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Abstract: Anomaly detection in time series has attracted much attention recently and is quite a
challenging task. In this paper, a novel deep-learning approach (AL-CNN) that classifies the time
series as normal or abnormal with less domain knowledge is proposed. The proposed algorithm
combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) to
effectively model the spatial and temporal information contained in time-series data, the techniques
of Squeeze-and-Excitation are applied to implement the feature recalibration. However, the difficulty
of selecting multiple parameters and the long training time of a single model make AL-CNN less
effective. To alleviate these challenges, a hybrid dynamic membrane system (HM-AL-CNN) is
designed which is a new distributed and parallel computing model. We have performed a detailed
evaluation of this proposed approach on three well-known benchmarks including the Yahoo S5
datasets. Experiments show that the proposed method possessed a robust and superior performance
than the state-of-the-art methods and improved the average on three used indicators significantly.

Keywords: membrane systems; anomaly detection; time series; convolutional neural networks;
long short-term memory

1. Introduction

Anomaly detection aims to find abnormal behavior of data and is widely studied in many fields,
like fault detection or predicted maintenance in industrial systems [1]. The reason anomaly detection
is important is because anomalies usually contain useful and critical message. To cope with the
increasing data collected by research institutions and industries through the Internet of Things (IoT),
it is important to have automated procedures that separate the anomalies from normal data.

However, anomaly detection is considered a hard problem [2]. The extremely unbalanced data
distribution is the biggest difficulty, and the negative class rate is extremely low. One detection
algorithm which works very well on a certain benchmark might get surprisingly bad performance
on another. Moreover, anomaly detection for time series is much more difficult due to the issue
inherent in time series. For these reasons, this paper tries to find an effective and robust detection
algorithm. Many scholars have studied the methods of detecting abnormal patterns by extracting
data features in the field of anomaly detection. Anomaly-detection methods mainly consist of three
types: statistical modeling [3–6], such as the k-means clustering and Random forest methods, temporal
feature modeling [7–10] which is mainly based on the LSTM, and spatial feature modeling [11–13]
which takes the advantages of CNN. Traditionally, time-series anomaly detection has been tackled
using distance-based methods, such as the dynamic time wrapping algorithm (DTW) [14], meanwhile,
artificial neural networks have become powerful tools for time-series anomaly detection due to the
large amount of data.
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Membrane computing (P system) [15], a novel branch of natural computing, has gained popularity in
recent years due to its promising features such as the distribution, uncertainty, and especially, parallelism.
The P system were inspired by the structure and function of biological cells and communication
in tissues, organs and cell populations [16,17]. Many variants of P system has been proposed and
combined with many optimization approaches [18,19] which shows great performance of convergence
and robustness [20–24]. Furthermore, with the development of GPU and to make most use of the
parallelism of membrane systems, P system has been simulated in GPU [25] recently. However,
the common P systems use the simplified membrane structures to deal with problems due to
computation purposes; therefore, it is necessary to use complex structures of membranes to solve
real applications.

Deep learning has become a popular machine learning approach due to its ability to learn
high-level representations related to the data, such as the periodicity and seasonality of the time
series. These representations are learned automatically from data with little or no need manual feature
engineering and domain expertise [26]. For time-series data, LSTM has become the most widely used
model for its ability to learn long-range patterns. LSTM works well in handling the variable-length
sequences, but it lacks the ability to extract local contextual information and cannot use the contextual
information; therefore CNN is integrated in this paper. Due to these considerations, the main intention
of this work is to combine P systems and deep-learning approach to develop a novel framework for
time-series anomaly detection. We proposed a hybrid dynamic membrane system (HM-AL-CNN)
which reduces the time and takes advantage of ensemble learning in deep P system. In the novel
membrane structure, we carry out multiple AL-CNNs for time-series anomaly detection which predicts
the label of next timestamp using a window of time-series.

2. Main Contributions

The objective of HM-AL-CNN is to robustly detect time-series point anomalies and discord. As far
as we know, this is the first attempt to solve temporal data anomaly-detection tasks via a membrane
system-based approach. Profiting from its parallelism, the proposed P system can handle several
AL-CNN models with different initialization to get effective features simultaneously. For comparison,
we evaluate our methods on three well-known benchmarks that have been employed by many previous
approaches. Experimental results show that the proposed methods possess a robust and superior
performance compared to the state-of-the-art methods. The following are the main contributions of
this paper.

1. A hybrid dynamic P system is proposed to solve complex tasks, which integrate the tree-based
and graph-based P system; two types of membrane evolutionary rules are introduced as well.

2. This paper intends to take advantage of the outstanding performance of P systems and
deep-learning methods. CNN and LSTM were integrated into the proposed membrane systems
for time-series anomaly-detection tasks.

3. The proposed method employs LSTM with attention mechanism; squeeze-and-excitation
networks are extended and added to further improve the performance.

4. The proposed approach is evaluated on three well-known benchmarks from different domains
and shows better performance than other detection algorithms.

The rest of this paper is arranged as follows. Section 3 gives an overview of the background works
and gives the architecture framework of HM-AL-CNN. In Section 4, experimental settings and datasets
description are presented. Section 5 provides a detailed evaluation of the proposed algorithm on three
well-known benchmarks along with other popular anomaly-detection methods. Finally, conclusions
and direction for future work are laid out in Section 6 .
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3. Related Works and Method

3.1. Background Works

3.1.1. Long Short-Term Memory and Convolutional Neural Networks

Long short-term memory is a mainstream kind of RNN [27] and is much more complex, capable of
learning long-term dependencies. LSTM relieves the problem of vanishing gradient by replacing the
self-connected hidden units with memory blocks [28]. LSTM has been adopted widely for machine
translation and time-series forecasting. The architecture of an LSTM is shown in Figure 1.

f c

i

o

xt ht-1

ht

Figure 1. The architecture of an LSTM. i, f, o represents input gate, forget gate and output gate
respectively, c indicates the cell activation vector.

The formula of LSTM is given below, the W∗s, R∗s and b∗s are the input weights, the recurrent
weights and the biases, respectively, zt , ht indicates input and output of the LSTM unit, st is the current
cell state:

zt = tanh(Wzxt + Rzht−1 + bz) (1)

it = σ(Wixt + Riht−1 + bi) (2)

ft = σ(W f xt + R f ht−1 + b f ) (3)

ot = σ(Woxt + Roht−1 + b0) (4)

ct = zt(Wo � it + ct − 1� ft) (5)

ht = tanh(st)� ot (6)

Convolutional neural network (CNN) is also a type of ANN and was developed for image
classification problems. CNNs can be applied to one-dimensional sequences of data as well, such as
human activity recognition; the model can learn an internal representation of the time-series data and
achieve comparable performance. The CNN employs a convolution operation and is defined as:

(t) = (x ∗ w)(t) (7)

This formula can be regarded as a weighted average of x(τ) at the time stamp t, where weight is
calculated by w(−τ) shifted by amount t. One-dimensional convolutional is defined as:

s(t) =
∞

∑
τ=−∞

x(τ)w(t− τ) (8)
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3.1.2. Attention Mechanism

The attention mechanism was proposed by Bahdanau [29] and is used in various deep-learning
models. As the function given by the following equation shows, the context vector ci for the output is
calculated using a weighted sum of the annotations hi which means that the context vector ci depends
on a sequence of annotations (h1, ..., hTx ) . Each annotation hi contains specific information and drops
the irrelevant information about the whole input.

ci =
Tx

∑
j=1

αijhj (9)

where weight αij is the attention score of each annotation. It can be calculated as follows:

αij =
exp(eij)

∑Tx
k=1 exp(eik)

(10)

where eij is the output score of a neural networks given by a(vi−1, hj) , vi−1 is the hidden state,
hj indicates the j-th annotation, eij attempts to capture the alignments of the input at j and output at i.

3.1.3. Tissue-Like and Cell-Like Membrane Systems

In this section, we briefly introduce some concepts related to P systems which are distributed
computational parallel models. Membrane computing was inspired by the structure and functions
of cells, tissues and organs. In recent years, researchers have turned to the application of membrane
computing models. Generally, there are three main families: cell-like P system [30], tissue-like P
system [31,32] and neural-like P system [33]. The structure of the tissue-like P system can be viewed
as a net, a tissue-like membrane system of degree m > 0 is constructed as follows [34]:

Π = (O, ω1, ..., ωq, R1, ..., Rq, R′, i0) (11)

where O represents finite non-empty alphabets of objects; ωi(1 ≤ i ≤ q) are initial multisets of
objects present in cell i; Ri are finite sets of evolution rules in cell i(1 ≤ i ≤ q), R′ is a finite set of
communication rules; i0 ∈ {0, 1, ..., q} indicates the output region where the computation results
are placed.

A cell-like P system has a hierarchical arrangement of membranes inside a skin membrane.
Each membrane delimits a region where multisets of objects and rules are placed and a set of evolution
rules take the form [ω → ω′] [34].

3.2. Deep Neural Network with Squeeze-and-Excitation and Attention Mechanism (AL-CNN)

Squeeze-and-Excitation

Hu [35] proposes a squeeze-and-excitation Network (SENet) for CNNs to improve the channel

interdependencies. SENet is an architecture for transformation Ftr : X → U, X ∈ RW
′×H

′×C
′
, U ∈

RW×H×C. We can then represent output of Ftr as U = (u1, u2, ..., uc), uc is defined as follows,
∗ represents the convolution operation and vs

c is the kernel.

uc = vc ∗ X =
C′

∑
s=1

vs
c ∗ xs (12)

Hu improves the channel interdependencies through squeeze-and-excitation operation.
The squeeze process uses a global average pool to get a global understanding of each channel. In our
case, similar to the image data, the U is generated by shrinking through the temporal dimension T
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to achieve the channel-wise statistics, z ∈ RC, the cth element of z is calculated by Fsq(uc) which is
defined as follows:

zc = Fsq(uc) =
1
T

T

∑
t=1

uc(t) (13)

To use the aggregated information obtained from the squeeze stage, excite operation that uses
two fully connected layers is employed to get the channel-wise dependencies. We employ an equation
given below:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (14)

where Fex is a neural network, σ and δ indicates the sigmoid function and ReLU function respectively,
W1 and W2 are learnable parameters of Fex. Finally, the output of the block is gained by rescaling U
as follows:

x̃c = Fscale(uc, sc) = sc · uc (15)

where X̃ = (x̃1, x̃2, ..., x̃C) and Fscale(uc, sc) represents the channel-wise multiplication between the
feature map uc and the scalar sc.

Normally, time-series anomaly detection can be transformed into a binary classification problem
but is much more complex, for the data is extremely imbalanced. LSTM and CNN have rarely been
combined to realize time-series anomaly detection. Similar to the LSTM-FCN proposed by Fazle
Karim [36], the model we proposed (AL-CNN) combines both and extends the LSTM with attention
mechanism; furthermore, one-dimensional convolution (1DCNN) is added before the attention LSTM
to improve the efficiency of the model. In particular, we extend the Squeeze-and-Excitation block to the
case of 1D sequence models to enhance the anomaly-detection accuracy. The model can handle both
the point anomaly and discords no matter how univariate or multivariate time series. The procedure
of the proposed AL-CNN is shown in the Figure 2.

Figure 2. The architecture of the proposed AL-CNN which shows each step of the procedure.

3.3. Hybrid Dynamic Membrane Systems Based Al-Cnn (Hm-Al-Cnn) for Time-Series Anomaly Detection

3.3.1. Architecture Summary of Hm-Al-Cnn

Generally, both tissue-like and cell-like P systems are predigestion and they are not applied to deal
with hard problems in the real world. In this work, we intend to use the strengths of both tissue-like
and cell-like membrane structure to develop a hybrid dynamic membrane structure as shown in
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Figure 3. The graph-based and tree-based membrane structure is depicted via rounded rectangle and
squares, respectively. A hybrid dynamic membrane system is constructed as the form:

Π = (O, E, u, uT , uG, ω1, ..., ωq, R1, ..., Rq, i0) (16)

where O represents a finite set of objects; E ⊆ O is the set of objects in the environment; µ is a membrane
structure which include µT and µG, here, µT are Tree-based membranes and µG represent Graph-based
membranes; the symbols ω1, ..., ωq are finite sets of strings over O of q membranes; the i0 represents
the output membrane of Π and R1, ..., Rq are finite sets of rules including two types described below:

The G-rule is used in the HM-AL-CNN to establish a synchronous communication channel
within the computation cells, exchange the multiset ai of cell x with multiset bi of cell y, x and y are
membrane labels:

Π = (ai, out, x; bi, in, y) (17)

The C-rule compares the output of each AL-CNN and picks the best one as the final result:

{pre−Output1, pre−Output2, ..., pre−Outputm} → output (18)

LLL

L C1

Cm

C_1 O_1

O2

m

pre-output

Conv1d
Attention 

Lstm
Conv1d

Batch 

nornalization

softmax

Squeeze

Conv1d
Batch 

nornalization

Global 

pooling

Excitation

Preprocessing

L
O2Cm

pre-output

O_mC_m

Input

Input

Figure 3. Structure of the proposed P system for time-series anomaly detection.

3.3.2. Initialization

The P system yields the whole initial objects in Input cells; each object represents a 1-dimensional
or 2-dimensional vector, denoting the original time series with a size of w× h. Then, the Input cells
communicate objects to m computation cells to carry out each AL-CNN.

O = (β11, β12, ...β1h; βi1, βi2, ...βih; βw1, βw2, ...βwh) (19)
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where βi1, βi2, ...βih indicates the ith row of the time series.

3.3.3. Computation Mechanism

In this paper, the G-rule is introduced to implement several AL-CNNs and Pre-Output cell gives
the result of every AL-CNN. Objects in the P system evolve according to the step of AL-CNN described
in Section 3.2 during the computation phase. Then, the C-rule is applied to choose the best objects
among the Pre-Outputs as the final result of the HM-AL-CNN.

3.3.4. Termination and Output

The above computing procedures are processed iteratively, and the maximum computation
iteration is used as the halting condition. The membrane system halts when the maximum number of
iterations is reached and all the objects in the output cell are considered to be the final results of the
P system.

4. Experiments

4.1. Experiments Settings

To evaluate the proposed method, HM-AL-CNN has been tested on three benchmarks which
are described in Section 4.4. The model was optimized using Adam with an initial learning rate of
1× 10−6 and the convolution kernels are initialized by the He initialization scheme [37], ReLU was
used as the activation function for the hidden layers. The number of training epochs was determined
based on the length of the input; for the Yahoo Webscope S5, the model was trained for 500 epochs
using batches of 128. The Classic Anomaly Datasets and Space Shuttle Valve Dataset were trained for
700 epochs using batches of 256.

Time-series data need to be transformed into sequences of overlapping windows of size w so that
the system makes sense. For xt at time step t, its condition (normal or abnormal) is used as the label
of the former w elements; w is the time window size which is also called a history window. Then,
we can define the data as a form of (N, Q, M), where N is the number of samples in the time series,
Q indicates the maximum time steps and M represents the number of variables; we define the M to 1
if the time series is univariate.

In addition, both the train and test datasets are normalized using Equation (20). x and x′ represents
the value of the actual time-series data and the normalized value, respectively. Moreover, we define
fixed-sized anomaly windows with each window centered around an anomaly; points in the anomaly
window are labeled abnormal. For instance, if the anomaly window size is set to 10, indicating the
former 5 points and latter 5 points are labeled abnormal. Only the training sets are operated as
such; this up-sampling operation can relieve the extremely imbalance of the data and enhance the
performance significantly especially the recall rate.

x′ =
x− xmin

xmax − xmin
(20)

4.2. Loss Function and Output

Cross-Entropy Loss given in Equation (21) has been employed to measure the difference between
the actual value yj and predicted value ŷj.

L = (ylogŷj + (1− y)log(1− ŷj)) (21)
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In our case, the SoftMax layer classifies the output into two classes either normal or abnormal as
described in Equation (22). C indicates the class, d is the output of the fully connected layer, w is the
weight, L represents the last layer and Nc is the total number of classes.

P(c|d) = argmaxc∈C
exp(dL−1wL)

∑Nc
k=1 exp(dL−1wk)

(22)

4.3. Evaluation Metrics

The proposed approach is evaluated using Precision, Recall, F-score and AUC. If an abnormal case
is classified as a normal, this type of error is considered to be false negative (FN). True positive (TP),
true negative (TN) and false positive (FP) is defined similarly; each algorithm was evaluated through
TP, TN, FP and FN rates. In addition, AUC is also the most commonly used metric for evaluating
anomaly-detection methods.

4.4. Datasets Description

In this section, we describe three well-known benchmarks from different domains, including
real-world and the synthetic datasets which have been applied in previous works on anomaly
detection, including the Yahoo Webscope S5, Classic Anomaly-Detection Datasets and Space Shuttle
Valve Dataset.

• Yahoo Webscope S5 Datasets

Yahoo Webscope S5 consists of four classes. Class A1 contains the real Yahoo membership login
data, and A2, A3 and A4 contain synthetic anomaly data (https://research.yahoo.com). Table 1 shows
the characteristics of each sub-benchmark. This dataset contains 367 time series. Each time series
consists of almost 1500 data including 0.02% abnormal values. Figure 4a,b show the statistical graphs
for the class A1. We can see from the two figures that the data distribution of each file is significantly
different; it is not easy to carry out anomaly detection using statistical analysis techniques. Figure 5a
shows a real-world time series of the A1 class.

(a) (b)

Figure 4. (a) Standard deviation graph based on the average of the normalized amount of data in each
file. (b) Distribution of three time series of class A1.
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(a) (b)

Figure 5. (a) Example plot of the Yahoo Webscope S5. (b) Plot of the NASA Space Shuttle Valve Dataset.

Table 1. Characteristics of each class for the Yahoo Webscope S5.

A1 A2 A3 A4

Real
√

X X X
Synthetic X

√ √ √

Number of instance 94,866 142,100 168,000 168,000
Number of anomalies 1669 466 943 837

• Classic Anomaly-Detection Datasets

Six commonly used natural datasets have been adopted in this section, which can be found at
the UCIRepository [38] and OpenML; anomaly cases have already been marked as ground truth,
including the Pima, Covertype, Ionosphere, Mammography, Shuttle and Kddcup99. We have removed all
non-continuous attributes as done in [39,40]. Properties of each dataset are shown in Table 2.

Table 2. Characteristics of the six classic datasets.

Number of Instances Number of Features Anomaly Class Anomaly Rate

Pima 768 8 pos 34.90%
CoverType 286,048 10 class = 4 0.96%
Mammography 11,183 6 class = 1 2%
Ionosphere 351 32 bad 36%
Shuttle 49,097 9 classes 6= 1(class 4 removed) 7%
Kddcup99 494,021 41 class 6= normal 80%

• NASA Space Shuttle Valve Dataset

This dataset collects values which control the flow of fuel on the space shuttle. Some subsequences
are normal and few subsequences are abnormal. Figure 5b shows this time series, and the time series
is segmented to several subsequences with an orange dotted line; some subsequence are considered
abnormal or, in other words, discord subsequences.

4.5. Comparison to State-of-the-Art

Experiments on the Yahoo Webscope S5 are compared to several deep-learning approaches,
including the CNN, LSTM, CNN + LSTM, DeepAnt [41] and two popular tools, Yahoo EGADS
which was released by Yahoo Labs to detect anomalies in large scale time-series data and Twitter
Anomaly-Detection method which aims to detect anomalies of social network data [38]. There are also
many different previous works related to the classic anomaly benchmarks mentioned in Section 4.4,
for the sake of brevity, we select the popular anomaly-detection techniques for comparison including
the Isolation Forest (iForest), OCSVM, LOF [42].
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5. Results and Discussion

5.1. Results

• YAHOO Webscope S5 Datasets
The experimental results of the proposed compared to the other detection algorithms are shown

in Table 3 which demonstrates that the proposed improves the detection performance compared to
other algorithms, including the deep-learning and classic anomaly-detection algorithms. Figure 6a,b
indicate the experimental result of an example time series in the A1 class; HM-AL-CNN detects five out
of six anomalies and has only one false positive. Furthermore, HM-AL-CNN does the detection before
the true anomalies occur, which is vital to the real application scenery, especially in the industry field.
We compared our results with previous methods using the t-test as shown in Table 4. The p-values for
F-score of A1 are all < 0.05, and the proposed approach achieves a statistically significant improvement
over other methods. Table 5 shows a comparison of the proposed with other algorithms on the
whole Yahoo Webscope S5. This table gives average F-score of the comparison algorithms along
with the proposed data of each sub-benchmark. HM-AL-CNN outperforms other methods in three
sub-benchmarks and works slightly worse for sub-benchmark A4. We compared our results with
previous methods using a Wilcoxon signed-rank test as shown in Table 6; the proposed approach
achieves a statistically significant improvement over other methods except DeepAnt. Even though
HM-AL-CNN is not always the best, it achieves better means than DeepAnt and performs better in the
whole dataset.

Table 3. Performance comparison of the proposed with other methods on class A1.

Methods Accuracy Precision Recall F1 Score

Proposed method 0.94 0.59 0.79 0.66
LSTM 0.72 0.14 0.24 0.18
CNN 0.73 0.25 0.50 0.23
CNN + LSTM 0.86 0.38 0.44 0.35
YAHOO EGADS - - - 0.47
Twitter Anomaly Detection - - - 0.48

Table 4. The p-values of our method compared to the other methods on class A1.

Methods Dataset p-Value (F-Score)

LSTM A1 0.0050 (p < 0.05)
CNN A1 0.0021 (p < 0.05)

CNN + LSTM A1 0.0013 (p < 0.05)

(a) (b)

Figure 6. An example test set result on Yahoo dataset. (a) shows the time series; true anomalies are
highlighted by red markers. (b) shows the detection results. Shading in peach and green denotes
detections made by HM-AL-CNN.
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Table 5. Performance comparison of the proposed models with other methods on the whole Yahoo
Webscope S5.

A1 A2 A3 A4

Proposed methods 0.66 0.99 0.87 0.59
Yahoo EGADS 0.47 0.58 0.48 0.29
Twitter Anomaly Detection Alpha = 0.0 0.48 0 0.26 0.31
Twitter Anomaly Detection Alpha = 0.1 0.48 0 0.27 0.33
DeepAnt 0.46 0.97 0.87 0.68

Table 6. The p-values of our method compared to the other methods on the whole Yahoo Webscope S5.

Methods Dataset p-Value (F-Score)

Yahoo EGADS Yahoo S5 0.015 (p < 0.05)
Twitter Anomaly Detection Alpha = 0.0 Yahoo S5 0.015 (p < 0.05)
Twitter Anomaly Detection Alpha = 0.1 Yahoo S5 0.015 (p < 0.05)
DeepAnt Yahoo S5 0.500 (p > 0.5)

• Classic Anomaly-Detection Datasets

To evaluate different anomaly-detection algorithms along with the proposed on the Classic
Anomaly-Detection Datasets, AUC has been used. AUC is used commonly for evaluating the
detection approach on the mentioned datasets. We compare the results of three state-of-the-art
anomaly-detection methods with HM-AL-CNN and the results are shown in Table 7. For iForest,
OCSVM, and HM-AL-CNN, 40% of the actual data are used for training and rest for testing. We have
used the default parameters suggested in [39] for iForest; RBF kernel for OCSVM and k = 10 is applied
for LOF. Figure 7 shows that HM-AL-CNN has an arithmetic rank of 1.66 and performs better than the
existing methods via a critical-difference comparison of the average arithmetic ranks.

Table 7. Performance comparison of the proposed models with the rest methods on Classic
Anomaly-Detection Datasets.

iForest OCSVM LOF DeepAnt HM-AL-CNN

Pima 0.4 0.26 0.48 0.31 0.65
ForestType 0.78 0.70 0.57 0.85 0.92
Ionosphere 0.82 0.84 0.83 0.85 0.86
Mammography 0.85 0.89 0.72 0.99 0.97
Shuttle 0.98 0.99 0.56 0.99 0.94
kddcup99 0.98 0.99 0.42 0.99 0.99

0 1 2 3 4 5

HM-AL-CNN

DeepAnt

OC-SVM

LOF

iForest

Figure 7. Critical difference of the arithmetic means of the ranks on six datasets.
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• NASA Space Shuttle Valve Dataset

The above experiments have already shown that HM-AL-CNN is able to detect point anomalies in
time-series data. In this section, HM-AL-CNN is proved to be suitable to time-series discord detection
as well. Discords are subsequences that are different from the rest of a longer time series [43]. In this
experiment, this proposed algorithm can label most of the points in an abnormal discord cycle and
label the points in normal cycles normally. If the abnormal number is over the threshold we set,
we classify the sequence discord. Figure 8a,b show the experiment results, there are four normal
sequences and one discord in the test set; these experimental results demonstrate that the proposed
algorithms work well.

(a) (b)

Figure 8. Detection results of the proposed methods.As shown in (a), subsequence labeled in orange
color refers to a discord, shaded in orange denotes detections made by the proposed. The discord
sequence detected by HM-AL-CNN is shown specifically in (b).

5.2. Discussion

The proposed method achieves better results than the other methods in most cases. Due to the
different distribution of the time series, the proposed works slightly worse in some cases. From Table 3,
we found that the proposed performs better than CNN and LSTM-based algorithms, which indicates
that squeeze-and-excitation and attention mechanism could be used in this case to improve the
detection performance; in addition, the proposed achieves a recall value of 0.79, which improves
the previous methods significantly. Table 5 shows that the proposed works slightly worse in A4.
Whether or not the additional attributions such as the change-point and noise caused the slightly
bad performance still need to be explored, generally, the proposed works better on the whole Yahoo
S5. Table 7 indicates that HM-AL-CNN has an arithmetic rank of 1.66 and can find anomalies in a
multi-variant dataset as well.

6. Conclusions

In this paper, we propose a novel hybrid dynamic membrane system which takes advantages of
tissue-like and cell-like P system for a time-series anomaly-detection task. To get more accurate detection
results, CNN and LSTM with attention mechanism are combined, and 1D Squeeze-and-Excitation
mechanism is introduced to better learn effective features. Two types of rules are introduced in the
designed membrane system, profiting from the parallelism of P system; this proposed HM-AL-CNN
can process several AL-CNN models individually, which consumes less time. Experiments show that
the proposed possesses better performance than other time-series anomaly-detection algorithms in
different benchmarks. However, there are still many important parameters that need to be chosen
manually in our system, which remains to be addressed. Evolutionary algorithms such as the particle
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swarm optimization could be used in the future. Moreover, the design of a more effective membrane
system to solve complex problems is also meaningful.
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