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Abstract: Nowadays, fluoroquinolones (FQs) constitute one of the most important classes of antibiotics.
FQs are used to treat infections caused by Gram-positive and Gram-negative species. A set of
fluoroquinolone–Safirinium dye hybrids has been synthesized in our laboratory as potential new
dual-action antibacterial agents. In the present study we have evaluated how such a modification
influences the affinity of FQs to phospholipids. The immobilized artificial membrane (IAM)
high-performance liquid chromatography (IAM-HPLC) was used as a tool for the determination of
phospholipids partitioning. The obtained results indicate that the fluoroquinolone–Safirinium dye
hybrids, especially the Safirinium P conjugates, display significantly lower affinity to phospholipids
than the parent FQs. Despite the fact that the hybrid structures comprise a quaternary nitrogen atom
and hence are permanently charged, the attractive electrostatic interactions between the solutes and
negatively charged phospholipids do not occur or occur at a lesser extent than in the case of the
unmodified FQs. Since affinity of FQs to phospholipids involves molecular mechanism, which is not
entirely determined by lipophilicity, assessment of phospholipid partitioning should be considered at
the early stage of the development of new FQ antibiotics.

Keywords: fluoroquinolones; fluoroquinolone–Safirinium dye hybrids; immobilized artificial membrane

1. Introduction

Fluoroquinolones (FQs) are one of the most commonly prescribed classes of antibiotics and show
a broad spectrum of antibacterial activity, including against both Gram-positive and Gram-negative
bacterial species. FQs originate from the nalidixic acid structure, and their major modifications include
the introduction of a fluorine atom at the position 6 and the addition of a piperazine moiety at the
position 7 of the quinolone ring [1]. A number of research groups develop hybrid compounds based
on FQs structures linked to other antibacterial agents [2]. This concept of “dual-action drugs” has been
gaining popularity since such hybrid drugs show synergistic molecular action, which enhances affinity
and efficacy when compared to parent drugs. In addition, the dual-drug conjugates demonstrate the
capability to reduce cross-resistance, and one part of a hybrid may counterbalance the known side
effects associated with the other part of the drug [2,3].

Our research group has reported the design and synthesis of fluorescent 1,2,4- triazolo[4,3-a]pyridin-
2-ium and 1,2,4-triazolo[4,3-a]quinolin-2-ium carboxylates that were named Safirinium P (pyridine
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derivatives, SafP) and Safirinium Q (quinolone derivatives; SafQ) dyes, respectively (Figure 1) [4,5].
Their unique features, i.e., lack of toxicity, extraordinary water solubility, adjustable lipophilicity,
and relatively low production cost, prompted us to utilize this class of compounds as amino acids
and peptide-labeling reagents [6]. The novel Safirinium (Saf ) dyes were also applied as human skin
structures and bacterial spore-staining agents [4]. Moreover, due to the presence of permanent positive
charge within the triazolium moiety, Saf dyes were employed as ionization tags suitable for peptide
identification [6].
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Recently, a set of fluoroquinolone–Safirinium dye hybrids has been synthesized in our laboratory
as new dual-acting hydrophilic antibacterial agents [7]. The concept assumed that conjugation of Saf
dyes to antibiotics would result in the development of new antibacterials that would exhibit dual
mode of action: perturbation of bacterial lipid membranes caused by the presence of the quaternary
nitrogen atom and inhibition of bacterial type II topoisomerases elicited by the fluoroquinolone
portion. The synthesized structures demonstrate more hydrophilic characteristics than the parent FQs,
which was shown in our previous investigations based on reversed phase liquid chromatography
(RPLC) and micellar electrokinetic chromatography (MEKC) [8]. The importance of drug candidate
characterization in terms of their physicochemical properties is critical, since these analyses support
selection of the most promising compounds [9–12]. Although, lipophilicity is commonly applied for
prediction of absorption, distribution, metabolism, and excretion (ADME) properties, usually with
the octanol–water system or RPLC, several studies pointed out that these systems are oversimplified
to simulate membrane partitioning [13]. Generally, two main differences between membranes and
n-octanol are quoted. The first discrepancy refers to anisotropy, since membranes are anisotropic
phases where phospholipids are spatially ordered, whereas n-octanol is an isotropic phase [14].
The second difference pertains to electric character of molecules, since membrane phospholipids are
electrically charged, while n-octanol is neutral [14]. For this reason, partitioning systems containing
phospholipids as the organic phase are more suitable to mimic the partitioning of ionized drugs into
biological membranes. Although affinity to phospholipids can be determined using liposomes or cell
culture techniques, nowadays, the most popular approach involves immobilized artificial membrane
HPLC (IAM-HPLC). Advantages of IAM-HPLC include ease of automation, quickness, and sufficient
lab-to-lab reproducibility [15–20].

This study is a continuation of our research program focused on the assessment of physicochemical
properties of fluoroquinolone–Safirinium dye hybrids that condition their biological activity [7,8].
The main goal was to evaluate the affinity of fluoroquinolone–Safirinium dye hybrids to phospholipids
using IAM-HPLC, and to compare the obtained results with those assessed for the parent FQs. Based on
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theoretical assumption, two research hypotheses were verified during the study. The first assumed
that the fluoroquinolone–Safirinium dye hybrids interact stronger with phospholipids than unmodified
FQs since the hybrids are permanently positively charged. The alternative hypothesis presupposed
that fluoroquinolone–Safirinium dye hybrids display lower affinity to phospholipids when compared
to parent FQs due to their significantly lower lipophilic properties.

2. Results and Discussion

IAM-HPLC was introduced by Pidgeon in 1989 [21], and it was proposed as an alternative for
liposome’s partitioning. Since that time, the interest in IAM-HPLC increased regularly, as evident from
a large number of publications. Nevertheless, there is no one widely recognized protocol for IAM
retention measurements in the medical chemistry community [13]. In our study, we have chosen the
chromatographic hydrophobicity indices (CHIIAM) approach proposed by Valko and co-workers [22],
which involves gradient elution using an IAM column. This method is routinely used for the assessment
of drug candidates by the GlaxoWellcome Medicines Research Centre [23]. The determined CHIIAM

indexes correspond to the fraction of acetonitrile, which leads to equal analyte concentrations in both
stationary and mobile phases [24].

The retention data of the investigated fluoroquinolone–Safirinium dye hybrids and the parent FQs
are given in Table S2, whereas the determined CHIIAM indexes are presented in Table 1.

Table 1. The experimental chromatographic hydrophobicity indices (CHIIAM) and CHI pH7.4

chromatographic hydrophobicity indices together with minimum inhibitory and bactericidal
concentrations (MIC/MBC) (g/mL) * determined for the analyzed compounds.

Compound CHIIAM CHIpH7.4
MIC/MBC
S. aureus 1

MIC/MBC
S. epidermidis 2

MIC/MBC
P. aeruginosa 3

MIC/MBC
P. vulgaris 4

Ciprofloxacin 19.70 35.61 0.25/0.5 0.25/0.25 0.5/0.5 0.008/0.008
SafP–ciprofloxacin 2.08 25.13 8/16 4/16 32/>512 1/2
SafQ–ciprofloxacin 7.55 33.93 8/8 8/8 64/64 2/2

Enoxacin 21.06 34.43 1/1 0.5/2 0.5/0.5 0.032/0.063
SafP–enoxacin 0.62 18.13 64/128 64/128 256/>512 0.25/0.5
SafQ–enoxacin 3.90 30.61 64/64 32/32 64/64 2/2

Gatifloxacin 19.69 40.42 0.25/0.25 0.125/0.25 0.25/0.25 0.008/0.008
SafP–gatifloxacin 3.50 30.43 4/8 4/4 64/128 0.5/0.5
SafQ–gatifloxacin 9.22 39.50 8/8 2/8 128/128 0.5/2

Lomefloxacin 16.52 34.81 1/1 1/2 1/1 0.008/0.008
SafP–lomefloxacin n.d. 24.49 128/128 64/64 128/128 2/2
SafQ–lomefloxacin 4.41 34.71 4/4 2/2 2/2 0.063/0.063

Norfloxacin 19.18 35.08 0.25/0.25 0.5/2 0.25/0.25 0.016/0.016
SafP–norfloxacin 1.94 24.63 64/64 32/64 128/>512 1/1
SafQ–norfloxacin 7.96 34.56 2/2 4/4 1/1 0.125/0.125

*—the data assessed in our previously study [7]; n.d.—not detected; CHIIAM—chromatographic hydrophobicity
indices determined with IAM-HPLC; CHI pH7.4—chromatographic hydrophobicity indices determined with reversed
phase HPLC at physiological pH conditions; 1—Staphylococcus aureus; 2—Staphylococcus epidermidis; 3—Pseudomonas
aeruginosa; 4—Proteus vulgaris.

During this study, five FQs (ciprofloxacin, enoxacin, gatifloxacin, lomefloxacin, norfloxacin)
and their Safirinium–P (pyridine core) and Safirinium–Q (quinoline core) derivatives have been
examined. The chemical names and structures of the studied quinolone derivatives are presented
in Table S1. The obtained CHIIAM indexes of FQs antibiotics are quite comparable and range from
16.52 (lomefloxacin) to 21.06 (enoxacin). Analogous results have been reported by Barbato and
co-workers, who described very similar retention behavior of zwitterionic ampholytes FQs [25] in
analyses run using the IAM.PC.MG column. Moreover, Barbato and co-workers postulated that
IAM retention is not conditioned by lipophilicity, but that it is governed by other recognition forces,
probably of electrostatic nature [25–28]. In order to evaluate this hypothesis, we determined CHI
parameters under physiological pH conditions using the typical RP-HPLC approach. In general,
the lack of correlation between the lipophilicity indexes CHIpH 7.4 and CHIIAM should be emphasized.
However, upon exclusion of unmodified FQs from the dataset, a linear relationship between CHIpH 7.4
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and CHIIAM parameters is evidenced for Safirinium derivatives (r = 0.908). These results are presented
graphically in Figure 2.
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However, it should be noted that the CHIIAM values estimated for the hybrids (from 1.94 to 9.22) are
significantly lower than those established for the parent FQs (from 16.52 to 19.69). Considering the fact
that the newly synthesized fluoroquinolone–Safirinium hybrids are permanently charged, the molecular
retention mechanism on the IAM column should promote higher partitioning of such analytes into
negatively charged phospholipids since the electrostatic interactions would be the main factor that
determines the affinity of charged molecules to phospholipids. Unexpectedly, the obtained results
contradicted this theoretical assumption. Hence, both Safirinium–P and Safirinium–Q conjugates
proved noticeably lower affinities to phospholipids than the parent FQs. However, while the
pyridine derivatives practically lost their affinities for the phosphatidylcholine layer (from 0.62 to
3.50), the quinolone congeners were to some extent retained on the IAM column (from 3.90 to
9.22). These results indicate that lipophilicity is the major retention factor for permanently ionized
Safirinium–FQ conjugates. This observation can be further supported by biological activity studies and
lipophilicity assessments by means of MEKC, where a significant correlation between retention in MEKC
and antibacterial activity was found [3]. Hence, in most cases, less lipophilic SafP derivatives exhibited
lower antibacterial activities than their SafQ counterparts and unmodified FQs. SafP–lomefloxacin
was not detected in IAM experiments since this compound presumably migrated with the front
of the mobile phase. The most striking result obtained within this study pertains to Safirinium–Q
hybrids, which, despite showing only slightly lower RP-HPLC lipophilicity indexes (CHIpH 7.4) than
the parent FQs (gatifloxacin 40.42 CHIpH 7.4 vs. SafQ–Gatifloxacin 39.50), proved noticeably weaker
affinity to phospholipids in IAM-HPLC analyses (CHIIAM of 19.69 vs. 9.22, respectively) (Table 1).
These differences in retention of Safirinium–Q hybrids compared to parent FQs can be explained by
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the fact that the positive charge on the quaternary nitrogen atom (Figure 1) is sterically hindered and
not available for interaction with negatively charged phosphate groups of phospholipids (Figure 3).
On the contrary, ionization of carboxyl groups in FQs contributes only to a minor extent to interactions
with phospholipids. This finding is supported by Barbato theory that ionization enhancement of the
amino functionality within a FQ results in higher retention in IAM-HPLC [25]. Considering previously
reported biological data [7], compounds with higher affinity to IAM and lipophilicity demonstrate
higher antibacterial efficacy, particularly in the case of Gram-positive species, such as Staphylococcus
aureus and Staphylococcus epidermidis (Table 1). It is worth emphasizing, however, that FQs can also
penetrate into bacterial cells in hydrophilic manner through porin channels, which is especially true
for Gram-negative bacteria [29,30]. The latter can explain noticeable activity of the tested SafP hybrids
against Proteus vulgaris (Table 1).
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3. Materials and Methods

3.1. Reagents

Dimethyl sulfoxide (DMSO) was acquired from POCH (Gliwice, Poland). Acetonitrile HPLC
grade for liquid chromatography, sodium phosphate dibasic dehydrate and sodium phosphate
monobasic monohydrate were purchased from Sigma-Aldrich (Steinheim, Germany). Ultrapure water,
obtained with the Millipore Direct-Q 3 UVWater Purification System (Millipore Corporation, Bedford,
MA, USA), was used for buffer mobile phase preparation.

3.2. Analytes

The analytical standards of octanonophenone, butyrophenone acetanilide, enoxacin, and gatifloxacin
were provided by Alfa Aesar (Haverhill, MA, USA); acetaminophen, theophylline, benzimidazole,
acetophenone, indole, norfloxacin, lomefloxacin, and ciprofloxacin were purchased from Sigma-Aldrich
(Steinheim, Germany); heptanophenone, hexanophenone, valerophenone, propiophenone,
acetophenone were bought from Acros Organic (Massachusetts, United States). All the compounds
listed above, with the exception of the FQs, were used as model substances in order to determine CHI
indices of the studied FQs and their SafP and SafQ derivatives according to the protocol proposed
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by Valko and co-workers [12]. Synthesis and purification of the hybrid quinolone-based quaternary
ammonium derivatives were described previously [7]. The structures of the investigated hybrids are
presented in Table S1. All studied compounds were dissolved in DMSO to obtain a concentration of
1 mg mL−1, and they were stored at 2–8 ◦C prior to analyses.

3.3. HPLC Analysis

All HPLC experiments were carried out using a Prominence-1 LC-2030C 3D HPLC system
(Shimadzu, Japan) equipped with Diode-Array Detection (DAD) and controlled by LabSolution system
(version 5.90 Shimadzu, Japan). The stock solutions of solutes were diluted to obtain concentrations of
100 µg/mL, and the injected volume was 5 µL. The RP-HPLC experiments were performed on a C18

CORTECS column (2.7 µm 2.1 × 75 mm; Waters; Milford, Massachusetts, USA) with a linear gradient
2–98% phase B (where phase A was 10 mM phosphoric buffer at pH 7.4, and phase B was acetonitrile)
at a flow rate of 0.2 mL/min. The temperature of the chromatographic column was controlled and set
to 40.0 ◦C, and analysis time was 10 min. The IAM-HPLC analyses were carried on an IAM.PC.DD2
column (10 × 4.6 mm; particle size 10.0 µm with an IAM guard column; Regis Technologies, USA) with
a linear gradient 0–85% phase B (where phase A was 10 mM phosphoric buffer at pH 7.4, and phase B
was acetonitrile) at a flow rate of 1.5 mL/min. The temperature of the chromatographic column was
controlled and set to 30.0 ◦C, and the analysis time was 6.5 min. The CHI indexes, both CHIpH7.4 and
CHIIAM indexes of target compounds, were obtained using a calibration set of reference substances
using the protocol proposed by Valko and co-workers [12]. Figure S1 presents correlations between
CHIpH7.4 and CHIIAM indexes of model substances and experimentally determined retention times.
The retention times and absorbance maxima of the studied FQs and fluoroquinolone–Safirinium dye
hybrids are listed in Table S2, whereas Figure S2 presents representative chromatograms. Each HPLC
analysis was run in duplicate.

4. Conclusions

The obtained results indicate that fluoroquinolone–Safirinium dye hybrids incorporating permanent
positive charge, especially SafP hybrids, feature significantly lower affinities to phospholipids than
the parent fluoroquinolone antibiotics. The reduction in phospholipids affinity presumably results
from steric hindrance, which prevents interactions of quaternary nitrogen atoms with negatively
charged phosphate groups of phospholipids. Safirinium–Q hybrids, despite having similar RP-HPLC
lipophilicity indexes (CHIpH 7.4) to fluoroquinolone antibiotics, present significantly lower affinities
to immobilized artificial membranes (CHIIAM) in IAM-HPLC analyses. This observation suggests
that for ionized drug candidates, the CHIpH 7.4 and CHIIAM lipophilicity indexes cannot be utilized
interchangeably since phospholipid partitioning involves different molecular interactions when
compared to classical two-phase separation models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/9/1148/s1,
Table S1. The structures of the studied quinolone derivatives; Table S2. Retention data of fluoroquinolone–Safirinium
dye hybrids and parent FQs obtained by RP-HPLC and IAM-HPLC. Figure S1. The plots of acknowledged
chromatographic hydrophobicity indexes CHIpH7.4 (RP) and known chromatographic hydrophobicity indexes
CHIIAM (IAM) vs. retention times determined experimentally for the sets of model compounds. Figure S2.
IAM-HPLC chromatograms of ciprofloxacin and its SafP and SafQ derivatives.
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