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Abstract: In order to understand the characteristics of the spray field of a dust suppression nozzle and
provide a reference for dust nozzle selection according to dust characteristics, a three-dimensional
phase Doppler particle analyzer (PDPA) spray measurement system is used to analyze the droplet size
and velocity characteristics in a spray field, particularly the joint particle size–velocity distribution.
According to the results, after the ejection of the jet from the nozzle, the droplets initially maintained
some velocity; however, the distribution of particles with different sizes was not uniform. As the
spray distance increased, the droplet velocity decreased significantly, and the particle size distribution
changed very little. As the distance increased further, the large droplets separated into smaller
droplets, and their velocity decreased rapidly. The distributions of the particle size and velocity of
the droplets then became stable. Based on the particle size-velocity distribution characteristics, the
spray structure of pressure-swirl nozzles can be divided into five regions, i.e., the mixing, expansion,
stabilization, decay, and rarefied regions. The expansion, stabilization, and decay regions are the
effective dust fall areas. In addition, the droplet size in the stabilization region is the most uniform,
indicating that this region is the best dust fall region. The conclusions can provide abundant calibration
data for spray dust fall nozzles.

Keywords: pressure-swirl nozzle; PDPA; joint particle size–velocity distribution; spray structure;
dust fall

1. Introduction

With the development of efficient mechanization, the amount of coal mine dust is also increasing.
The high concentration of dust on the production site is very harmful, as it not only brings harm to
the physical and mental health of underground workers, but also threatens the production safety of
coal mines. Every year, explosion accidents and pneumoconiosis caused by high dust content in the
working environment have brought huge economic losses to the country. Therefore, the research on
dust control has important theoretical significance and social value for improving the occupational
safety of miners and ensuring production safety in an underground mine. Spray-based dust-settling
technology is the most widely used and effective dust control measure in coal mines [1–3]. When using
a spray, the eventual success with regard to dust suppression depends on multiple factors, including
inertial impaction, gravity settling, Brownian diffusion, interception, and electrostatic collection [4–9].
In 1973, an American scholar, Cheng [10], proposed a theoretical equation for the collection of airborne
dust by a water spray, which first promoted the study of “water spray theory”. Charinpanitkul
et al. [11] simulated the dust removal effects of different water mist particle sizes on dust with
different particle sizes and proposed that the maximal dust removal efficiency was also confirmed
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by water droplets with smaller size and narrower size distribution. The nozzle is a key component
of the spray dust-control system, and its atomization capability directly impacts the practical dust
suppression effect. When water is ejected from the nozzle, the distribution of the water velocity will
affect the droplet’s breakup process and thus affect the size distributions of droplets in the spray field.
Smaller droplets at a greater velocity relative to airflow display a high dust-collision and dust-capture
efficiency [12–17]. Therefore, it is vital that we investigate atomization of the nozzle to enhance the
efficiency of dust-suppression sprays.

The existing research shows that the droplet size in a spray field is an important index to evaluate
whether the droplet can effectively reduce dust [18–21]. There are many methods to measure the
droplet size in a spray field, such as the shadowgraph method and the schlieren method. With the
development of optical technology, new optical measurement technologies have been applied, which
have greatly advanced research into droplet size. At present, the mainstream testing methods include
the Malvern laser particle size analysis, laser Doppler velocimetry, phase Doppler particle analysis,
and particle image velocimetry. For example, Zhou et al. [19] used the Malvern laser particle size
analyzer to conduct tests involving the atomization particle size under various pressures. They found
that the droplet size is the smallest at the center of the spray field and gradually increases towards
the edge. For the same nozzle at different pressures, the change of the atomization particle size
of a large-diameter nozzle is not obvious, but that of small diameter nozzle is obvious. Pollock
et al. [22] used a phase Doppler particle analyzer (PDPA) to investigate water droplet size and velocity
characteristics for hollow-cone, full-cone, flat-fan, and air-atomizing spray nozzles at similar operating
parameters. Test results indicated that the hollow-cone nozzles, especially the wider-angle nozzle,
tend to generate smaller and slower velocity droplets, while the flat-fan nozzles tend to generate larger
droplet sizes at moderate velocities. On the other hand, the full-cone (water-only and air-atomizing)
nozzles tend to generate droplet sizes in a range between those of the hollow-cone and flat-fan spray
nozzles, with noticeably higher mean droplet velocities generated from the air-atomizing sprays.

According to the above results, research on dust suppression nozzles has mainly been focused on
the effect of spray pressure and nozzle types. The spatial distribution of droplets has been limited
to the change in the central axis. There has been no analysis of droplet characteristics in the whole
spray field. Therefore, it is necessary to further study the spatial factors affecting the dust fall efficiency.
In this study, we used a three-dimensional (3-D) PDPA spray measurement system to analyze the
distributions of different droplet sizes and velocities in the spray field, particularly the joint particle
size–velocity distribution, to fully understand the spatial movements of droplets as the spray distance
increases and provide a large amount of calibration data for spray structure. Through this paper, we
can further understand the characteristics of the droplets in the spray field of the dust nozzle and
provide a reference for dust nozzle selection according to dust characteristics.

2. Experimental Setup and Procedure

2.1. Test Nozzle Specification

Pressure nozzles are widely used in response to high dust concentrations in mining and
excavation [23–25]. Pressure-swirl nozzles are the most widely used type of atomizing nozzle
in underground coal mines. Therefore, a pressure-swirl nozzle was selected as the research object of
this study, and its atomization characteristics were studied in depth. Figure 1 presents a schematic
view of the pressure-type nozzle, and Table 1 shows its specific geometric parameters.
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Figure 1. Distributor pressure nozzle.

Table 1. Structural parameters of the nozzle.

L1(mm) D1(mm) α1(◦) D2(mm) L2(mm) A (mm2) α2(◦)

5 15 100 1.5 6 1 35

2.2. Experimental Setup and Measurement Technique

2.2.1. Experimental System

All experiments were conducted using an atomizing test system based on a PDPA. Figure 2 shows
a schematic diagram of the atomizing test system, which consisted of an atomizing control system
and a PDPA system. The atomizing control system is comprised of a water tank, pressure gauge,
high-pressure water pump, and so on.
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Figure 2. Schematic diagram of the atomizing test system.

A PDPA (Dantec) system was used to analyze the droplet size and velocity, as shown in Figure 3.
The monochromatic light ray from the laser was split by a beam separator into six beams in three
different colors, i.e., green (514.5 nm), blue (488.0 nm), and violet (476.5 nm), and then sent to
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the transmitters. We used the Flowsizer software to analyze the droplet velocity and particle size
distributions. The transmitters and receivers were fixed to a 3-D traverse system with a pitch of 0.1 mm.
The data could be quickly and automatically collected, and information about the whole spray field
could be obtained by controlling the traverse system. Table 2 shows the main parameters of the PDPA.Processes 2020, 8, x FOR PEER REVIEW 4 of 17 
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Table 2. Optical setup and run settings of the PDPA system.

Parameters Value

Bragg cell frequency 40 MHz
Focal length of transmitting probe 750 mm

Beam diameter 1.77 mm
Beam spacing 50 mm

Scattering angle 40◦

Velocity measurement range −313 to 1600 m/s
Diameter measurement range 0.5 to 5000 µm

Band pass filter 1–10 MHz
Burst threshold 30–300 mV

2.2.2. Error Analysis

PDPA measurement system itself has some measurement error. The Doppler frequency obtained
in the measurement has a width and is not a single frequency. This broadening phenomenon will cause
measurement error. There are many reasons for the broadening, such as the finite transit time of the
scattering particles in the measurement body, the velocity gradient, and Brownian motion of particles
in the velocity field. The error caused by frequency broadening can be suppressed by setting system
parameters to match the measured flow field. Taking account of the above errors, the uncertainties in
the PDPA measurement of drop velocity and size are estimated to be 1% and 3%, respectively.

The measured values were statistically average. For each measurement point, we ceased sampling
when either of the following conditions was satisfied: (1) the effective sample size reached 2000 or (2) the
measurement took 15 s. Panão and his co-workers [26] also determined that if the measurements stop
at a sample size of 1000 drops, any mean diameter calculated would only be 1% higher than the value
calculated if more than 3000 samples were acquired to describe the spray at that measurement point.

2.3. Testing and Analytical Methods

When we measured the spray using the PDPA, the nozzle was arranged into a rack to eject
horizontally and parallel to the X-axis of the traverse system. Therefore, the spray was ejected in
the X-direction. In the following experimental analysis, we obtained the axial distribution from the
center of a cross-section at a distance of X from the nozzle. The radial distribution was obtained from
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this cross-section at a measurement point with a distance of Y from the center of the nozzle, and the
tangential distribution was obtained from this cross-section at a measurement point with a distance
of Z from the center of the nozzle. The three light beams could not meet at the exit as they were
blocked by the nozzle. Therefore, no valid data could be obtained at the exit. Thus, we set the first
measurement point to be 50 mm from the nozzle, and we set the step size to 50 mm. The step size in
the radial direction (Y) was also set to 50 mm. The spray was ejected horizontally during measurement.
At greater distances, droplets near the edge of the spray field were scattered onto the transmitter and
receiver lenses of the PDPA system, preventing measurement. Therefore, we took X up to 1000 mm.
Within this range, the spray remained in a good condition and droplets near the boundary did not
contaminate the lenses, ensuring successful measurement.

The flow sizer software can display the experimental statistical results in real time, as shown in
Figure 4. The first chart shows the SMD (Sauter mean diameter) of the droplet at the measurement
point, and the statistical results of D10, D20, D30, D32 and D43 are shown in diameter statistics.
The remaining charts show the average velocity distribution characteristics of the droplets at the
measurement points. Green light (ch.1) represents tangential velocity (Z-axis velocity), blue light
(ch.2) represents radial velocity (Y-axis velocity), and purple light (ch.3) represents axial velocity
(X-axis velocity).
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The specifications of the test nozzle are provided in Section 2.1. We selected an initial pressure
of 2 MPa and changed the pressure to 3, 4, and 5 MPa. Before testing, we photographed the spray
using high-speed cameras, and, based on the captured spray angle, we determined the number of
measurement points (see Figure 5). Owing to the axial symmetry of the spray and to conserve time,
we only collected statistics on one side.
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3. Results and Discussion

3.1. Droplet Size

3.1.1. Characteristics of Particles in the Axial Direction

The capture of dust by a droplet is the result of the interaction events occurring between surfaces.
D32, as the area-weighted mean diameter, is most suitable for monitoring the proportion of fine particles
present. Thus, the SMD (D32) was selected to illustrate the mean droplet diameter in atomization
investigations [27–29]. Y was taken up to 200 mm to ensure that enough measurement points were
used for analysis. Figure 6 shows the comparison curves of the SMD distribution along the axial
direction (X-direction).
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Figure 6. Comparison curves of the SMD distribution along the axial direction.

As the distance in the axial direction increased, several stages of regular variations in the SMD
occurred. At Y = 0 mm, the SMD curve underwent approximately four stages of changes: (1) When
X = 50–150 mm, the SMD increased as X increased. This is likely due to the concentration of the
droplets just after leaving the nozzle [30]. During sampling, strong droplet coalescence occurred
due to incomplete atomization. (2) When X = 150–450 mm, the SMD decreased rapidly by up
to 48.4%. This indicates that the splitting of single droplets was predominant during this stage.
(3) When X = 450–800, the SMD fluctuated between 90 and 110 µm. This indicates that the droplets
were stable under both internal and external forces and that the SMD reached a uniform distribution.
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(4) When X = 800–1000 mm, the fluctuations in SMD were greater, as the amplitude increased by 16%.
This suggests that droplet collisions and coalescences became predominant. As shown in Figure 6,
the variation in SMD when Y = 50 mm was similar to that when Y = 0 mm. With an increase in the
distance, the SMD increased, indicating an increase in the area in which concentrated droplets were
concentrated. The SMD only began to decrease significantly at X = 300 mm, and it varied between 80
and 95 µm when X = 450 mm. The droplet collision and coalescence rates began to increase when
X = 850 mm. When Y = 100 mm, the curve began to change. The SMD did not initially increase with X.
This indicated that the droplets were directly entering the fast breakup phase.

When Y = 150 mm, the SMD initially mildly oscillated but then gradually increased. The SMD
reached the minimum value of 73.25 µm when X = 700 mm. It then increased by 49.4% at X = 1000 mm.
At Y = 200 mm, which was close to the edge of the spray field, the SMD experienced more pronounced
oscillations but was similar to the behavior at Y = 150 mm.

3.1.2. Characteristics of Particles in the Radial Direction

To further investigate the variations in SMD at each cross-section, we analyzed the SMD in the
radial direction. According to our analysis in Section 3.1.1, stage-wise changes in SMD were observed
in the axial direction. Therefore, we selected several typical cross-sections for study based on the
characteristics in each region. These cross-sections were located at X = 100, 200, 450, and 800 mm.
With a step size of 50 mm, the cross-section close to the nozzle would only be able to contain one
measurement point. Therefore, for particle size analysis, we set the step size to 20 mm to ensure
sufficient data collection. Figure 7 shows the SMD distribution along the radial direction in the four
selected cross-sections.
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Figure 7. Comparison curve of the axial velocity along the axial direction.

As shown in Figure 7, when X = 100 mm, the droplet radius increased from the center to the
edge of the spray field. This is due to the great droplet density, indicating that some droplets were
overlapping. In the other cross-sections (X = 200, 450, and 800 mm), the SMD changed in the radial
direction and exhibited similar behavior, i.e., it first decreased and then increased. This indicates that
the droplets initially separate into smaller droplets as they spread outward from the center. Then,
with an increase in Y, the SMD increased for the following two reasons: First, the droplets extensively
exchanged energy with the environment, and the loss of kinetic energy increased with the radial
distance. Under the impact of the atmosphere, inelastic collisions caused the SMD to increase. Second,
larger droplets exhibited higher inertia and smaller air resistance per unit volume, allowing them to
travel farther. Furthermore, the small droplets near the edge of the spray field evaporated quickly,
hindering measurement.
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3.2. Droplet Velocity

3.2.1. Characteristics of Velocity in the Axial Direction

The velocity in the axial direction represents the kinetic energy required for the droplets to move
forward. A greater velocity in the axial direction means that the droplets possess higher energy to
move forward [31]. Figure 8 shows the regularity of the distribution of the axial velocity in the axial
direction. As the spray distance increased, the axial velocity decreased, but this decrease slowed
gradually. The main reason for this decrease was that the nearby spray was required to overcome the air
shear resistance to move forward. Along the axial direction of the spray (Y = 0 mm), the axial velocity
decreased significantly from near the nozzle’s exit to X = 500 mm. Over this distance, the velocity of the
droplets decreased by up to 51.3%. Along the line Y = 50 mm parallel to the axial direction, there was
still a clear decrease, which reached 51.9% at X = 500 mm. When Y was between 100 and 150 mm,
as the axial distance increased, the decrease in the axial velocity slowed. Along the line of Y = 200 mm
parallel to the spray, the axial velocity remained almost the same, maintaining a value between 1 and
4 m/s. The axial velocity decreased further from the axial direction (Y = 0 mm), but became more
stable. It can be speculated that the outer region of the spray field tended to stabilize, but the forward
momentum diminished.Processes 2020, 8, x FOR PEER REVIEW 8 of 17 
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Figure 8. Comparison curve of the radial velocity along the axial direction.

The velocity in the radial direction represents the kinetic energy used for the droplets to expand.
A higher velocity indicates that the droplets are more likely to move outward [32]. As shown in Figure 9,
the radial velocity exhibits a similar scale to the axial velocity but is 50–60% smaller. This suggests
that the swirl structure of the nozzle greatly enhanced the radial velocity. Along the axial line of the
spray (Y = 0 mm), with an increase in the distance, the radial velocity first increased gradually and
then decreased. The increase reached 41.5% at X = 150 mm, after which the velocity first decreased
rapidly but then decreased more slowly. The decrease reached 58.2% at X = 500 mm; beyond this,
the radial velocity was very small, between 0–3 m/s. When Y = 50 mm and Y = 100 mm, the behaviors
were consistent with those at Y = 0 mm, although with the initial increase in the radial velocity were
9.5% and 4.9% slower, respectively. When Y = 150 mm and Y = 200 mm, the radial velocity decreased
throughout the spray, indicating a constant weakening in its expansion.
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3.2.2. Characteristics of Velocity in the Radial Direction

Along with the velocity changes along the radial direction, the changes in the radial direction
within each cross-section are also very important in the formation of the spray field. Therefore, it is
necessary to study the variations in the velocity radially in the cross-section. Here, we focused on the
changes in the axial and radial velocities using the representative cross-sections used in Section 3.1.2 as
our object of study. For details, see Figures 10 and 11.
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Figure 10. Comparison curve of the axial velocity along the radial direction.

As shown in Figure 10, the radial velocity decreased gradually in the radial direction and slowly
approached 0 at the edge of the spray field. This indicates that the ejector pumping capability of the
axial velocity declined gradually towards the edge of the spray field. The extent of decrease in the radial
velocity with increasing spray distance was distinct for each cross-section: at the cross-sections with
X = 100 mm and X = 200 mm, the decline in axial velocity was approximately parabolic; at X = 450 mm,
the decline was almost linear; and, after X = 800 mm, the axial velocity changed very slightly, unlike
that in the previous cross-sections. According to this analysis, the droplets lost momentum as the spray
distance increased, gradually shifting from internal-force to external-force dominance. When the axial
velocity decreased by such an amount that resulted in a balance between the internal and external
forces on the droplets, the droplets tended to stop moving forward.

As shown in Figure 11, with an increase in the spray distance, the changes in the radial velocity
differed between different cross-sections. When X = 100 mm and X = 200 mm, the radial velocities
increased by 68.4% and 85.7%, respectively. Therefore, the spray expands rapidly during this interval.
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This was maintained until X = 450 mm, where the increase was 67.9%. This indicated that the spray
was still expanding at this distance, though at a lower rate. At Y = 800 mm, the radial velocity remained
between 0 and 1 m/s. At this point, the expansion was solely maintained by the inertia of the droplets.
Although it was compressed by air in the atmosphere, the spray field continued to expand for some
distance due to inertia. However, the radial velocity was very small, limiting the space available for
expansion. The expansion rate at X = 100 mm was significantly higher than that of the following
cross-sections, and the radial velocity in the final cross-section was one order of magnitude lower than
that at X = 100 mm. This indicates that, near the nozzle’s exit, the spray is locally concentrated in
a small region and has high expansion energy. However, after some distance, the spray gradually
dissipates and loses expansion energy.
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3.3. Characteristics of the Droplets’ Joint Particle Size–Velocity Distribution

According to jet atomization theories, the particle size distribution is closely related to the velocity
distribution during spraying [33]. The velocity of the droplets directly impacts their breakup, thereby
affecting the eventual distribution of the particle sizes in the spray field. Therefore, in this section,
we consider the particle size and velocity distributions jointly to elucidate the spray’s dynamics during
its development.

Figure 12 presents a joint particle size–velocity distribution scatter plot at different locations with
an injection pressure of 2 MPa. In the region near the nozzle (X = 50 mm), both the axial and radial
velocities were highly dispersed, increasing the likelihood of smaller droplets having a higher axial
velocity. When X = 100 mm, the droplets’ axial velocity decreased significantly, but the radial velocity
increased greatly, resulting in a concentrated distribution. By comparing Figures 12a and 12b, it can
be seen that the difference in the velocity between droplets with different particle sizes decreased.
This indicated that, with the development of the spray, the velocity of droplets with small radii
decreased significantly, while larger droplets maintained a high speed. When X = 200 mm, the axial
velocity of the droplets still decreased significantly, while the radial velocity did not change greatly.
When X = 450 mm, the axial velocity decreased slightly, while the radial velocity decreased significantly.
By X = 600 mm, the average velocity of the droplets had decreased by 70%. By comparing Figure 12c,
Figure 12d, and Figure 12e, it can be seen that the number of smaller droplets increased, while the
number of larger droplets decreased but could better maintain a stable velocity. The droplets gradually
began to stratify in the spray field. At X = 600 mm, the velocity of the small droplets was very small,
while that of the larger droplets was significantly higher. It can be speculated that, during spraying,
small droplets interact with the surrounding air and gradually lose momentum. Meanwhile, large
droplets separated into smaller droplets. The rapid atomization process stabilized slowly as the spray
developed. As shown in the velocity scatter plot when X = 800 mm (Figure 12f), the number of large
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droplets increased significantly, but their velocity remained low. This indicated that these large droplets
were formed by the coalescence of smaller droplets.
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From the descriptions above, the development of the spray field can be summarized as follows.
After the ejection of the jet from the nozzle, the droplets initially maintained some velocity, but the
distribution of particles with different sizes was not uniform. As the spray distance increased,
the droplet velocity decreased significantly, and the particle size distribution changed very little. As the
distance increased further, the large droplets separated into smaller droplets, increasing their number
accordingly, but their velocity decreased rapidly. However, the large droplets that did not break up,
or did not sufficiently break up, maintained their high velocity. The low-speed small droplets then
collided, producing larger droplets with low speeds. The droplets that did not sufficiently break up
continued to separate. At this point, the distributions of the particle size and velocity of the droplets
stabilized. As the spray distance increased further, the droplet velocity decreased significantly and the
small droplets coalesced, thus increasing the number of large droplets.
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3.4. Spray Structure of the Pressure-Swirl Nozzle

In Section 3.3, we used our analysis of the joint particle size–velocity distribution to microscopically
elucidate the spray development process. However, for engineering applications, we aim to intuitively
understand the macroscopic changes in the spray field. By combining previous experimental results,
we divided the spray of pressure-swirl nozzle into five regions based on the characteristics of the
particle size–velocity distributions of the spray field, namely the mixing, expansion, stabilization,
decay, and rarefied regions, as shown in Figure 13. The operating pressure of the nozzle is 2 MPa.
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(1) Mixing Region (X = 0–100 mm)

Atomization is completed once in this zone. The mixing region is characterized by a high spray
density, the droplets do not diffuse in the air, and the droplet velocity and particle size distributions are
non-uniform. Furthermore, it is easier for smaller droplets to obtain a higher axial velocity.

(2) Expansion Region (X = 100–400 mm)

Here, the droplets are in a discrete form. Owing to the high relative velocity between the gas and
liquid, more droplets undergo atomization for a second time under internal and external forces. As the
spray travels forward, it also spreads radially, forming a spray angle. During this process, the velocity
is reduced significantly, which is mainly due to air resistance.

(3) Stabilization Region (X = 400–800 mm)

The particles in this region originate from the breakup or cracking of particles in the expansion
region and experience great velocity dissipation. This region is characterized by having the most
droplets with different sizes that have similar velocities. There are some small droplets that have
collided and coalesced, and some high-speed, large droplets that can still break up are present.

(4) Decay Region (X = 800–1000 mm)

In the decay region, the spray concentration decreases and its velocity is extremely low. Here,
the droplets are scattered in the air and the interactions between droplets weaken, but the gas–liquid
coupling is still strong. The droplets are greatly disturbed by the spray’s entrainment, resulting in
an increase in the probability of collisions and significantly increasing the number of large droplets.
At this point, the interactions between droplets are in the form of “droplet–gas–droplet”. Some large
droplets continue to break up.
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(5) Rarefied Region (spray edge)

This is the outermost region of the spray. Here, the droplets and surrounding air have completed
their momentum exchange and their velocities are almost the same. At this point, the droplets are
mainly in two forms, i.e., turbulent diffusion and evaporation, and other forms, such as collisions,
coalescences, breakups, and spinning, can all be neglected.

3.5. Effect of Water Pressure on Spray Structure

3.5.1. The Effect of Water Pressure on SMD

To present the statistics of SMD on the central axis under 2–5 MPa, the change curves of SMD are
shown in Figure 14. When the pressure is 3, 4, and 5 MPa, the changes of SMD are similar. Different
from that under 2 MPa, SMD decreases in a wave-like manner when X = 50–400 mm. After X = 800 mm,
the SMD remains stable, as opposed to the gradual increase seen under 2 MPa. Moreover, SMD tends
to be stable at 450 mm under 2 and 3 MPa. Under 4 MPa, SMD tends to be stable at 350 mm from the
nozzle; at 5 MPa, SMD tends to be stable at 100 mm from the nozzle.
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3.5.2. The Effect of Water Pressure on Velocity

Figure 15 shows the change curves of axial and radial velocity. It can be seen that the velocity
distribution along the axial direction of the spray is very similar under different pressures. Compared
with 2 MPa, the axial velocity increases 1.1 times and the radial velocity increases 6.29 times when
X = 600 mm and pressure = 5 MPa. The axial and radial velocity increase 2.65 and 38.5 times,
respectively, when X = 1000 mm and pressure = 5 MPa. Thus, the pressure has an obvious effect on the
velocity change, and the momentum can still be maintained with the increase of spray distance.
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3.5.3. The Effect of Pressure on the Joint Particle Size–Velocity Distribution Characteristics

Figures 16 and 17 show scatter diagrams of joint particle size–velocity distribution under different
pressures at the center points of X = 50 mm and X = 200 mm, respectively. It can be seen from
Figure 16 that, as the pressure increases, the velocity of the droplets becomes more and more dispersed.
Comparing the SMD under different pressures, it can be found that the particle size distribution of
droplets changes little. The main reason for this phenomenon is that the jet breaking is from the
outer edge to the core, and the concentration of the spray field near the nozzle is high. At this time,
the external air cannot be sucked into the spray field in large quantities to fully mix with droplets,
and breakup is not sufficient.Processes 2020, 8, x FOR PEER REVIEW 14 of 17 

 

 

 

Figure 16. Joint particle size–velocity distribution changes with pressure (X = 50 mm, Y = 0 mm). 

 

 

Figure 17. Joint particle size–velocity distribution changes with pressure (X = 200 mm, Y = 0 mm). 

According to the previous analysis, when X = 200 mm, the droplet is in the breakup process. 
Figure 17 shows that with the increase of pressure, the number of droplets with large particle size 
decreased slowly. When the pressure increased to 4 or 5 MPa, the number of large-size droplets 
almost disappeared. On the other hand, it reflects that with the increase of pressure, the droplet 
distribution of the measuring point is more and more uniform. At this time, the droplets still maintain 
large axial and radial velocities, which shows that the spray field has a strong trend of advance and 
expansion. When X = 50 mm, with the increase of pressure, the increase of axial velocity slows down 

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

2

4

6

8

10

12

14

16

 

 

v y
/m
·s-1

vx/m·s-1

2MPa

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

2

4

6

8

10

12

14

16
3MPa

v y
/m
·s-1

vx/m·s-1

SMD(μm)

6.000
50.88
95.75
140.6
185.5
230.4
275.3
320.1
365.0

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

2

4

6

8

10

12

14

16
4MPa

v y
/m
·s-1

vx/m·s-1
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0

2

4

6

8

10

12

14

16
5MPa

v y
/m
·s-1

vx/m·s-1

SMD(μm)

6.000
50.88
95.75
140.6
185.5
230.4
275.3
320.1
365.0

2 4 6 8 10 12 14 16 18 20 22 24 26
4

6

8

10

12

14

16
3MPa

 
v y

/m
·s-1

vx/m·s-1
0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

2

4

6

8

10

12

14

16
2MPa

 

 

v y
(m
·s-1

)

vx(m·s-1)

SMD(μm)

6.000
50.88
95.75
140.6
185.5
230.4
275.3
320.1
365.0

2 4 6 8 10 12 14 16 18 20 22 24 26
4

6

8

10

12

14

16
4MPa

v y
/m
·s-1

vx/m·s-1 2 4 6 8 10 12 14 16 18 20 22 24 26
4

6

8

10

12

14

16

v y
/m
·s-1

5MPa

vx/m·s-1

SMD(μm)

6.000
50.88
95.75
140.6
185.5
230.4
275.3
320.1
365.0

Figure 16. Joint particle size–velocity distribution changes with pressure (X = 50 mm, Y = 0 mm).
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According to the previous analysis, when X = 200 mm, the droplet is in the breakup process.
Figure 17 shows that with the increase of pressure, the number of droplets with large particle size
decreased slowly. When the pressure increased to 4 or 5 MPa, the number of large-size droplets almost
disappeared. On the other hand, it reflects that with the increase of pressure, the droplet distribution
of the measuring point is more and more uniform. At this time, the droplets still maintain large axial
and radial velocities, which shows that the spray field has a strong trend of advance and expansion.
When X = 50 mm, with the increase of pressure, the increase of axial velocity slows down obviously,
while the trend of droplet size becoming smaller is very obvious, which also verifies that the breakup
of droplets is dominant at the moment.

It can be concluded that with the increase of pressure, the spray field structure has two definite
characteristics: (1) with the increase of pressure, the expansion region is advanced and the stabilization
region becomes larger; (2) with the increase of pressure, the influence of pressure change on SMD
decreases for the same measuring point.

The spray dust fall is mainly aimed at dust below 75 µm and the actual spray pressure is above
5 MPa. According to spray partition diagram, when pressure is under 5 MPa, the droplet size in the
expansion and stabilization region is about 70–100 µm, and the velocity is between 10 and 25 m/s.
In addition, some large-sized droplets will continue to break in the decay region. There are droplets
with the sizes close to that of the settling dust in these three regions. Therefore, the expansion,
stabilization, and decay regions are the effective dust fall areas of the spray. In addition, the droplet size
in the stabilization region is the most uniform, indicating that this region is the best dust-fall region.

4. Conclusions

(1) The variation of SMD in axial and radial directions of the spray has been analyzed. In the axial
direction of the spray, when X = 50–150 mm, SMD increases. When X = 150–450 mm, SMD decreases
almost by 48.4%. Then, SMD fluctuates between 90 and 110 µm. When x = 800 mm, SMD increases
gradually, and the increase rate is 16.0% until the final measurement point (x = 1000 mm). In the radial
direction, SMD first increases and then decreases.

(2) The change of velocity in axial and radial directions has been analyzed. In the axial direction
of the spray, when X = 50–500 mm, the axial velocity decays rapidly by about 50%, and then the
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axial velocity decreases slowly. When X = 50–300 mm, the radial velocity increases by about 10–40%.
When x = 300–600 mm, the radial velocity decreases rapidly with an average decrease of 37.9%. Until
x = 1000 mm, the radial velocity is maintained at 1–3 m/s. The tangential velocity has no change rule.
In the radial direction, axial and radial velocities decrease steadily.

(3) The spray partition frame was determined. Based on the jet atomization theory, the spray
structure of pressure-swirl nozzles was divided into five regions, namely the mixing, expansion,
stabilization, decay, and rarefied regions. The characteristics of each region are as follows: smaller
droplets obtain a larger axial velocity more easily in the mixing region; in the expansion region,
the droplet velocity decreases significantly, and the large droplets separate into smaller droplets; in the
stabilization region, large droplets have a high velocity and the distributions of the particle size and
velocity of the droplets reach a stable state under break-up and collision; in the decay region, the droplet
velocity becomes very small, and some large droplets continue to break up under air turbulence; and in
the rarefied region, the droplets and surrounding air complete their momentum exchange and reach
similar velocities. With the increase of pressure, the expansion region was advanced, the stabilization
region became longer. Combined with the above experimental results, the spray field can be further
divided for dust control. The expansion, stabilization, and decay regions are the effective dust fall
areas and the stabilization region is the best dust fall area.
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