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Abstract: In this paper, a gain-scheduled equivalent-cascade internal-model-control (IMC) tuning
method for water level control system of nuclear steam generator is presented. First, a water level
control system for a steam generator is transferred into an equivalent cascade-feedforward control
system. Second, analytical tuning rules for the equivalent cascade control system are derived based
on the IMC-(proportional-integral-derivative) PID method, which can simultaneously tune the
primary/secondary loops and avoid the re-identification step. Finally, gain scheduling is performed
to eliminate the influence of process nonlinearity. The experimental results of nuclear simulation
platform have demonstrated the superiority of the proposed tuning method.

Keywords: equivalent cascade; IMC-PID tuning; gain scheduling; water level control; nuclear
steam generator

1. Introduction

Nuclear energy is regarded as a more superior energy source. In terms of energy density and the
impact on the environment, nuclear energy surpasses both renewable resources and fossil. Nuclear
energy has received much attention in recent years due to its high energy density and low pollutant
emission [1].

Controlling the water level of a nuclear steam generator (SG) to a proper level is an important
task to secure the sufficient cooling source of the nuclear reactor and prevent the damage of turbine
blades [2]. It is estimated that around 25% of emergency shutdowns in nuclear power plants based on
pressurized water reactor (PWR) are owed to the poor control of the SG water level at low powers [3].

There are two main difficulties in the design of an effective water level controller: (1) the
dynamics of SG varies greatly according to the power level; (2) the “swell and shrink” effect leads
to the non-minimum phase characteristics. The widely-used water level control strategy of SG in
nuclear power plants is three-element-control [4]. Apart from three-element-control, an extensive
effort has been devoted to developing effective control strategies for the water-level control of SG,
including robust control, sliding model control, fuzzy control, model predictive control, and adaptive
control. Parlos et al. [5] proposed a gain-scheduled H∞ control method to regulate the SG water
level. Na et al. [6] designed an adaptive predictive controller for regulating the water level of nuclear
SG. Amin et al. [7] proposed an adaptive critic-based neurofuzzy controller for SG water level.
Ansarifar et al. [8] presented a dynamic sliding mode controller with gain-scheduling for nuclear SG.
Safarzadeh et al. [9] applied quantitative feedback theory to design a robust controller for the horizontal
SG. Wei et al. [10] designed the water level and the feedwater flow controllers by adopting an adaptive
backstepping approach. Raffaele [11] and He [12], respectively, proposed the water-filling control
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algorithms of waterlevels. Liu et al. [13] proposed a quasi-min-max fuzzy model predictive control
method to regulate the water level of the U-tube steam generator (UTSG) system. Ansarifar [14]
developed an adaptive dynamic sliding mode control method based on the first-principle model.

Previous research has focused on developing a new complex control strategy to replace the
three-element control strategy for improving the performance of the water level control system.
However, due to the high complexity and time-consuming of the algorithms involved, it is difficult to be
conveniently implement them in distributed control system (DCS). On the other hand, the three-element
control strategy is widely adopted in in-service nuclear power plants. Consequently, an effective
tuning method for a steam generator water level system based on the three-element control strategy
needs to be developed. However, the three-element control strategy is different from the conventional
single-loop proportional-integral-derivative (PID) control strategy (See Section 2.3). Traditional PID
tuning methods [15], such as the Ziegler-Nichols (ZN) method, dominant-pole-design (DPD) method,
and internal-model-control (IMC) method, cannot be used directly.

Therefore, we develop an equivalent-cascade IMC tuning method for the water level control
system of the nuclear steam generator. First, we transfer the water level control system of the nuclear
steam generator into an equivalent cascade-feedforward control system. Second, analytical tuning
rules for the equivalent cascade control system are derived on the basis of IMC-PID method, which can
simultaneously tune the primary/secondary loops and avoid the re-identification step of traditional
sequential tuning method. Finally, gain scheduling of controller parameters is performed to deal with
the nonlinear characteristics. The advantages of this proposed method are as follows: (1) it is easy
to implement in DCS and (2) it has achieved good performance at both low and high power levels.
The experimental results of the AP1000 simulation platform have demonstrated the validity of the
proposed method.

The remainder of this paper is organized as follows. Section 2 provides an overview on the water
level control problems of the AP1000 system. Section 3 presents the proposed equivalent-cascade IMC
tuning method for water level control system of nuclear steam generator. Section 4 illustrates the
experiment results. Section 5 draws conclusions.

2. Problem Formulation

2.1. AP1000 Steam Generator

The AP1000 system designed by Westinghouse is one of the most popular units among the
Generation III+ nuclear power plants [16,17]. Due to its passive safety function and economic
competitiveness, the AP1000 system has received final approval by US. NRC and been built in Sanmen
and Haiyang in China.

AP1000 is a two-loop PWR that uses natural forces and simplified design to improve plant safety
and reduce construction costs. The AP1000 reactor coolant system consists of two heat transfer circuits,
each with a vertical U-tube steam generator, and two canned motor reactor coolant pumps directly
installed on the steam generator, one single hot leg and two cold legs for circulating reactor coolant,
as shown in Figure 1.

In the AP1000, the primary coolant water is pumped to the reactor core. The fission reaction
generates the thermal energy to heat the coolant water. Then, it passes through the steam generator for
transferring the heat into the secondary coolant water to generate steam. This is called the primary
circuit. The steam from the steam generator drives the steam turbine to turn the generator. The steam is
then condensed and returned to the steam generator as feedwater. This is called the secondary circuit.

The steam generator is a thermal-hydraulic component in PWR-type nuclear power plants. It is
used to exchange heat between the primary and secondary circuits and provide steam to generate
electricity, as shown in Figure 2. The heat exchange area of the steam generator consists of multiple
equivalent inverted vertical U-tubes. Therefore, it is named UTSG.



Processes 2020, 8, 1160 3 of 17

Processes 2020, 8, x FOR PEER REVIEW 3 of 18 

 

 

Figure 1. Flowsheet of AP1000 reactor coolant system. 

 

Figure 2. Flowsheet of steam generator. 

2.2. Control Problems of Steam Generator Water Level 

For SG, the main goal of control system is to keep the water level within the allowable range by 

adjusting the feedwater flow rate when the steam demand changes due to changes in power demand. 

The difficulties in designing an effective water level control system arise from several 

unfavorable factors summed up as follows: 

 The open-loop dynamics of SG exhibit unstable behavior; 

 The shrink and swell effects lead to strong inverse response behavior, which is remarkable at 

low power; 

 Highly nonlinear characteristics, i.e., the dynamics of the process, vary with changes in 

operating power. 

Figure 3 shows the step responses of the water level under different operating powers by using 

the model proposed by Irving [18]. It can be concluded from Figure 3 that the inverse response 

behavior and nonlinear dynamic characteristic of the water level are more obvious at low operating 

power, which greatly complicates the design of an effective water level control system. 

Figure 1. Flowsheet of AP1000 reactor coolant system.

Processes 2020, 8, x FOR PEER REVIEW 3 of 18 

 

 

Figure 1. Flowsheet of AP1000 reactor coolant system. 

 

Figure 2. Flowsheet of steam generator. 

2.2. Control Problems of Steam Generator Water Level 

For SG, the main goal of control system is to keep the water level within the allowable range by 

adjusting the feedwater flow rate when the steam demand changes due to changes in power demand. 

The difficulties in designing an effective water level control system arise from several 

unfavorable factors summed up as follows: 

 The open-loop dynamics of SG exhibit unstable behavior; 

 The shrink and swell effects lead to strong inverse response behavior, which is remarkable at 

low power; 

 Highly nonlinear characteristics, i.e., the dynamics of the process, vary with changes in 

operating power. 

Figure 3 shows the step responses of the water level under different operating powers by using 

the model proposed by Irving [18]. It can be concluded from Figure 3 that the inverse response 

behavior and nonlinear dynamic characteristic of the water level are more obvious at low operating 

power, which greatly complicates the design of an effective water level control system. 

Figure 2. Flowsheet of steam generator.

2.2. Control Problems of Steam Generator Water Level

For SG, the main goal of control system is to keep the water level within the allowable range by
adjusting the feedwater flow rate when the steam demand changes due to changes in power demand.

The difficulties in designing an effective water level control system arise from several unfavorable
factors summed up as follows:

• The open-loop dynamics of SG exhibit unstable behavior;
• The shrink and swell effects lead to strong inverse response behavior, which is remarkable at

low power;
• Highly nonlinear characteristics, i.e., the dynamics of the process, vary with changes in

operating power.

Figure 3 shows the step responses of the water level under different operating powers by using the
model proposed by Irving [18]. It can be concluded from Figure 3 that the inverse response behavior
and nonlinear dynamic characteristic of the water level are more obvious at low operating power,
which greatly complicates the design of an effective water level control system.
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Figure 3. Responses of the water level at different operating powers (%).

2.3. AP1000 Water Level Control System

As shown in Figure 4, the AP1000 water level control system uses an improved three-element
control strategy to control the water level of steam generator [19]. Two error signals are used in this
control strategy: one is the level error between the level set point and level measurement through
a lead-lag filter, and the other is the flow error between feedwater and steam flow rates through a
derivative filter. Then, these two error signals are sent to a proportional-integral (PI) controller to
regulate the feedwater flow valve for maintaining the water level of SG at the desired value.
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There are obvious differences between this three-element control and conventional single-loop PID
control: (1) the error signal is not simply the subtraction of two signals, but is generated by derivative
filter or derivative filter; (2) the combined feedback form of level error signals and flow error signal is
adopted. Therefore, traditional single-loop PID tuning methods cannot be directly used. Moreover,
strong inverse response behavior and highly nonlinear characteristics make controller tuning of water
level control system more difficult.

3. Equivalent-Cascade IMC Tuning Method

In this part, IMC-PID tuning theory is first introduced in Section 3.1. Then, the water level control
system is transformed into an equivalent cascade control system. The equivalent-cascade IMC-PID
tuning method for the water level control system is proposed in Section 3.3. Finally, a summary of the
algorithm is given in Section 3.4.
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3.1. IMC-PID Tuning Theory

The IMC-PID tuning method was developed by Rivera and co-workers [20,21]. The advantage of
this method lies in achieving a clear tradeoff between closed-loop performance and robustness against
model mismatch by a single tuning parameter.

Figure 5 exhibits the block diagrams of IMC control, where G is the process, G̃ denotes a model
of the process, and G∗c represents the IMC controller. The closed-loop transfer function in the IMC
structure is as follows:

y =
G∗cG

1 + G∗c
(
G− G̃

) r +
1−G∗cG̃

1 + G∗c
(
G− G̃

)d
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For the nominal case (i.e., G = G̃), it can reduce to y = G∗cGr + (1−G∗cG)d. In addition, we can
convert the IMC structure into the classical feedback control structure as follows:

Gc =
G∗c

1−G∗cG̃
(1)

The IMC-based PID controller tuning consists of the following steps:

Step 1. The process model G̃ can be expressed as G̃ = G̃+G̃−, where G̃+ contains any time delays and

the right-half plane zeros with a steady-state gain of 1, and G̃− is the rest of G̃.
Step 2. The IMC controller is specified as G∗c = f /G̃−, where f represents a low pass filter with a gain of

1. The filter f typically has the form f = 1
(τcs+1)r , where r is sufficiently large to guarantee that

the IMC controller G∗c is a proper transfer function. The parameter τc is the desired closed-loop
time constant, which determines the speed of the response. The closed-loop transfer function
for set-point changes is G̃+ f .

Step 3. The equivalent feedback controller can be derived from Equation (1) and rearranged into the
PID controller form.

Table 1 presents the PID controller tuning relations for two types of process models used in this
study, which were derived by Chien and Fruehauf [22].
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Table 1. Internal model-control (IMC)-based proportional-integral-derivative (PID) controller settings.

Case Model Controller Kc ti td

A K
τs+1 e−θs Kc

(
1 + 1

tis

)
τ

K(τc+θ) τ

B K
τs+1 e−θs Kc

(
1 + 1

tis

)
(1 + tds) τ+θ/2

K(τc+θ/2) τ+ θ
2

τθ
2τ+θ

C K
s(τs+1) e−θs Kc

(
1 + 1

tis

)
(1 + tds)

τ
K(τc+θ)

2 τ 2τc + θ

3.2. Structure Analysis of Water Level Control System

Using block diagram representation, the water level control system of steam generator can be
illustrated by Figure 6, where r is the water level set point, y1 is the water level of SG, y2 is the feed-water
flow rate, u is feed-water valve, and d is the steam flow rate. Here, P1(s) indicates the transfer function
of the valve to the feedwater flow rate, P2(s) represents the transfer function of the feedwater flow rate
to the water level, and P3(s) indicates the transfer function of the steam flow to the water level.
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Here, C1(s) = k1
(
1 + 1

t1s

)
is the PI controller, C2(s) =

t2s
1+t2s is the derivative filter, and C3(s) =

1+t3s
1+t4s

is the lead-lag filter.
To explain the function of each block further in the water level control system shown in

Figure 6, the system can be transferred into the following equivalent block diagram, which is a
cascade-feedforward control system.

In this equivalent cascade control system, the secondary loop is the feedwater flow control system,
and the secondary controller W2(s) is expressed as

W2(s) = C1(s)C2(s)

When t2 > t1, we have

W2(s) = k1

(
1 +

1
t1s

)
·

t2s
1 + t2s

= k1

(
1 +

t2/t1 − 1
1 + t2s

)
= k1

1 +
1
t1
−

1
t2

1
t2
+ s

 ≈ k1

(
1 +

1
t1s

)
Thus, secondary controller W2(s) can be approximated to the PI controller.
In the primary loop, k2/C2(s) and C3(s) constitute the series form of the PID controller with a

derivation filter [23].

W1(s) =
k2

C2(s)
C3(s) = k2

(
1 +

1
t2s

)( 1 + t3s
1 + αt3s

)
with t4 = αt3
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where the denominator term (1 + αt3s) serves as a derivative filter to reduce the sensitivity of noisy
measurement. In order to eliminate the derivative kick for set-point changes, the derivative element
is moved to the feedback path. The derivative filter parameter α has a value between 0.05 and 0.2,
with 0.1 being a common choice.

As shown in Figure 7, a static feedforward controller with a gain of 1 is designed to enhance the
disturbance rejection performance of steam flow.
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In summary, if the equivalent cascade control loop is effectively tuned with Equation (2), then W1(s) = K1
(
1 + 1

T1s

)( 1+T3s
1+αT3s

)
W2(s) = K2

(
1 + 1

T2s

) (2)

controller parameters in the AP1000 water level control system can be obtained by

k1 = K2 , k2 = K1 , t1 = T2 , t2 = T1 , t3 = T3 and t4 = αT3 (3)

As the secondary loop works considerably faster than the primary loop, the condition t2 > t1 can
be easily satisfied.

3.3. Equivalent-Cascade IMC-PID Tuning Method

For the cascade control system, the sequential tuning method is usually used to optimize
controller’s parameters. However, after the secondary controller is tuned in this method, the dynamic
model of the primary loop (including the secondary loop) must be re-identified, which is often
time-consuming in practice. In this section, analytical tuning rules for the equivalent-cascade control
system are derived based on IMC-PID method. This proposed method can simultaneously tune the
primary and secondary loops and avoid the re-identification step in the tuning procedure.

Considering the inverse response characteristic of SG, the process transfer functions P1(s), P2(s),
and P3(s) are modeled as follows: 

P1(s) =
κ1(−z1s+1)

s(τ1s+1) e−θ1s

P2(s) =
κ2
τ2s+1 e−θ2s

P3(s) =
κ3(−z3s+1)

s(τ3s+1) e−θ3s

(4)

Applying IMC-PID tuning theory, the simultaneous tuning procedure for the equivalent-cascade
control system is given as follows:

Step 1. Designing an equivalent secondary controller W2(s)
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On the basis of the structure analysis in Section 3.2, the equivalent secondary controller W2(s)
can be approximated by a PI controller. As P2(s) is modeled as a first-order system, the equivalent
secondary controller W2(s) = K2

(
1 + 1

T2s

)
can be designed as follows:

K2 =
τ2

κ2(τc2 + θ2)
, T2 = τ2 (5)

Here, τc2 is the desired closed-loop time constant of the secondary loop.

Step 2. Designing of an equivalent primary controller W1(s)

On the basis of IMC tuning theory, the closed-loop transfer function Φ2(s) of the secondary loop
can be approximated by a first-order system, i.e.,

Φ2(s) ≈
1

τc2s + 1
e−θ2s

By applying Skogestad’s half rule [24] and 1− z1s ≈ e−z1s, the dynamic model of the primary loop
P1(s)Φ2(s) can be approximated as follows:

P1(s)Φ2(s) ≈
κ1(−z1s+1)

s(τ1s+1) e−θ1s
·

1
τc2 s+1 e−θ2s

≈
κ1

s[(τ1+τc2 /2)s+1]
e−(θ1+θ2+τc2 /2+z1)s

= κo
s(τos+1) e−θos

(6)

The equivalent primary controller W1(s) = K1
(
1 + 1

T1s

)( 1+T3s
1+αT3s

)
can be obtained as follows:

K1 =
τo

κo(τc1 + θo)
2 , T1 = τo, T3 = 2τc1 + θo

Here, τc1 is the desired closed-loop time constant of the primary loop.

Step 3. By using Equation (5), controller parameters of the AP1000 water level control system are
obtained as follows:

k1 = K2 , k2 = K1 , t1 = T2 , t2 = T1 , t3 = T3 and t4 = αT3

Therefore, we can derive the equivalent-cascade IMC-PID (EC-IMC) tuning rules for water level
control system as follows: 

k1 = τ2
κ2(τc2+θ2)

k2 = τo

κo(τc1+θo)
2

t1 = τ2

t2 = τo

t3 = 2τc1 + θo

t4 = α(2τc1 + θo)

(7)

In the above tuning procedure, the choice of the desired closed-loop time constant plays a key
role. A larger value leads to a slower, conservative response with a long settling time, while a smaller
value results in a more rapid and aggressive response with a shorter settling time [25,26]. In our work,
an optimum value of the desired closed-loop time constant is obtained via searching optimization
method based on the following enhanced integral square error (EISE) performance index:

EISE =

∫
∞

0
e2(t)dt + ρ

∫
∞

0

.
u2
(t)dt (8)
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This performance index consists of two terms. The first term, a penalty on the integral square error,
represents regulation performance of process output for set-point tracking or disturbance rejection.
The second term, a penalty on the rate of change of process input, is used to measure the required
control effort and prevent aggressive control action. The relative priority of the two terms is set by the
weight factor ρ. If control action is aggressive in the simulation, weight factor ρ should be increased.

Since minimizing the EISE criteria is a typical one-dimensional searching problem, an optimum
value of the desired closed-loop time constant is obtained via the golden-section searching method,
which is an improvement of the equal interval search method and can be guaranteed to converge [27],
as shown in Figure 8. For the equivalent secondary control loop, we obtain optimum τc2 by evaluating
the set-point tracking performance of feedwater flow, with ρ = 0.02 in EISE. For the equivalent primary
control loop, we obtain optimum τc1 by evaluating the disturbance rejection performance of steam
flow, with ρ = 0.02 in EISE.Processes 2020, 8, x FOR PEER REVIEW 10 of 18 
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3.4. Summary

With the change of the power level, the process dynamics of SG exhibits significant variation.
Therefore, it is desirable to design a nonlinear controller to achieve satisfactory control performance at
all power levels. As a practical and powerful method for control of nonlinear systems, gain scheduling
is used to compensate for process variations of SG in our work. Usually, a gain-scheduled controller is
obtained by interpolating between a set of linear controllers derived for a corresponding set of plant
linearizations at several operating conditions [28].

Therefore, gain-scheduled equivalent-cascade IMC tuning method for water level control system
is summarized as follows:

Step 1. The operating power level is discretized by 10% from 20% to 100% and the linearized model of
nuclear SG at each power level is identified;

Step 2. Using the equivalent-cascade IMC-PID tuning method, local controller parameters at each
power level are obtained based on the linearized model;

Step 3. Piecewise linear function is utilized to construct a gain-scheduling module of controller
parameters, in which the scheduling variable is the operating power level.

4. Experiment Result

In this section, we demonstrate the performance of the proposed method in AP1000 simulation
platform CENTS, which is developed on the basis of rigorous first-principle models for one- and
two-phase fluids. CENTS can simulate the transient behavior of AP1000 for all normal, abnormal,
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and accident conditions. Figure 9 shows graphical user interface of CENTS, which displays all plant
parameters in real time and allows user’s interaction with the simulator.
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To obtain a linearized model at each power level, a closed-loop identification test with a generalized
binary noise (GBN) signal [29] is performed, instead of an open-loop test, as shown in Figure 10.
In comparison with the open-loop test, the closed-loop test has numerous advantages, such as reducing
the disturbance to process operation and being easy to carry out. In this study, we superpose the GBN
test signal at the set point of water level and steam turbine power.
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Figure 10. Diagram of closed-loop test for AP1000 SG.

Figure 11 shows the identification test data for SG at a power level of 90%. The subfigures in
first row present the GBN test signals at the set point of water level and steam turbine power, and the
lower four subfigures indicate the system responses in steam flow rate, feedwater flow rate, pressure,
and water level, respectively. By using the asymptotic identification method proposed by Zhu [29], we
can obtain the linearized model of SG at each power level. Figure 12 illustrates the step responses of
identification models at typical power levels, in which the step size of feedwater and steam flow rates
are 1 lbm/s. We can see that at low-to-middle power levels, the steam-generator water level shows
strong inverse response behavior.
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Figure 11. Plots of identification data for steam generator. (a–c) refer to the input responses, and (d–f) are
the output responses.

Processes 2020, 8, x FOR PEER REVIEW 12 of 18 

 

 

Figure 11. Plots of identification data for steam generator. (a), (b), (c) refer to the input responses, and 

(d), (e), (f) are the output responses. 

  

(a) (b) 

Figure 12. Cont.



Processes 2020, 8, 1160 12 of 17
Processes 2020, 8, x FOR PEER REVIEW 13 of 18 

 

 

(c) 

Figure 12. Reponses of identification model to (a) 1 lbm/s step in feedwater flow rate, (b) 1 lbm/s step 

in steam flow rate, and (c) 1% step in feedwater valve. 

By applying the equivalent-cascade IMC tuning method, we can obtain the tuning parameters 

of the AP1000 water level control system shown in Table 2. Figure 13 displays the desired closed-

loop time constants of the primary/secondary loops at different power levels, which increase 

monotonously with the increase of power level. Figure 14 displays controller parameters at different 

power levels. 

Table 2. Tuning parameters of water level control system. 

Power 
1c

  
2c  

1k  
2k  

1t  
2t  

3t  
4t  

20% 4.5101 0.1827 1.4846 5.4187 0.3000 1.4376 9.1116 0.9112 

30% 5.6275 0.1857 1.5352 3.5098 0.3000 1.4391 11.3479 1.1348 

40% 6.8527 0.1887 1.5922 2.3823 0.3000 1.4406 13.7997 1.3800 

50% 8.1047 0.1920 1.6538 1.7115 0.3000 1.4423 16.3055 1.6305 

60% 9.2895 0.1956 1.7213 1.3078 0.3000 1.4441 18.6767 1.8677 

70% 10.5954 0.1994 1.7973 1.0088 0.3000 1.4460 21.2904 2.1290 

80% 11.3089 0.2034 1.8823 0.8875 0.3000 1.4480 22.7195 2.2720 

90% 12.0898 0.2078 1.9786 0.7784 0.3000 1.4502 24.2834 2.4283 

100% 12.8437 0.2126 2.0877 0.6912 0.3000 1.4526 25.7937 2.5794 

  

Figure 12. Reponses of identification model to (a) 1 lbm/s step in feedwater flow rate, (b) 1 lbm/s step
in steam flow rate, and (c) 1% step in feedwater valve.

By applying the equivalent-cascade IMC tuning method, we can obtain the tuning parameters of
the AP1000 water level control system shown in Table 2. Figure 13 displays the desired closed-loop
time constants of the primary/secondary loops at different power levels, which increase monotonously
with the increase of power level. Figure 14 displays controller parameters at different power levels.

Table 2. Tuning parameters of water level control system.

Power τc1 τc2 k1 k2 t1 t2 t3 t4

20% 4.5101 0.1827 1.4846 5.4187 0.3000 1.4376 9.1116 0.9112
30% 5.6275 0.1857 1.5352 3.5098 0.3000 1.4391 11.3479 1.1348
40% 6.8527 0.1887 1.5922 2.3823 0.3000 1.4406 13.7997 1.3800
50% 8.1047 0.1920 1.6538 1.7115 0.3000 1.4423 16.3055 1.6305
60% 9.2895 0.1956 1.7213 1.3078 0.3000 1.4441 18.6767 1.8677
70% 10.5954 0.1994 1.7973 1.0088 0.3000 1.4460 21.2904 2.1290
80% 11.3089 0.2034 1.8823 0.8875 0.3000 1.4480 22.7195 2.2720
90% 12.0898 0.2078 1.9786 0.7784 0.3000 1.4502 24.2834 2.4283

100% 12.8437 0.2126 2.0877 0.6912 0.3000 1.4526 25.7937 2.5794
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When implementing this strategy in DCS, only an additional gain scheduling module needs
to be added to the existing three-element-control system, which adaptively adjusts the controller
parameters based on the power level. Moreover, this proposed method almost does not increase
additional computational load since the calculation of piecewise linear function is very fast.

To illustrate the performance of the proposed equivalent-cascade IMC tuning method, it is
compared with the trial-and-error tuning method. Figure 15 shows the disturbance rejection
performance for a power level step from 30% to 40% FP. The solid orange line is the proposed
method, the blue solid line indicates the trial-and-error method, and the black dashed line represents
the water level set point. We can see that the overshoot of the closed-loop response is slightly small and
the settling time has a remarkable improvement. Figure 16 plots the valve opening of two methods.
Figures 17 and 18 show the water level behaviors of two other typical power level steps: from 75% to
65% and from 100% to 90%. The closed-loop performance of the water level based on the proposed
method is considerably better than that based on the trial-and-error method for all power levels.
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5. Conclusions

The steam generator serves as an important part of the nuclear power plant. The dynamics of the
SG have the features of high nonlinearity and non-minimum phase, which bring great challenges to
the design of the control system.

This paper presents a gain-scheduled equivalent-cascade IMC tuning method for the water
level control system of a nuclear steam generator. At first, a water level control system for SG is
transferred into an equivalent cascade-feedforward control system. Then, analytical tuning rules for the
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equivalent cascade control system are derived based on the IMC-PID method. Finally, gain scheduling
is performed to reduce the effect of process nonlinearity. This approach can provide satisfactory
performance at different power levels. Besides, it is simple to implement in practical applications.
Experiment results demonstrate the effectiveness of the proposed method.
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