positives
or true negatives.

Table 3. Summary of monomer purity and product concentration model fit (R2), RMSE of calibration
set, and RMSEP of two validation sets.

Statistical Measure of Fit Calibration (T1) Validation (P1) Validation (P2)

Product concentration (mg mL−1)

R2 0.99 0.99 0.98
RMSE/RMSEP 0.16 1.09 3.62

Monomer concentration (%)

R2 0.98 0.86 0.34
RMSE/RMSEP 1.09 4.27 13.68

Note: RMSE = root mean square error (used for calibration), RMSEP = root mean square error of prediction (used
for validation).

Furthermore, the model was used to classify samples based on whether or not the concentrations
were higher than 1.5 mg/mL (Figure 6D). This value of 1.5 mg/mL was selected as the cut-off point to
determine low-concentration samples; any samples below this concentration limit would not be further
analysed by high-performance liquid chromatography (HPLC). Since only samples above 0.5 mg/mL
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were included in the spectral measurements, the classification was working within a narrow range of
0.5 and 1.5 mg/mL. Within this range, 95% of samples were classified correctly, of which 74% were
true positives (concentration above 1.5 mg/mL) and 21% were true negatives (concentration below
1.5 mg/mL). The classification model classified both samples that were not part of the training set (P1
and P2), as well as samples that were used to build the model (T1), which leads to the accuracy of
prediction being higher than what would be seen if only previously unknown samples were used.
Nevertheless, this shows that the model can be used to determine which samples should be considered
for further analysis and pooling, and which can be discarded at this stage due to no or low levels
of protein.

The second variable of interest was monomer purity, as it is desirable to achieve maximal monomer
purity whilst minimising the presence of aggregated (HMW) or fragmented (LMW) species, or both.
In this experiment, a model was built that predicted monomer purity (Figure 5), although with a
relatively large RMSE, which would not allow for quantitative detection, but could serve to distinguish
between samples with high purity versus samples with low purity, and therefore save time for more
laborious methods such as HPLC.

The model predicting monomer purity was based on the same data set as the total concentration
model, with the exception that only samples with concentrations above 1.5 mg/mL were used.
The model uses eight LVs. The summary of model statistics is shown in Table 3. The PLS calibration
model for monomer purity resulted in an R2 (T1) = 0.98 (5A), R2 (P1) = 0.86 (5B), and R2 (P2) = 0.34
(7C), as shown in Figure 7. The RMSEP for monomer purity for P1 and P2 corresponds to 4.27% and
13.68%, respectively. The model was further used to classify samples according to a monomer purity
of 90% or higher, where a total of 92% of the samples were classified correctly as either true positives
(80%) or true negatives (13%), as is shown in Figure 7D.
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In the confusion matrix (D), the top left cell indicates true positives, the top middle cell indicates false
positives, the middle left cell indicates false negatives, and the middle cell indicates true negatives.
In each of these matrix cells, the value indicates the number and percentage of samples in each category.
In the total matrix cell columns and rows, the total number of samples is given, with the percentage
indicating the number of true positives or true negatives.

When validated using the two prediction sets, a relatively low RMSEP was achieved for data
set P1, and no useful predictions were achieved for set P2. This led us to believe that the model was
based on features that are absent from the P2 data set, which might be caused by changes in the elution
profile and the content of co-eluting impurities. Alternatively, the type of HMW/LMW species might
differ between data sets P1 and P2 due to changes in the elution buffer. Despite that, the model is
capable of classifying samples with an acceptable degree of accuracy.

The PLS model developed for product concentration was found to have a significantly lower
RMSEP, and was less susceptible to changes in the sample matrix conditions than the PLS for monomer
purity. Examining the PLS regression plots for the concentration model (described in Table 4 and
Figure 8A), multiple IgG spectral features can be identified, such as the Amide I and Amide III bands
at wavelengths 1673 cm−1, and 1236 and 1337 cm−1, respectively. Bands resulting from the vibrations
of amino acid groups can be further found at 757 and 1553 cm−1 for tryptophan, 1003 and 1208 cm−1

for phenylalanine, and 1208 cm−1 for tyrosine [72–74]. Regression coefficients corresponding to the
IgG peaks as annotated in the literature suggest that the model is valid and is based directly on the
protein spectra rather than on the spectral features of other correlated components.

Table 4. PLS dominant regression peaks of protein and IgG aggregates associated with monomer and
product concentrations and their corresponding Raman spectroscopy vibrational signatures, based on
previous literature values detailing reference wavenumbers for the variables of interest.

Variable PLS Regression Peak (β) Wavenumber [cm−1]
[DSP Model]

Reference
Wavenumber of
Analyte [cm−1]

Assignment Reference

Protein
****

(Fc-fusion
*****)

start max end

757
758 Trp [72]
759 [73]

1003
1002

Phe
[74]

1004 [72]
1005 [73]

1029 - - -

1208 1210 Tyr; Phe

1236
1239

Amide III
[74]

1243 [72]

1337 1340 Amide III [73]

1447
1450

CH2 def
[73]

1451 [72]

1553
1552 Trp [72]
1554 [73]

1673 1673 Amide I [74]

Protein
aggregate

831 863 901
830; 850 Tyr [45]

878 Tyr [73]

1437 1448 1446 - Tyr [45]
Tyr [73]

Note: Trp = Tryptophan, Tyr = Tyrosine, Phe = Phenylalanine. **** Cut-off points for PLS regression coefficients
product β > 0.0025; monomer β > 0.05. ***** Approximate assignment, as reference peaks correspond to human IgG,
whereas the investigated protein is an Fc-fusion protein.
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operators of such instruments, it might not necessarily justify the acquisition of such equipment. The 
major simplification of large screening experiments could be enabled by the ability to predict robustly 
monomer purity, especially in situations where LMW/HMW species elute throughout the main 
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Figure 8. PLS regression coefficient (β) plots for each PLS model generated for (A) the monomer purity
model and (B) product concentration, with the wavenumbers corresponding to the Raman molecular
signature of each variable highlighted by the shaded areas. The cut-off points for these PLS regression
coefficients are product: β > 0.005; monomer β > 0.075. The PLS model for monomer purity was
developed using the raw spectra. The PLS model for the product concentration was developed using
spectra that was baseline-corrected using a 1st order polynomial function, followed by the application of
an SNV scattering scatter algorithm and a Savitzky–Golay smoothing filter. The PLS model for product
concentration utilised 7 latent variables and the model for monomer purity utilised 8 latent variables.

The PLS regression plot for monomer purity in Figure 8A relies on the above-mentioned general
protein peaks, as can be seen based on the similarities between the two plots, but also has additional
features, especially in the area between wavelengths 831–901 cm−1 and 1437–1446 cm−1. Neither of the
two regions correspond to the spectrum of the citrate buffer (data not shown). Although difficult to
determine without further experimental data, this might correspond to aggregation, as the wavelength
region has previously been suggested to correspond to a shift in the tyrosine Fermi doublet at 830/850,
which is seem upon aggregation [45].

The results show that HT-Raman spectroscopy has the potential to support downstream
development through the rapid determination of product concentration and monomer purity,
which enables the prioritisation of samples for further analysis and therefore saves operator and
instrument time. We have shown that robust product predictions can be achieved, in line with the
previously published literature, but predictions of monomer concentrations had a relatively large
RMSEP and lower robustness. In order to make the Raman spectroscopy truly attractive to DSP,
improvements in terms of sensitivity need to be made.

Studies have described various spectral changes upon protein aggregation [45,46], although the
spectral features do not seem to be very consistent and might differ from product to product. As a
consequence, the PLS model described here might be relying on a combination of background
signal peaks and concentration peaks, rather than the specific spectral signal for aggregation and/or
fragmentation. This would also explain why the model predictions are significantly worse for the P2
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data set, where the elution buffer was changed, which likely results in changes to the background
spectra due to the changed sample matrix.

A specific spectral signature for aggregation/fragmentation might potentially be present, but the
sensitivity of the set-up could be insufficient to detect it. The majority of samples had a relatively
low aggregate content (below 5%), which would result in aggregate concentrations of about 0.025 to
1.655 mg/mL. Based on previous experiments, we have estimated the LOD at around 1 mg/mL; hence,
a large portion of the aggregate content in the samples might be below the limit. We have shown ways
to increase the sensitivity, including a change in the 96-well plate material, laser output, and objective
magnification, which would likely increase the sensitivity of the model.

Although a reduction in number of samples for HPLC analysis might be welcomed by the
operators of such instruments, it might not necessarily justify the acquisition of such equipment.
The major simplification of large screening experiments could be enabled by the ability to predict
robustly monomer purity, especially in situations where LMW/HMW species elute throughout the
main monomer peak without clear separation. The ultimate application of the technology would be the
real-time detection of multiple CQAs based on the Raman spectra, potentially integrated with currently
monitored variables such as UV, pH, osmolarity, etc. This would allow real-time control, leading to
a higher product quality and ultimately supporting initiatives such as continuous manufacturing.
This work is the first step towards such applications, as it highlights the current limitations as well as
the potential improvements that can be implemented.

3.2.1. Strategies for Improving Predictions

Considering the high RMSEP of the monomer purity model, efforts were made to increase the
sensitivity of the instrument by the optimisation of the acquisition settings. Adjustments to the
acquisition settings were made to improve the signal intensity, including a change in the sample
holder, microscope objective, and laser power. The data presented in this study were acquired using
polypropylene 96-well plates, which were switched to stainless steel in order to improve the signal.
As shown in Figure 9, there is a significant reduction in background between the PP plates and the
steel plates. Furthermore, when the acquisition was performed using a 50X long-working distance
objective, the background signal was further decreased, especially in the spectral range of the water
peak (1300–1500 cm−1). Additional improvement in the spectral quality came from using the higher
laser power (300 mW vs. 30 mW), which was enabled through the switch to steel plates, as using a high
laser power in the polypropylene plates caused the scorching of the plate and heating of the sample.
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3.2.2. Raman Spectroscopy Future Perspective

Raman spectroscopy has positioned itself as the leading on-line and at-line process analyser
for biopharmaceutical processes. This technology is non-invasive, non-destructive, and has little
interference with water, making it an ideal tool for both USP and DSP operations. One of the primary
challenges of Raman spectroscopy is the weak Raman signal that reduces the sensitivity of the
instrument and can be further hindered by background fluorescence, which, as demonstrated in this
work, is highly problematic during the analysis of biological samples. Pre-processing the spectra can
alleviate the majority of this fluorescence and ensure that accurate MVDA models can be generated
to predict the variable of interest. However, ensuring the developed MVDA model predictions have
a low RMSE and low RMSEP does not always guarantee a robust accurate model. To ensure the
developed MVDA model is sufficient, an in-depth evaluation of the regression weights is required.
In order to build a robust MVDA model, the regression coefficients should correspond to the correct
wavenumbers associated with the specific molecular vibration bonds associated with the Raman
scattering of the variable. This work provides two useful tables (Tables 2 and 4) outlining some of the
primary vibrational modes related to Raman scattering associated with glucose, lactate, and protein
based upon the previously published literature. This work demonstrated that, although the PLS model
generated for the antibody and VCD concentrations resulted in a low RMSE and RMSEP, the regression
weights of these models did not correspond to the antibody and VCD molecular vibrations; instead,
they corresponded to only those wavenumbers associated with lactate and glucose molecular vibrations.
Therefore, these metabolism-induced concentration correlations could lead to poor VCD and antibody
predictions when either the glucose or lactate concentrations differed from the current glucose and
lactate concentrations in this experiment. Therefore, the Raman spectroscopy model generation
workflow outlined in Figure 1 highlights the importance of analysing the MVDA regression coefficients
to ensure they align with the expected vibrational bonds associated with the variable, in addition
to presenting the traditional RMSE and RMSEP metrics. This paper also demonstrates the value of
an HT Raman spectroscopy device and its potential to revolutionise the monitoring and control of
automated microbioreactor systems. Although improvements to the prediction accuracy of the models
are needed, HT Raman spectroscopy has the potential to replace the need for additional analytic
equipment, which can reduce operating costs. The additional benefit of the HT-Raman spectroscopy
device is its ability to analyse samples across both USP and DSP operations.

4. Conclusions

This paper demonstrates the value of implementing MVDA to complex spectral data sets
generated by an HT-Raman spectroscopy microscope to support the at-line monitoring and subsequent
optimisation of USP and DSP operations, particularly those activities in early-stage development with
limited sample volume availability. The USP case study investigated the ability of this device to predict
the key process parameters typically measured off-line during cell culture for two different cell lines
grown in a micro-bioreactor system cultivating 24 cell culture runs. The Raman spectra recorded
throughout this mammalian cell culture was analysed using the Raman spectroscopy model generation
workflow outlined in this paper and enabled the development of an optimised PLS model resulting in
accurate predictions of the glucose, lactate, viable cell density, and product concentration. The RMSE
and RMSEP were comparable to previously reported in-line Raman spectroscopy probes. However,
upon the investigation of the regression coefficients of these variables, the VCD and antibody PLS
models were shown to be primarily correlated with the Raman vibrational signatures of lactate and
glucose. Therefore, subsequent experimentation is required to validate the robustness of these models.
However, these results demonstrate the potential of this technology to predict these off-line variables
using a single analytic device in comparison to three separate off-line analysers, which could greatly
simplify the monitoring of these micro-bioreactor systems. Additionally, these at-line measurements
require less volume than traditional analytic methods. This opens up opportunities for advanced control
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strategies and helps promote the inclusion of PAT in early-stage process development, thus simplifying
the adoption of PAT within commercial-scale manufacturing.

The second case study involved a commercial DSP unit operation and further demonstrates the
versatility and flexibility of this instrument. This case study focused on streamlining the sample
collection of the CEX chromatography step, investigating different elution conditions during the
purification of a fusion protein. The HT Raman microscope collected spectral data on 18 CEX runs
operated in both step and gradient elution modes; these runs were operated using different buffer
conditions. The potential of the Raman spectra to predict the total protein concentration and monomer
purity was investigated. Both variables were modelled by an optimised PLS model leveraging the data
from the Raman spectra. To demonstrate the robustness of the developed PLS model, two distinct
validation data sets were considered. The first calibration data set (P1) included identical buffers that
were in the same range as those used to calibrate the model. The second calibration data (P2) contained
elution fractions that used a buffer containing 50 mM of sodium citrate and a wider salt range that
was outside of the ranges of the validation data set. It was shown that the use of HT-Raman enables
relatively accurate predictions of the protein concentration and monomer purity, however when
the model was validated using a sample set with a different buffer background (P2), a significant
decrease in prediction accuracy was observed, suggesting separate models might have to be built for
specific conditions.

In summary, the HT-Raman spectroscopy microscope demonstrated significant potential as a novel
cross-functional PAT applicable to both USP and DSP operations. The device was shown to accurately
predict the primary CPPs in USP and the CQAs relevant to DSP through the application of MVDA.
Furthermore, this technology has the potential to reduce the reliance on multiple separate analytic
devices, thus reducing the capital and operating costs. Additionally, the near real-time information
generated can be further exploited to develop and implement advanced control strategies and process
optimisation earlier in the process development lifecycle.
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Abbreviations

AUC Area under curve
CEX Cation exchange chromatography
CHO Chinese hamster ovary
CPP Critical process parameters
CQA Critical quality attribute
DLS Dynamic light scattering
DSP Downstream processing
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FDA Food and drug administration
GMP Good manufacturing practice
HCP Host cell proteins
HMW High molecular weight
HPLC High performance liquid chromatography
HT High throughput
IEX Ion exchange
LMW Low molecular Weight
MIR Mid-infrared
MVDA Multivariate data analysis
NIR Near-infrared
PAT Process analytical technology
PLS Partial least squares
PLS-DA Partial least squares discrimination analysis
RMSE Root mean square error
RMSEP Root mean square error of prediction
R2 Correlation coefficient
R&D Research and development
SE Size exclusion
SERS Surface-enhanced Raman Spectroscopy
SNV Standard normal variate
SS Stainless steel
UHPLC Ultra high-performance liquid chromatography
USP Upstream processing
UV Ultraviolet
VCD Viable cell density
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