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Abstract: The main roles of fault detection and diagnosis (FDD) for industrial processes are to make
an effective indicator which can identify faulty status of a process and then to take a proper action
against a future failure or unfavorable accidents. In order to enhance many process performances
(e.g., quality and throughput), FDD has attracted great attention from various industrial sectors.
Many traditional FDD techniques have been developed for checking the existence of a trend or
pattern in the process or whether a certain process variable behaves normally or not. However,
they might fail to produce several hidden characteristics of the process or fail to discover the faults
in processes due to underlying process dynamics. In this paper, we present current research and
developments of FDD approaches for process monitoring as well as a broad literature review of many
useful FDD approaches.

Keywords: industrial process; fault detection; fault diagnosis; fault prognosis; data-driven methods;
model-based methods; knowledge-based methods; hybrid method

1. Introduction

With the advent of industry 4.0, current industrial processes are transforming into smart ones.
In particular, many modernized industrial processes are equipped with several well-elaborated sensors
to gather process-related data for discovering faults existing or arising in processes as well as monitoring
the process status. For this change of industrial environments with the full-automation of equipment
and process (i.e., operation), more cautious supervision that includes process control and suitable
corrective actions is required to guarantee the process efficiency [1–3].

It is an important task to maintain a desirable performance in industrial processes which commonly
hold several kinds of faults. Among various process supervision techniques, the fault detection and
diagnosis (FDD) is a significantly critical control method for accomplishing this task because most
industries hope to improve their process performance through a higher level of FDD capability.
The basic functions of FDD can be summed up into two parts, namely (1) monitoring the behavior of
process (variables) and (2) revealing the fault presence, its characteristics, and root causes of faults.
Thus, in order to maintain high process yield and throughput in industrial processes, it is necessary to
adopt fast, accurate, and effective detection and diagnosis tools for process or equipment faults that
may degrade the performance of the entire system [4–6].

Due to many substantial benefits to be achieved from reduction of process- or product-related
costs and improvement of quality and productivity, the FDD for many diverse processes has
attracted much attention from both various industrial sectors and academia over several decades [7].
In particular, FDD has played an important role in various industrial engineering processes, for example,
semiconductor manufacturing, chemical engineering, and software engineering. So, for the economical
and optimal operation of processes, there is an increasing demand for the effective detection and
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diagnosis of suspicious faults to prevent deterioration of the process that may cause deterioration of
product yield or process throughput ultimately. Generally, as a fundamental method for supervision
of the processes, the FDD task is performed based on several process and equipment data measured
by instruments (i.e., sensors). Also, to date, many applications and researches on the detection of a
faulty process (or variable) have considered a variety of competent analytical approaches and those on
diagnosis, isolation, and identification of causes of a process anomaly after the detection have adopted
various mathematical or probabilistic models [5,8].

There have been numerous theoretical and experimental researches on FDD methods for diverse
industrial processes. Methods used for FDD can be classified into data-driven, model-based,
and knowledge-based approaches [9–11]. Particularly, data-driven and model-based approaches
require very little modeling efforts and a prior knowledge on process (or variables) of interest and
have made a huge impact on FDD for industrial processes thanks to their relative simplicity and
effectiveness for process FDD [12]. The on-line real-time FDD is also another important issue in current
process monitoring field, especially in some industries involving dangerous processes, for example,
a large-scale chemical processes. Through the FDD tool, it is possible to increase process efficiency and
safety by detecting abnormal symptoms in the early stages of appearance of process faults. However,
it is very hard to detect faults in control loops of chemical processes due to the feedback masking
effects. In order to resolve this problem, a bank of FDD models which can distinguish faulty status
from normal status is commonly considered [13].

The rest of the paper is organized as follows: The terminologies used in process monitoring field,
concept of process monitoring and FDD, and industrial applications of FDD are given in Section 1.
In Section 2, data-driven FDD methods and their applications are given. The model-based FDD
approaches and their applications are provided in Section 3. The knowledge-based FDD approaches
and their applications are given in Section 4. Different types of FDD techniques, including hybrid
approaches and fault prognosis, are illustrated in Section 5. Finally, conclusions and future works are
provided in Section 6.

1.1. Fault, Failure, and Malfuctioning

It is of importance to clearly define terminologies used in process monitoring field and also to
classify those in terms of their characteristics. A fault can be defined as an unacceptable departure of
a process variable from a normal state or behavior. Specifically, unallowable deviation indicates the
difference between a threshold value and fault value, and this fault may cause a process malfunction or
process failure [5,14]. Faults may be already existing in the process or appear at an unknown time and
the speed of appearance of faults can be different [15]. Depending on the occurrence time, faults are
usually classified as an abrupt fault (referred as stepwise fault), incipient fault (referred as drifting
fault), or intermittent fault. Moreover, depending on the way that faults represent, faults are classified
as additive or multiplicative faults [14,16].

A failure is defined as an eternal system interruption to execute a demanded function. So, as a
termination indicator of a function of a process unit, the failure is attributed to several faults. Depending
on predictability, the failure types can be classified into three categories, namely random (unpredictable)
failure, deterministic failure, and systematic or casual failure. Finally, a malfunction is defined as a
sporadic interruption of a process or system execution and is usually also a result of faults [5].

1.2. Process Monitoring

For effective process monitoring, the use of FDD tools has received considerable attention from
both diverse research and application domains and thus many useful FDD methods have been
developed [16–19]. A generic process monitoring procedure has a loop form that is composed of four
steps, i.e., fault detection, isolation, identification, and recovery of the process, as shown in Figure 1 [16].
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Figure 1. Implementation procedure of a conventional process monitoring.

As one of the famous approaches for process monitoring, many statistical process monitoring
(SPM) techniques (also referred to statistical process control (SPC) have been used to improve process
efficiencies in various industries. In traditional univariate SPM approaches for single process variable
monitoring, it is assumed that all the measured process variables follow the normal (i.e., Gaussian)
distribution and are independent and identical. However, the conventional SPC methods have
a lot of limitations since such an assumption is often fallacious for the data collected from many
real-world industrial processes due to their underlying natures such as multivariate, non-linearity,
non-Gaussianity, and non-stationarity [20,21]. For example, it is inadequate to apply a univariate
control chart to a multivariate process (or system) if the variables in that process involve a non-linearity
characteristic and cross-correlation.

To overcome the limitations of the conventional univariate SPC approaches for the monitoring
of dynamic industrial processes, several superior multivariate statistical process monitoring (MSPM)
techniques including useful statistics (e.g., Hotelling’s T2 statistics) have been developed and
implemented for many industrial processes [20,22,23]. Also, for monitoring non-measurable process
variables (e.g., status, parameters, etc.), useful estimation methods and process-based models have
been extensively studied and widely applied [15].

Particularly, with the development of sensor technology which enables to routinely collect data
on numerous process variables, various useful process monitoring and fault diagnosis (PM-FD)
approaches based on multivariate statistical methods have gained huge attention. MacGregor and
Kourti [12] provided an overview of two famous multivariate-based projection methods, that is,
PCA (principal component analysis) and PLS (partial least squares) methods, for process monitoring
and discussed their uses for continuous processes and batch multivariate processes. In particular, in this
study, they described the effectiveness of the combination of multi-block PLS and contribution plots.
They applied PCA and PLS to a continuous process and a batch process in mineral processing plants.

Ison and Spanos [24] extended the multivariate SPC (MSPC) system for fault detection to account
for long-term trends on semiconductor wafer lots. In this study, to characterize the long-term variability
in optical emission data obtained from a semiconductor plasma etcher, they used the log transformation
method to linearize the collected data. Also, through the filtration of the known machine aging
effect, they integrated optical emission data with collected sensor signals and presented a robust fault
detection system. Finally, they provided the framework of a fault diagnostic system involving various
data types and taking into account uncertainty.

To diagnose on-board incipient faults in dynamic systems, Basseville [9] provided a general
statistical approach to the design of a new fault detection and isolation (FDI) scheme. In this study,
they described the key components of a mathematical statistics theory called local approach which
allows performing the on-board incipient FDI tasks [9]. In the current industrial situation, it is of
importance to timely detect incipient faults for ensuring optimal conditions of the process as well
as preventing any serious deterioration of system efficiency. Even though many MSPM approaches
have been adopted for fault detection in various industrial processes, the conventional fault detection
methods based MSPM may not deal with incipient faults. Ji et al. [25] first addressed six different fault
detection indices used in classical PCA and PLS methods and then, based on those, introduced a new
incipient fault detection methods based on a comprehensive fault detection index by incorporating
two representative smoothing tools, i.e., MA (moving average) and EWMA (exponentially weighted
moving average) methods [25,26].
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To enhance the performance of MCCs (multivariate control charts) for process monitoring, Peres
and Fogliatto [27] presented the cutting-edge of variable selection methods integrated with MSPC
approaches. In this research, they identified and categorized thirty MSPC approaches into 10 groups in
terms of their purposes and process monitoring steps. Specifically, they divided the whole procedure
into two steps, i.e., filter step (preprocessing and postprocessing) and wrapper step. Among various
MSPM approaches, PCA-based methods have been widely used for FDD in numerous industrial
processes through extracting critical characteristics and monitoring anomalies. As a dimensionality
reduction technique, PCA is capable of detecting a fault presence easily by utilizing a variance structure
of data [28–32].

Also, as the variants of PCA, recursive PCA (RPCA) [33], dynamic PCA (DPCA) [20,34], and kernel
PCA (KPCA) [35] have been used for the purpose of monitoring diverse industrial processes such
as adaptive, dynamic, and nonlinear process [23]. Li et al. [33] proposed two RPCA algorithms to
adapt for normal process changes in semiconductor manufacturing processes. For this, they first
updated the correlation matrix recursively. In this study, they adopted rank-one modification
technique for sample-wise recursion and Lanczos tridiagonalization technique for block-wise recursion,
respectively [33]. Kruger et al. [29] considered an insensitivity problem of PCA-based process
monitoring approach to incipient process faults which usually change variable covariance structure
and underlying DPCA decomposition. For this, they incorporated a local approach into MSPC scheme.
Also, they isolated faults by producing a 3D fault diagnosis chart which can reveal any alteration due
to fault presence. Through this, they could identify dominant process variables which may contribute
to anomalies.

Alcala and Qin [19] analyzed and generalized five existing fault diagnosis approaches. In this study,
they showed that the five approaches can be integrated into three general ones and then proposed
the expectations of the contributions and the relative contributions of the methods. Through the
diagnosability analysis for process faults, they presented that some of the diagnosis approaches may
not warrant right diagnosis for naïve sensor faults with small magnitudes. They applied Monte Carlo
simulation for comparing the efficiencies of the presented fault diagnosis methods. In order to decide
adaptive chart parameters as well as the model size, Khediri et al. [22] presented a real-time fast
block AKPCA-based variable window monitoring system which allows for estimating non-linearity
in processes to trace normal drifts. They applied the proposed model to monitor two benchmark
processes and showed the robustness and improved detectability on process drifts.

It is known that the continuous annealing process line (CAPL) involves many complicated
characteristics of the process (e.g., cross-correlations among process variables, multiple operation
zones, and interconnection of a lot of subsystems). Many practitioners in CAPL are interested in
occurrence of typical process faults in which effects are frequently confined in a particular operation
zone [36]. So, process monitoring including fault diagnosis of CAPL has been a primary concern
because operational stability in the CAPL affects continuous processing of materials as well as quality
of final products [37]. For instance, to handle process nonlinearity, Zhang and Ma [38] presented novel
multiscale scheme-based approaches, i.e., MSKPCA and MSKPLS. In this study, they applied general
kernel PCA and kernel PLS to the multiscale data for capturing correlations between process variables
which occurring at different scales and extracted the non-linearity scores of process variables for fault
diagnosis. They applied the developed approaches to a CAPL and a furnace process to show the fault
diagnosis performance.

1.3. Fault Detection and Diagnosis

The process supervision aims to show the current process status (or behavior), identify undesired
symptoms, and take suitable actions for avoiding unwanted losses. As mentioned above, certain faults
may be attributed to several kinds of root causes and the fault may cause an interruption of the process
if proper actions are not taken. One of the important reasons for supervising processes is to prevent
the interruptions and the main purpose of the process supervision is to properly manage the presence
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of process faults [3]. Thus, the FDD is a very important task in diverse industrial processes and
remains an active research area to assure efficient and safe operations as well as the productivity of the
process [4,39,40]. The general implementation procedure of a conventional FDD method (or system)
can be divided into four sequential steps as shown in Figure 2.
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According to generally accepted terminology, fault detection is a task to determine or indicate
faults in a process or system and then the faulty process or variable should be isolated because
isolating faults gives additional useful information about the faults, e.g., root cause of a fault [5,41].
Fault diagnosis is a comprehensive task to determine fault type, fault size, location of fault, time of
fault detected, and behavior of faults through an appropriate assessment of the faults. Generally,
the fault diagnosis includes fault detection, isolation, identification, classification, and evaluation,
but sometimes the combination of fault isolation and identification is called a fault diagnosis
step [5,16]. In addition, fault detection and classification (FDC) is a specialized term commonly
used in semiconductor manufacturing industry [6,8]. Several different types of FDC models used
in semiconductor manufacturing processes enable the detection of faults in wafers and equipment
by extracting important features from numerous measurements recorded by many in-situ sensors
and also to classify the faulty wafers or defects (or defect patterns) through the analyzed information.
However, due to the preprocessing of the raw data collected by sensors and noises existing in sensor
data, the FDD performance often deteriorates [42].

Currently, many useful FDD approaches are applied to diverse industrial processes. So, there has
been a wealth of research in the FDD area, e.g., multivariate methods, analytical methods, artificial
intelligence, etc. In particular, for dealing with various FDI problems, many useful methods such as
hierarchical strategies have been developed and applied [39,43,44].

For isolation of faulty variables, mainly two different kinds of data-driven techniques have been
developed, that is, supervised method and unsupervised method. The supervised method requires the
already known fault information to determine the fault subspace or a region of abnormal operation for
each faulty status while the unsupervised method is to isolate faults without using a priori information,
e.g., the contribution plot of faulty variables from measured data. However, we note that the supervised
method may not applicable if the priori information on faulty events is not known [41].

Generally, the FDI procedure is composed of two phases, i.e., residual generation phase and
residual evaluation phase. To detect a process parameter change which causes certain structural
damages, Döhler et al. [45] provided a local approach and two simple statistical tests, i.e., sensitivity
and a minmax test-based residual evaluation method. For illustrating the performance of the developed
approach, they presented two simulation examples of vibration-based structural damage diagnosis.

Fault diagnosis for many industrial processes also has been a very crucial task under the several
specific situations of the processes, e.g., numerous process variables, contaminated or cross-correlated
data measured, and complex relations among the symptoms and faults [46]. So, many useful approaches
for fault diagnosis, such as classification techniques or fuzzy-based approaches, have been developed
to capture the fault characteristics [5,47].

1.4. Industrial Applications of Fault Detection and Diagnosis Methods

To improve many required performances in industrial processes, a variety of advanced FDD
techniques as a basic process supervision tool have been developed for many industrial engineering
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processes, e.g., semiconductor, automobile, microelectronics, chemical, etc. [15,35,47,48]. Iserman [15]
briefly summarized basic fault detection methods including parameter estimation methods for
continuous-time process, for example, an electrical driven centrifugal pump with a water circulation
system. Isermann [47] also introduced basic problems and methods of process supervision, including
FDD in some technical processes. In this study, they presented a knowledge-based procedure and
several different types of fault detection methods, which can extract certain key features from data
and utilize process and signal models. To compare the process behaviors (i.e., normal and abnormal
behaviors), they generated analytic symptoms and heuristic symptoms commonly caused by human
operators as another source of information. They also introduced classification methods, approximate
reasoning, and fuzzy approaches based on if-then-rules [47].

In chemical industry, FDD is a very useful process monitoring tool for ensuring the safety as well
as efficiency of processes. So, for safe and efficient operations, chemical industry requires superior
FDD methods that can detect and diagnose process faults more efficiently [49–52]. As one of the
popular FDD tools, PCA has been widely used to detect the presence of abnormalities in chemical
processes [20]. Further, FDD in chemical processes is known as a key element of the abnormal event
management (referred to as AEM) system that encompasses the three key functions of timely fault
detection, fault diagnosis, and corrective action for the faults in a process [39].

However, it is known that, rather than applications of FDD, many studies are placing more
emphasis on mainly resolving several practical issues in real chemical processes including how
to handle data characteristics e.g., non-linearity, non-stationarity, autocorrelation, cross-correlation,
non-Gaussian distribution, etc. [1]. Also, most practical chemical process data commonly involve
multiscale characteristics. That is to say, the real data measured in chemical processes contains many
time-varying and frequency-varying features and noise and some important features are frequently
masked since the measured data may be frequently contaminated with unknown errors [40].

For FDD tasks in many chemical processes, PCA-based approaches have been widely utilized.
Among them, to enhance fault diagnosability, Chiang et al. [28] provided an information criterion
which enables to decide the order of dimension reduction for Fisher’s discriminant analysis (FDA)
and discriminant PLS (DPLS). That is to say, by utilizing the properties of FDA and DPLS methods,
they provided an optimal order of dimension reduction of fault diagnosis. They showed that,
for diagnosing faults, FDA and DPLS are better dimension reduction tools than PCA by applying those
to a simulated Tennessee Eastman example.

Zhou et al. [53] discussed fault diagnosis methods for two special chemical processes. In this
research, they first analyzed prediction error of the neural network (NN) models for sensor or
component fault diagnosis and then applied an RBF neural classification approach for fault isolation.
To evaluate the performance of the NN models, they applied them to two exampled chemical processes.
Wang et al. [54] introduced a subspace method for designing a robust FDII (fault detection, isolation,
and identification) system. In this study, they proposed four different algorithms to generate residuals
for FDII. They showed that each of the proposed algorithms are robust to inputs while sensitive to
the sensor and actuator faults through the simulation analysis of vehicle lateral dynamic system.
Wang et al. [55] presented a new joint-individual process monitoring scheme based on MCCA (multiset
canonical correlation analysis) for chemical processes. In this study, they used MCCA to draw common
joint features in the whole processes and projected the measured data in an individual operation
unit into the subspaces of joint and individual features and derived statistics to simultaneously
examine the variations in the subspaces of joint and individual features. Ming and Zhao [1] reviewed
the advancement and challenges of FDD approaches used in chemical processes. In this study,
they discussed applications of big data analytics and artificial intelligence (AI) approaches which can
handle typical problems in practical chemical processes.

The semiconductor industries require a higher level of process and quality management strategies
as well as automation of the processes to improve overall production efficiency. The most emerging
issue is to develop and apply effective fault detection and classification (FDC) system for semiconductor
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production processes [8]. Practically, it is very important to diminish or eliminate any unusual
variation presented in the entire semiconductor production processes through a quick and exact
detection and diagnosis of faults (i.e., abnormal trends or behaviors) for maintaining consistent and
safe production [56]. Thus, FDC in semiconductor manufacturing has been recognized as one of the key
components of the APC (advanced process control) framework to enhance overall production efficiency
(i.e., yield and machine utilization) as well as reducing variations in processes [21,56–68]. In the
semiconductor industry, several FDC approaches have been developed and adopted to detect faults in
the processes and identify the corresponding root causes. However, unfortunately, most conventional
FDD approaches may not be adequate enough to describe faults presented in both processes and
semiconductor wafers due to the significantly high complexity in semiconductor wafer processing
and also the distinctive natures of data produced from semiconductor processes such as non-linearity
and multimodality [60,61]. For example, the etching process in semiconductor manufacturing is a
highly complicated nonlinear process, which considerably impacts wafer quality. Thus, over the
past three decades, various effective FDD techniques for semiconductor production processes have
been studied [57,62,63,68]. In particular, to overcome the limitations of conventional PCA-based FDD
methods, He and Wang [59] developed a fault detection method based on k-NN, namely FD-kNN,
for semiconductor manufacturing processes that commonly involves nonlinearity and multimodal
trajectories properties. Fan et al. [69] proposed RF (random forests)-based techniques to identify key
status variables, processing times, and steps in semiconductor manufacturing processes. In this study,
they integrated k-NNs and naïve Bayes classifiers into the ensemble models and utilized a t-SNE
(t-distributed stochastic neighbor embedding) method to visualize the key FDC parameters.

In wind farms known as one of the popular renewable energy systems, process condition
monitoring is very important task. So, proper supervision and control of wind turbines is necessary
for reduction of operation and maintenance costs. Laouti et al. [11] considered an FDD problem in
wind turbines. They employed an SVM (support vector machine)-based FDI approach for diagnosing
faults in a horizontal-axis wind turbine with variable speeds which consists of three blades and a
full converter. They considered a RBF as Kernel in SVM and then investigated faults in actuators,
sensors, and process. Dong and Verhaegen [70] investigated data-driven design methods for FDI on a
wind turbine problem which contains non-linearity and unknown wind disturbances. In this study,
they proposed a bank of robust fault detection filters and implemented it to a simulation model to
show their performances. Kusiak and Li [71] presented a three-level fault prediction approach for wind
turbines, that is, identification of faults, categorization of faults based on the severity, and prediction of
a specific fault by using information provided by SCADA systems and fault files.

In photovoltaic power generation systems, many faults in accordance with changeable outdoor
climate conditions often occur within the photovoltaic arrays [72]. However, due to an inherent
non-linearity characteristic in photovoltaic applications, fault detection in photovoltaic arrays is known
to be very difficult. To detect and classify hidden faults in photovoltaic arrays, Zhao et al. [73] proposed
a semi-supervised learning model based on the graph theory (GBSSL) with utilizing a few normalized
labeled data for training. Pei and Hao [72] presented a data-driven method for detecting common
PV array faults. To develop the fault detection method, they first identified some important fault
characteristics and then defined indicators of the voltage and current of the photovoltaic systems.
Through the defined indicators which contain characteristic information of faults, they provided the
thresholds fault detection and compared the indicators with the corresponding threshold values of
fault detection. By using simulation analysis, they showed the detectability of the proposed method.

In rotating machines, the mechanical FDD task in ball bearings is highly critical for reliable
operations since the machine breakdown is mainly caused by faults in ball bearings. Kankar et al. [74]
provided a new fault detection procedure for ball bearings in rotation machines. In this study,
they suggested fault detection approaches based on two machine learning techniques, namely ANN
(artificial neural network) and SVM. They showed the performance of the proposed procedures through
the comparative experimental study. Kusiak and Verman [75] applied a data mining approach for
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detecting faults in bearings of the wind turbine generator. In this study, they attempted to optimize
five neural network models in order to identify a relationship between several input parameters
and temperature in generator bearing and developed fault prediction model by using historical
wind turbine data. For validation of the neural network models, they tested them on two different
turbine cases.

For diagnosing faulty block and determining faulty variable in continuous annealing process line
(CAPL), Liu et al. [36] presented a hierarchical fault diagnosis approach. They, in this study, proposed
a new block contribution and variable contribution approaches based on a reconstruction technique
for diagnosis of faulty block and for determination of faulty variables, respectively. They applied
the RBBC–RBVC methods to two process fault cases, namely strip-break and roll-slippage, in a real
industrial CAPL. Hu et al. [76] proposed an adaptive FDII strategy for resolving false alarm problem in
a real process. In this study, they utilized the GLR (generalized likelihood ratio) test and singular value
decomposition method for fault isolation and identification, and PCA approach for fault diagnosis,
respectively. To show the effectiveness of the presented strategy, they applied it to the imperial smelting
process (ISP) which is known as one of the typical metallurgical processes.

2. Data-Driven Fault Detection and Diagnosis Methods

Data-driven FDD approaches have received a lot of attention from diverse industries and
been widely applied in complex industrial process monitoring [77,78]. The successful use of
data-driven FDD approaches depends on the analytical models used as well as the quality of historical
data [11]. The systematic categorization of various data-driven FDD methods according to the system
characteristics is given in Table 1.

Table 1. Systematic categorization of data-driven FDD methods.

Dynamic System Nonlinear System Non-Gaussian
System

Time-Varying/
Multimode System

Non-Stationary
System

HMM 1, DPCA,
DPLS, DNN 2,
Filter methods

KPCA, KICA 3,
PF, ANNs, KPLS,

LKPCA 4

ICA, GMM 5,
KPLS, Bayesian

estimation

Recursive PCA,
Recursive PLS,

Isolation estimation

MM, HSMM 6,
HMM, MCS 7,

SVM
1 Hidden Markov model, 2 Dynamic neural network, 3 Kernel independent component analysis, 4 Local KPCA, 5

Gaussian mixture model, 6 Hidden semi-Markov model, 7 Monte Carlo simulation.

Among various data-driven FDD approaches, due to the simplicity and efficiency, PCA-based
and PLS-based FDD methods are recognized as powerful tools for detecting and diagnosing process
faults [30]. Yin et al. [77] reviewed several data-driven methodologies, including design frameworks
useful for monitoring and FDD in industrial processes. For this, they first introduced to PCA-based
and PLS-based process monitoring schemes and then reviewed necessary modifications for successful
implementation of these schemes. Further, to resolve the uncertainty problems, they proposed
an integrated adaptive residual generation technique into the subspace-based process monitoring
framework. Wang et al. [79] surveyed fault tolerant control techniques as well as data-driven FDD
methods. In particular, they discussed the advances as well as general developments of data-driven
FDD and knowledge-based FDD approaches widely used in many dynamic industrial processes.
They provided a successful application example and presented future research directions, including
many challenging issues in FDD.

Yin et al. [80] reviewed several fundamental data-driven PM-FD (process monitoring and fault
diagnosis) methods (i.e., PCA, PLS, ICA, FDA, and SAP). In this study, they addressed the developments
and several characteristics of these data-driven methods, such as the original ideas, computational
complexities, design, and algorithms used. Qin [81] reviewed the advanced developments of several
data-driven PM-FD approaches and their applications. In this study, they discussed the use of
a latent variable modeling approach and its extensions for fault detection. Also, they described
contribution plot approaches for fault diagnosis and identification and the contribution methods based
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on a reconstruction technique for fault identification, respectively. Furthermore, they discussed fault
detectability and identifiability in fault diagnosis.

2.1. Principal Component Analysis (PCA)-Based FDD Methods

Among various statistical FDD approaches, PCA-based approaches have been successfully
implemented to highly complex industrial processes for detecting unknown faults during the
operations [26,34]. With the general PCA, several different types of PCA techniques, for example,
dynamic PCA (DPCA), and also data-driven reconstruction-based contribution approaches have been
frequently adopted for FDD in many industrial processes [82]. To capture hidden disturbances in
chemical processes, Ku et al. [20] extended general PCA models by incorporating two properties for
SPM (statistical process monitoring) (i.e., static and dynamic). They used a method of ‘time lag shift’
for describing dynamic behaviors in general PCA, namely dynamic PCA (DPCA).

Choi et al. [35] proposed a nonlinear FDI scheme based on KPCA technique for chemical processes.
In this research, as a single processing monitoring index, they developed a combined fault detection
statistic (Hotelling’s T2 and Q) and also the confidence limits for fault detection. They also developed
a reconstruction error-based fault identification index. Through the application of the proposed
approach to several nonlinear processes, they showed the process monitoring performances of it.
Sun et al. [83] considered a sensitivity problem between detection capability and false alarm rate in
incipient fault detection. To enhance the detectability on incipient faults and minimize the false alarm
rate simultaneously, they proposed a novel PCA-based FDD approach and developed a new data
preprocessing method. To validate the fault detection performance of the proposed method, they used
a boiler leak detection problem.

In order to describe several proper features of semiconductor production processes, He and
Wang [58] suggested a novel fault detection approach based on a pattern recognition technique called
PC-kNN. In particular, they showed that the proposed PC-kNN method outperforms FD-kNN in terms
of memory storage and computational complexity. The contribution plot technique which does not
require a priori knowledge has been used for many fault isolation problems. However, due to the
smearing effect, this approach may provide misleading conclusions on the faulty variables. In order to
resolve this problem, Liu [41] presented a contribution plot approach based on the maximization of
RCI (reduction of combined index) by using missing data approach.

Deng et al. [84] discussed the local structure of data for PM-FD of nonlinear processes and provided
a simple fault identification method called local KPCA (LKPCA). Specifically, in this study, they first
formulated an optimization problem by incorporating the structure analysis into the KPCA and then
transformed the formulated problem as a generalized eigenvalue decomposition problem by using
a common kernel trick. Also, they provided two monitoring statistics (Hotelling’s T2 and Q) based
on the proposed method and then used a kernel density estimation method to compute confidence
limits. Finally, they built contribution plots for two monitoring statistics considered in this research by
using a sensitivity analysis. To show the fault detection performance of LKPCA, they applied it to the
Tennessee Eastman process.

Harrou et al. [52] developed a new PCA-based method for improving fault detectability when
there is no process model. In this paper, based on the general PCA technique, they utilized the
GLR test for fault detection and tested it on a simulated CSTR (continuously stirred tank reactor)
data. Lau et al. [46] presented a novel framework for diagnosing faults arising in dynamic industrial
processes. The developed on-line framework involving multiscale PCA (MSPCA) for extracting key
process features and ANFIS (adaptive neuro-fuzzy inference system) to derive fault-signal correlation
through the process data. Specifically, they partitioned the features extracted from the use of MSPCA
into two spaces (i.e., score and residual spaces) and attempted to classify different kinds of process
faults by using multiple ANFIS. Liu et al. [37] developed a novel fault diagnosis technique for CAPL.
For this, they used a multi-level PCA (MLPCA) technique which is an extended version of a multi-block
consensus PCA (CPCA), and then, based on the proposed MLPCA algorithm, they presented a
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decentralized fault diagnosis method. They applied the proposed approaches to real CARL to
demonstrate the effectiveness of them.

To resolve the autocorrelation issue in the conventional Hotelling’s T2 and Q statistics, Rato and
Reis [85] developed a new multivariate approach. In this research, they proposed a bank of
multivariate statistics which are based on DPCA and DR (decorrelated residuals), namely DPCA-DR.
Harmouche et al. [26] considered the problem of estimating and detecting unpredictable slight
disturbances caused by incipient faults. In this study, for this, they adopted KLD (Kullback–Leibler
divergence) theory which allows to detect incipient faults often causing small distortions in process.
Specifically, they derived amplitude estimates of incipient faults based on the divergence and then
evaluated the divergence performance based on detection error probabilities. In particular, as a criterion
to compare the fault levels and noise, they considered the fault-to-noise ratio (FNR). Huang and
Yan [86] presented a new method for dynamic process monitoring, namely (DPCA–DICA–BI). In this
research, they separated Gaussian-distributed data from non-Gaussian-distributed data by using the
Jarque-Bera test and applied DPCA and DICA approaches to both Gaussian and non-Gaussian blocks,
respectively, in order to monitor dynamic subspaces.

For handling complex and multidimensional faults with large magnitudes, Mnassri et al. [87]
presented two new data-driven fault diagnosis methods. In this work, they presented a generalized
reconstruction-based contribution (RBC) approach and also RBC ratio (RBCR) an alternative approach.
Mansouri et al. [88] proposed a nonlinear fault detection approach, which consists of a GLR test and
kernel PCA (KPCA). In this study, they used KPCA for modeling and a GLR test for fault detection.
To verify the efficiency of the suggested approach, they tested it on two simulated examples including
synthetic data and CSTR data. Bakdi et al. [89] presented a new data-driven FDD scheme for cement
manufacturing plants. In this paper, they modeled the manufacturing process by using PCA and
evaluated the common multivariate statistics (i.e., Hotelling’s T2 and Q) by using adaptive thresholds.
To update adaptive threshold values, they employed a popular multivariate control chart, that is,
modified EWMA chart. They demonstrated the effectiveness of the proposed FDD scheme through
several faulty cases including a faulty case of a cement plant process. To resolve the non-linearity issue
of PCA for fault diagnosis, Kallas et al. [32] presented a KPCA-based fault diagnosis approach. In this
study, they discussed on the initial points and presented characteristics of three initialization techniques.

There are many difficulties in fault detection for many real industrial processes such as
high-dimensionality, non-linearity, non-stationarity, imbalanced ratio of faulty and normal data,
unsynchronized batch trajectory, etc. [2,90]. To handle such dynamics in processes, several useful
methods have bene developed, e.g., dynamic multivariate analysis (MVA) method, recursive MVA,
moving window MVA, multimodal MVA, etc. [30].

Among them, to identify certain underlying relationships among process variables and also
efficiently monitor the process involving such complexity, Jiang and Yan [91] presented a new process
modeling and monitoring scheme. In order to defect faults in chemical processes having correlated
variables, in this study, they developed a parallel PCA–KPCA approach involving two algorithms
(i.e., randomized algorithm and genetic algorithm). They provided several case studies including the
CSTR process to verify the performance of the presented scheme.

For efficient FDD, the feature extraction has been considered as an important task [90]. In order
to describe the process dynamics and handle class imbalance problem, Du [2] proposed a feature
extraction approach based on bispectral features and PCA and one-class classifier. They applied the
proposed method to a benchmark example of a real semiconductor etching process and evaluated fault
detectability of the proposed approach with considering several classification performance measures.

Various PCA-based methods widely used for many FDD problems do not often work well on
the fault diagnosis task. To improve fault diagnosability, several PLS-based approaches have been
adopted [28]. Choi and Lee [92] presented a novel FDI scheme using a multiblock PLS (MBPLS)
approach. In this study, they first introduced four different kinds of monitoring statistics. Then,
they provided new block definitions and derived contributions of variables to Hotelling’s T2 and Q
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statistics to distinguish faults. They also provided the relative contribution to both process variables
and blocks to the corresponding faults. To verify the efficiency of the presented approach, they tested
it to a wastewater treatment process (WWTP) data, which consists of three operation blocks, in a still
mill plant. For FDD in chemical processes involving non-linearity, Botre et al. [51] proposed a GLR
test based on a PLS technique. In particular, they used a kernel PLS (KPLS) approach for building
nonlinear PLS models and evaluated the KPLS models using a GLR test statistic.

It is known that the wavelet-based multiscale data representation technique enables the efficient
separation of deterministic features and probabilistic features existing in a system. So, this technique
has been frequently used to extract key features from a process or system. In order to deal with
autocorrelation and noise issues in chemical processes, Botre et al. [40] presented a fault detection
approach utilizing a GLR test based on multiscale PLS (MSPLS) method. For efficient process
monitoring and quality prediction, Jia and Zhang [93] proposed new process modeling and monitoring
methods. In this study, they utilized a dynamic kernel PLS (D-KPLS) approach to build a process
model, considering a dynamic relationship between input parameters and output process variables,
and then proposed a quality prediction method as well as the corresponding process monitoring based
on the (D-KPLS) algorithm for fault diagnosis.

2.2. Independent Component Analysis (ICA)-Based FDD Methods

Through PCA-based FDD approaches, it is possible to extract information of the fault locations
as well as to reduce dimensions. However, the conventional PCA or KPCA might not identify
the complex linear or nonlinear relations among process variables since PCA generally assumes
Gaussian distribution [31,35,91]. Compared to PCA-based methods, it is known that ICA-based FDD
methods are very useful to handle nonlinear process behaviors. So, to detect some complicated
faults in the Tennessee Eastman benchmark process that involves the nonlinearity characteristic,
Yang et al. [94] presented a hybrid fault detection approach, i.e., a combination of the canonical variate
(CV) analysis method for deriving canonical variates and ICA for extracting independent components
(ICs), namely CV-ICA method.

Fan and Wang [95] proposed a new FDD method for industrial processes with non-linearity and
non-Gaussianity characteristics called kernel dynamic ICA (KDICA). The proposed approach consists
of the ICA and kernel method for extracting dynamic characteristics, and the auto-regressive (AR)
model for considering dynamics. Further, for fault diagnosis, they developed nonlinear contribution
plots. Tong et al. [96] considered a non-Gaussian process monitoring problem and, for this, proposed a
modified ICA (MICA), referred to as double-layer ensemble monitoring method (called DEMICA).
In this study, through the DEMICA approach, they incorporated all possible MICA models as an
ensemble and used the double-layer Bayesian inference technique for monitoring indices.

2.3. Canonical Variate Analysis (CVA)-Based FDD Methods

Conventional PCA- and ICA-based FDD approaches assume a single distribution of process
data and the samples are statistically independent of the past data. However, in process monitoring,
these assumptions often cause a lot of false alarms and also a missing detection problem [86]. Compared
to PCA-based approaches, it is known that the canonical variate analysis (CVA) approach is helpful in
identifying the process dynamics [17]. In particular, as a multivariate data-driven technique, the CVA
approach provides moderately good performance when there exist serial correlations among process
variables [97].

For the efficient process monitoring, Stubbs et al. [98] developed a simplified CVA-based state
space model. Also, in this study, they proposed an efficient estimation method of state space matrices
and a precise selection procedure of the dimension of state vectors of a model. Russell et al. [34]
discussed the performances of DPCA- and CVA-based fault detection methods by applying score-based,
state-based, and residual space-based techniques to the Tennessee Eastman benchmark process example.
They compared the sensitivity, promptness, and robustness of all the fault detection methods considered.
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To identify process variables associated with faults, Jiang et al. [99] presented a contribution
method based on a CVA technique. In this research, they developed two different sorts of contributions
for both state and residual spaces to separate faulty variables for these two spaces. Jiang et al. [100]
presented a new fault diagnosis method called CVA-FDA. In this study, they considered CVA for
dimensionality reduction and FDA for fault classification. By using simulation analysis, they proved
that the CVA-FDA has better and consistent fault diagnosis performance that the general FDA method.

Jiang et al. [101] also developed another new CVA approach to investigation of correlation structures
in process data. In this paper, they used the feature representation approach of causal dependency (CD)
to detect any alteration in correlation structure of the process data. Ruiz-Cárcel et al. [97] provided a
case study for the assessment of different FDD methods. Particularly, in this study, they considered
a CVA-based FDD approach and evaluated its capabilities by applying it to a complex process with
different operating conditions. Samuel and Cao [17] proposed a new KCVA-based monitoring approach
to nonlinear industrial processes.

2.4. Signal-Based FDD Methods

For the purpose of decomposing the sensor signals in a process individually and describing
process dynamics, some useful wavelet-based approaches have been utilized. In order to obtain
a hierarchical strategy, Zhang and Hoo [44] considered a fault detection and isolation problem for
a biochemical wastewater treatment plant and provided a new FDI (fault detection and isolation)
approach based on a bond graph network method. In this study, they considered PCA for reducing
dimension, a discrete wavelet transform (DWT) method for representing the dynamics of the process,
Mahalanobis distance measure for calculating the confidence intervals, and a Bayesian network for
explaining the conditional dependence existing between faulty areas and fault signatures, respectively.

Hadad et al. [102] presented a new FDC system for nuclear power plant. For this, they utilized
an ANN-based wavelet transform method and resilient back-propagation algorithm. Konar and
Chattopadhyay [103] presented a fault detection algorithm based on SVM and continuous wavelet
transform (CWT) method for monitoring of condition in three-phase induction motor. They compared
the performance of the presented method to those of DWT (discrete wavelet transform)-based methods.
Villez et al. [104] considered a fault detection problem in a nonlinear system and proposed a new fault
diagnosis method based on the Kalman filter (KF). The proposed method is an extended version of
KF-based FDI for detecting three more critical faults existing in processes.

3. Model-Based Fault Detection and Diagnosis Methods

Due to the limitation of the classical FDD approaches, many useful model-based (especially,
process model-based or mathematical model-based) approaches have been considered [50]. Generally,
in order to apply model-based FDD approaches to a process fault detection problem, it is necessary for
users to understand the process model in the system since these approaches use the relations among
many process variables in order to obtain information on changes according to certain faults [5,11,14].
Generally, the model-based FDD approaches are largely classified into three subcategories, as shown
in Table 2.

Table 2. Classification of model-based FDD methods.

Quantitative Model-Based
Method

Qualitative Model-Based
Method

Process History-Based
Method 1

Observer-based
Parity Equation-based

Kalman filter-based

Causal model
Hierarchical model

Expert systems
Trend analysis
NN, PCA, PLS

1 Process history-based method also can be divided into quantitative model-based and qualitative model-based
method depending on the data types.
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Frank [105] reviewed several model-based FDI approaches to automatic processes. Particularly,
in order to acquire robustness to modeling errors, this study addressed key principles and techniques
of the model-based residual generation methods to by adopting and state estimation and parameter
identification approaches. Also, this study discussed the observer schemes for three different fault
detection types.

Hwang et al. [4] discussed model-based FDIR (fault detection, isolation, and reconfiguration)
methods. They classified FDIR methods into three categories based on three techniques, which are
techniques of residual generation, statistical decision, and reconfiguration control. They also discussed
various model-based residual generation methods for several different situations, statistical residual
testing methods for the occurrence of the abrupt faults, and finally implementation techniques of a
reconfigurable control strategy.

Schubert et al. [106] presented a new combined FDI scheme, which consists of traditional
model-based approach and MSPC techniques. In this research, they utilized subspace model
identification (SMI) technique in order to build proper model by tracking the operations in a process
and applied the proposed scheme to generate suitable statistics based on multivariate residual. To show
the performance of the proposed scheme, they provided three industrial applications involving three
faults types, namely sensor faults, process faults, and actuator faults.

3.1. Observer-Based FDD Methods

As a representative work on observer-based FDD methods, Li et al. [107] developed new fault
detection approaches based on diagnostic observer for piecewise affine processes. Particularly, in this
study, they optimized fault detectability through the application of the FD approach based on a
weighted diagnostic observer. Also, to enhance the efficiency of the FD approaches, they integrated
the mode observer into the proposed FD system.

Wu et al. [108] considered the fault diagnosis problem in nonlinear systems involving multiple
incipient sensor faults. They proposed a novel FDD method based on ToMFIR (total measurable fault
information residual) and on SMOs (sliding-mode observers). Specifically, they used a state and output
transformation technique to divide the original systems; a subsystem with sensor faults and the other
subsystem with actuator faults.

To enhance fault diagnosis performance in rotating machinery by improving the robustness of the
conventional FLO (feedback linearization observer) method, Piltan and Kim [109] proposed a new
observer-based FDD technique based on a variable structure FLO. Bernardi and Adam [110] proposed
two types of observers based on a LPV (linear parameter varying) technique to detect and diagnose
both actuator faults and sensor faults in nonlinear chemical processes.

3.2. Parity Equation-Based FDD Methods

Ding et al. [18] reviewed several different types of PM-FD methods. Based on the review,
they proposed modified and integrated methods of the PM-FD techniques. Odendaal and Jones [111]
considered the actuator fault detection and isolation (FDI) issue. For this, they provided a new FDI
approach based on an optimized parity space. Through parity space, they spanned all the parity
relations between the outputs and inputs in a system. Then, through the transformation of the spanned
parity relations, they optimized a transformation matrix. Also, they adopted a CUSUM procedure to
detect the change time of the residual variance and a pseudo-inverse actuator estimation technique to
capture the actuator deflections. To show the performance of the proposed approach, they applied it to
both real and simulated cases of aircraft control surface actuators.

Zhong et al. [112] considered a fault detection problem in LDTV systems. For this, they proposed
a novel FD approach based on the parity space, specially, in order to lessen computational load in FD
performance. For this, they formulated the FD problem as an optimization problem and then applied a
Krein space system to find out the optimal FD recursively.
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3.3. Supervised Learning-Based FDD Methods

In many PM-FD problems, SVM has been frequently used to find certain special patterns and to
classify the extracted patterns according to the types of fault. Widodo and Yang [113] presented a survey
on the application of SVM approaches for the monitoring of machine status and diagnosing faults and
addressed the future developments of SVM, which are towards expertise- or problem-oriented ways.

Park et al. [65] presented a new fault extraction and detection approach based on cubic spline
regression and SVM. In this study, they applied a cubic spline regression method to find step changing
points and adopted a SVM approach to build a classifier. Particularly, they regarded the coefficient
parameters multiplied to each basis of the corresponding cubic spline regression as the process features
and then utilized the extracted process features as inputs for constructing a classifier. Banerjee and
Das [114] considered a fault diagnosis problem of the dynamic motor condition. In this paper,
they transformed motor fault diagnosis problem with multiple sensors into an evidence fusion problem
with considering information extracted from sensor data and then utilized SVM and STFT (short term
Fourier transform) approach for fault signal classification.

Bordoloi and Tiwari [115] considered a multi-fault classification problem of machine gears and
proposed an SVM approach based on frequency domain data. In order to find optimal parameters
in the SVM model, they adopted three heuristic methods, that is, the grid-search, GA, and ABCA
(artificial bee colony algorithm) methods. They evaluated the performances of the adopted methods
by applying those to a multiclass problem. Xiao et al. [116] considered the problem of determining
optimal Gaussian kernel parameters of the one-class SVM (OCSVM) which impact on the classification
performances. The determination procedure of Gaussian kernel parameters consists of two methods;
(1) DFN method which utilizes the distance information of each sample and (2) DTL method which
utilizes detectability of tightness of decision boundaries. They proved the efficiency of the proposed
methods by applying those to both UCI and the Tennessee Eastman process datasets.

Jing and Hou [117] considered a multi-class classification problem. In this study, they discussed
two popular data-driven methods, namely PCA and SVM, for fault classification and also provided
several characteristics, including pros and cons of these methods. Wang et al. [118] proposed a new
monitoring method for the processes with multimodality. In this research, to detect transitions of
modes as well as faults arising in the multimode process, they adopted hidden Markov model (HMM)
approach. In particular, they used a probability ratio (PR) strategy based on HMM to differentiate
stable modes from transitional modes and also adopted the Viterbi algorithm to classify data into
several different modes. Also, they provided a combined process monitoring index (i.e., a combination
of Mahalanobis distance and observation probability). They showed the computational efficiency of
the proposed scheme through two numerical experiments.

3.4. Unsupervised Learning-Based FDD Methods

The kNN-based fault detection methods can effectively capture unique characteristics in many real
industrial processes, for example, multimode batch trajectories and non-linearity [57]. To account for
the correlations among numerous process variables in semiconductor manufacturing, novel methods
have been developed, for example, multivariate control charts and statistics. However, the traditional
multivariate-based techniques may not work well when the variable are non-Gaussian distributions.
Verdier and Ferreira [21] considered a fault detection issue in semiconductor manufacturing and
proposed a distance-based false alarm detection method. In this study, they proposed a k-NND
detection (called k-NND) based on adaptive Mahalanobis distance.

In many industrial processes, it is very common the number of abnormal (or faulty) instances may
be smaller than that of normal (stable) ones and also it is moderately difficult task to label each fault
according to the fault types. Zhong et al. [119] presented a novel semi-supervised form of the FDA
model, referred to as the SFDA model, which considered both labeled and unlabeled data for fault
classification. Kwak et al. [67] considered a fault detection problem when the class distributions are not
equal, i.e., imbalanced class distribution. In this study, they used an incremental clustering approach to
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construct on-line fault detection method, namely IC-FDM, with considering class imbalance. To show
the performance of IC-FDM, they tested the proposed method on the simulated data gathered from the
real semiconductor plasma etching process. Lee and Kim [63] provided a comparative study on fault
detection (FD) modeling algorithms with considering the class imbalance issue in sample numbers.
For this, they considered 117 combinations of feature extraction methods, feature selection methods,
classification methods, and six different process datasets, and then evaluated all the combinations in
terms of algorithm performance and adaptability to semiconductor manufacturing processes.

Due to the distance distortion problem of PCA for dimension reduction, a k-NN method may
increase the false alarms and fail to detect possible faults. So, in order to resolve this problem,
Zhou et al. [57] suggested a novel hybrid fault detection method. In this study, they used a random
projection technique and k-NN rule, referred to as the RPkNN method, for handling multimodality
and non-linearity problems in semiconductor manufacturing processes. To improve fault detectability,
Zhang et al. [120] presented a novel distance-based fault detection approach to semiconductor
production processes with multimodality. For this, they utilized the weighted distance of kNNs and
also provided new statistics to remove the impact of variance structure and decrease the autocorrelation
of statistics.

3.5. AI-Based FDD Methods

For the detection and diagnosis of process faults, many intelligent system-based methods have
been developed [113]. In particular, ANN-based approaches have been successfully implemented for
detecting incipient machine faults [121]. Jiang et al. [122,123] discussed a hybrid process monitoring
scheme which consists of many useful analysis techniques. Jiang et al. [122] presented a new data-driven
hybrid fault diagnosis framework for a power transmission-line network. In this study, they provided
the basic idea of the proposed framework and employed several fault diagnosis algorithms to build
the framework. Jiang et al. [123] showed the applicability of the framework proposed by [122] on
a hardware platform. In this study, they tested the robustness of framework and evolvability by
implementing the proposed framework to FPGA evaluation board.

Samy et al. [124] considered the multiple sensor fault diagnosis problem in unmanned air vehicle
(UAV). For this, they presented a model-based sensor fault diagnosis approach called as SFDIA under
the situation of simultaneous and consecutive occurrences of multiple sensor faults. They employed
EMRAN-RBF NN-based method for modeling. Tayarani-Bathaie and Khorasani [125] discussed design
and development of a FDI scheme for the aircraft gas turbine engines. In this research, they proposed
fault detection approaches based on two different types of neural network models, i.e., the dynamic
NN model and time delay NN model, and for fault isolation, they used a multilayer perception
network model.

Lee et al. [68] presented a convolutional neural network (CNN) model-based FDC method,
referred to as FDC-CNN. Particularly, they captured structural characteristics of data by modifying
the convolutional layer of conventional CNN model. To show the effectiveness, they tested it on
semiconductor CVD process data. Schlechtingen and Santos [126] presented a comparative study on
three model-based fault detection approaches for wind turbines, i.e., a regression based model and two
ANN-based models. In this study, using a time-series data stored in SCADA system, they developed
three model-based normal behavior fault detection models, and then investigated incipient fault
detectabilities of the developed models and prediction errors of the second fault. Also, they applied
the full signal reconstruction (FSRC) approach and autoregressive approach to detect faults in gearbox
bearing and anomalies in state temperature.

For the enhancement of fault detection performance in a semiconductor metal etching process,
Ren and Lv [66] provided a new fault detection approach based on the sparse representation technique
(called FD-SR). Specially, they used the representation errors between faulty and normal samples
as a fault detection classifier. To identify fault occurrence moment is also a very important task.
Chang et al. [8] presented a novel FDC approach for semiconductor manufacturing. For the diagnosis
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of faulty processes, in this study, they modeled the sequential flow features of data patterns, that is,
spatiotemporal patterns in times and orders through the whole process. To improve fault detectability
in semiconductor manufacturing processes by resolving non-linearity and multimodality problems,
Li and Zhang [61] developed a new kNN method based on diffusion maps called DM-kNN. In this
research, they applied the diffusion map (DM) technique to reduce dimensionality while keeping
the non-linearity of the data and kNN method to detect potential faults using the low feature space
extracted from the DM.

4. Knowledge-Based Fault Detection and Diagnosis Methods

Usual multivariate statistics-based FDD methods utilize data related to faults (or anomalies) of a
process (or system). However, because of the process complexity and its underlying characteristics,
it is often difficult or sometimes impossible to efficiently perform FDD task without aid of knowledge
or understanding of the process. So, it would be necessary to consider the knowledge or rules as
well as the process data when we develop or apply FDD methods to various industrial processes.
Thus, some useful knowledge-based FDD approaches have been developed for several complicated
industrial processes [79]. The cause–effect analysis approach based on fault model, the expert systems
based on human reasoning, neural network (NN) approaches based on the relationship between the
faults and process variables, and a combination of NN and fuzzy logic are known as the representative
knowledge-based FDD methods [79,127–129].

Leung and Romagnoli [130] proposed a fault diagnosis system for the chemical processes. They,
in this study, integrated MSPM scheme into knowledge-based FD system. Particularly, in order to
diagnose fault, they considered PCA principles such as Q statistics, PC score contributions, and PC score
deviation contributions. Razavi-Far et al. [131] considered a fault diagnosis problem of nuclear power
plants. For this, they presented two types of FDI scheme based on neuro-fuzzy network approaches
for U-tube steam generators in nuclear power plants. In this paper, they used Takagi-Sugeno fuzzy
models for generation of residuals and isolation of faults, and a Mamdani-type neuro-fuzzy network
model for FDI.

To enhance interpretability of fault detection results, Gonzalez et al. [31] incorporated process
knowledge into a Bayesian network approach for dimension reduction. For the improvement of the
efficiency of the developed method for the processes with non-Gaussian variables and non-linearity
characteristic, they combined the dimension reduction method with multivariate KDE method and then
tested the proposed approach on industrial plant data to compare the performances of PCA and ICA.
Verbert et al. [132] considered a fault diagnosis problem in HVAC systems. In this study, they proposed
a Bayesian network approach based on multiple models, considering interdependencies of system
components and the case of multiple operating modes. So, they developed a different fault diagnosis
model based on the Bayesian network and various system conditions, such as interdependency and
conservation laws. Don and Khan [133] proposed a new hybrid FDD approach based on process
knowledge and process data. They used the HMM (hidden Markov model) for detecting faults and a
Bayesian network (BN) for precisely diagnosing the root causes of faults. In particular, they adopted
process knowledge and results obtained from HMM as inputs of BN, and used the log-likelihood
method to derive conditional probabilities of BN.

5. New and Hybrid FDD Methods, and Fault Prognosis

5.1. New and Hybrid FDD Methods

Chen and Blue [64] proposed a generalized moving variance-based health indicator which is
independent of process recipe. In this study, they used a moving variance-covariance method for the
estimation of variabilities during a process run, and a EWMA control chart for modeling of the patterns
and for monitoring and detecting any changes in the tool health. The demonstrated the effectiveness of
the method using two real semiconductor manufacturing processes, i.e., PECVD and PVD. Ko et al. [60]
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proposed a new fault detection approach for semiconductor manufacturing processes. In this study,
they used the sensor signal data produced in semiconductor processes, which involves non-linearity
and multimodality characteristics, and then built shared univariate and multivariate models by
utilizing the structural features of the collected data, which are the geometric information of sensor
signals. In particular, they considered the leaf nodes in the extract tree model as individual recipes
and intermediate nodes in the tree as fault-detection criteria. They showed the performance of the
proposed approach by using semiconductor etch process data.

In order to handle two unique characteristics in semiconductor manufacturing processes, Yu [56]
proposed a new Gaussian mixture model (GMM) based on principal components called PCGMM.
Furthermore, they introduced two assessment indices for process states and adopted Bayesian inference
strategy to calculate process failure probabilities. To show the performance of the approach proposed,
they tested it on two simulated process data and a semiconductor process data. For handling
within-mode non-linearity in multimode non-Gaussian processes in the FDD of a chemical process,
Yu [134] proposed an inferential monitoring scheme based on nonlinear kernel GMM (namely NKGMM).
To show the performance of the developed scheme, they considered a wastewater treatment process
with multimode.

Mallick and Imtiaz [135] presented a hybrid FDD method for processes in a dissolution tank.
In this research, they adopted conventional PCA approach and Bayesian belief network (BBN) model.
The extracted information (i.e., PCA contribution of individual variable) from PCA is used as an input
for BBN. Rodrigues et al. [136] proposed a new FDD scheme including fault estimation technique
for diagnosing sensor faults in polytopic LPV systems. In this study, they used a polytopic LPV
filter approach and fault magnitude estimation method for detecting sensor faults and showed the
effectiveness of the synthetic method by applying it to a transport process.

Rusinov et al. [13] applied the chemometrics for efficient fault diagnosis of chemical processes.
In this study, they suggested two Kalman filter models (i.e., EKF and UKF models) to distinguish
faulty operations and normal operations. Yu [137] presented a novel FID (fault isolation and diagnosis)
scheme. In this study, they proposed a Gaussian mixture contribution approach based on the
Bayesian inference method (namely BIGMC) for identifying multiple Gaussian modes and integrating
variable contributions.

Hao et al. [138] developed a new data-driven FD method. In this study, they focused on the
multiplicative degradation problem in fault diagnosis performance and used KPI-based PM-FD schemes
to identify process variables with faults and root causes of the corresponding faulty process variables
from the performance degradation viewpoint. They validated the performance and applicability of the
approach through many examples. Ichalal et al. [139] considered a fault diagnosis problem for nonlinear
systems illustrated by the Takagi–Sugeno model. In this study, they synthesized residual generators
and the disturbance influence to maximize fault effects but minimize perturbation effects at the same
time. Sobhani-Tehrani et al. [140] presented a new hybrid FD approach for nonlinear systems. For this,
they adopted a mathematical model and useful computational intelligence techniques. Specifically,
they designed an individual neural parameter estimator (NPE) using a single-parameter fault model,
and also provided two NPE structures and update rules of decision logics and weights of the respective
FDI. Furthermore, they introduced a fault tolerant observer to estimate unmeasured system states.

In order to diagnose four kinds of faults (i.e., unknown, known, dependent multiple, independent
multiple faults), Chiang et al. [90] presented a fault diagnosis framework. For this, they considered
two approaches (i.e., a modified distance-based approach and modified causal dependency-based
approach) and then integrated the features extracted from the two approaches with features based on
the propagation path. De Lázaro et al. [141] compared five assessment criteria combined with two
data preprocessing techniques, i.e., KFDA and KPCA, to change a Gaussian kernel which is used
in fault diagnosis. In this study, they used an ANN model for fault classification and validated the
performance of the KFDA and KPCA by testing it on Tennessee Eastman benchmark process data.
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Yu et al. [142] adopted a NLGBN (nonlinear Gaussian belief network) model for the fault diagnosis
of industrial processes. For this, they proposed a three-layer NLGBN model for feature extraction
from noisy data and utilized sigmoidal functions to identify nonlinear relationships among process
variables and layer latent variables. Zhang and Ge [43] provided two decision fusion systems based
on the Dempster-Shafer evidence theory. Specifically, they first adopted a resampling technique to
improve the diversity performance and then used the ‘ALL fusion system’ and ‘SELECTIVE fusion
system’ for better decision making in fault identification and classification.

Chen et al. [143] considered the multiplicative fault detection problem in chemical processes.
For this, they proposed a fault detection method based on the CCA (canonical correlation analysis) to
detect multiplicative incipient faults and then incorporated the fault detection method with a moving
window technique. Lee et al. [144] considered class imbalance problem in a fault detection task.
In this research, they considered 19 fault detection models and then compared the performances of
all the models by using two semiconductor process data. Li et al. [82] provided a new framework
for identifying the root cause locations of process faults. For this, they employed Granger causality
analysis and also, to identify the causal relationship among candidates, they proposed a causality index
based on DTW (dynamic time warping) technique. Marseglia and Raimondo [145] considered the input
signal design issue for FDI tasks. In this research, they proposed a multi-parametric programming
approach and graph theory to reduce the complexity and improve the computational efficiency in
FDI tasks.

To handle many complexity, noise, and dimensionality issues in FDD, Nor et al. [49] developed a
novel method for constructing the FDD framework. In this paper, they considered a wavelet analysis
approach, KFDA, and SVM classifiers, and then properly combined these approaches to enhance
fault diagnosability in chemical processes. To show the performances of the combined methods,
they applied them to Tennessee Eastman benchmark process. For detecting incipient faults in a
process, Shang et al. [23] suggested a novel data-driven fault detection approach based on recursive
transformed component analysis. In this study, they used this method to reduce computational
complexity by recursively transforming process data into orthogonal transformed components by
using rank-one modification technique. Also, they proposed several statistics to identify process
features, e.g., higher-order statistics, detection index, and eigenvalue of Wishart matrices.

Zhang et al. [146] presented a new KPI-based PM-FD framework to improve the monitoring
efficiency of large-size industrial processes. They provided a static approach and dynamic approach
for two different cases: (1) a case wherein a certain statistical relationship exists between process
variables and KPIs and (2) a case wherein a dynamic relationship exists between process variables
and KPIs. Zhao and Gao [147] considered problems of data distribution change and sensitivity issue
of MSPC techniques to incipient changes of process variables. So, in this research, they presented a
new FDD approach based on the feature of data (i.e., data covariance structure) to enhance incipient
fault isolation performance. For this, they first considered the distribution dissimilarity decomposition
technique to extract dissimilarities existing between faulty and normal conditions of processes and
then formulated an optimization problem using a sparse regression technique to isolate faulty process
variables related to change of data distribution structure.

Zhao [148] considered a fault detection problem for correlated process data. For this, they proposed
a novel fault detection approach, referred to as dynamic graph embedding (DGE), to keep important
characteristics of process variables and data such as structural information in process variables and
serial (or temporal) correlation among process data. Then, they provided new similarity matrices based
on a finite Markov chain to extract significant features of the process. To show the performance of the
algorithm proposed, they applied it to the Tennessee Eastman benchmark process. Zhang and Li [62]
considered a non-linearity problem in semiconductor etching process for fault detection. For this,
they presented a new fault detection approach based on multiway principal polynomial analysis.
To show the performance of the presented approach, they tested it on a numerical example and
semiconductor etching process data.
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5.2. Fault Prognosis

The fault prognosis task for industrial processes is necessary to estimate or predict the process
operation time or location before a certain fault or an abnormal change occurs and a suitable action,
e.g., a preventive maintenance task, is taken. So, owing to the increasing dynamics and complexity in
many real industrial systems, the development of effective fault prognosis methods is receiving great
attention from diverse process industries [149].

Orchard et al. [150] introduced a fault diagnosis and failure prognosis framework for nonlinear and
non-Gaussian systems. The suggested framework consists of two modules: (1) a FDI module and failure
and (2) a failure prognosis module. Specifically, to detect abnormal conditions (i.e., faulty conditions),
the FDI module based on a hybrid state-space model and the particle-filtering (PF) approach has been
utilized. And then, to estimate the evolution time and compute the state pdf (probability density
probability) of the RUL (remaining useful life) of faulty parts (subsytems) in the system, the failure
prognosis module based on a resampling algorithm and Epanechnikov kernels has been utilized.

Li et al. [151] presented a multivariate-based fault prognosis technique for industrial processes.
In this study, they considered a multivariate time series prediction method with the conventional SPC
technique for detecting hidden faults in continuous processes. In particular, they used a reconstruction
method to estimate fault magnitudes and then a vector AR model to predict faults with considering a
denoising technique based on wavelet. Also, they proposed a new integrated fault index.

Martínez-Rego et al. [152] proposed an automatic fault diagnosis and prognosis system for
the predictive maintenance of mechanical components. In this research, they applied an on-line
SBLLM (sensitivity-based linear learning model) approach to predict the capabilities of the mechanical
components using component vibration data, and then compared the performance of the developed
system to that of the OSELM (on-line sequential extreme learning machine) algorithm.

Lu et al. [153] considered an information delay problem in fault prognosis of chemical processes.
In this study, they proposed an information synchronization technique based on the time delayed
mutual information to decide the directionality of information and estimate time delay among process
variables. With the derived SDG (signed diagraph) from the estimated directionality of information
and time delay, a PCA-based fault prognosis method has been applied to detecting abnormalities in
the early stages of the process.

Ekanayake et al. [154] provides a summary of a graphical model-based fault diagnosis and
prognosis techniques, in particular, automata-based methods, Petri Net-based methods, and bond
graph-based methods. Pilario et al. [155] proposed a new methodology for incipient fault diagnosis and
prognosis. For enhancing the detection sensitivity, in this research, they presented a novel statistical
index based on CVA (canonical variate dissimilarity) analysis method. Especially, they utilized
contribution maps for fault diagnosis and a combination of CVA state-space prediction method
and Kalman filter approach for fault prognosis, respectively]. Vogl et al. [156] reviewed various
characteristics of PHM (prognostics and health management) technologies for manufacturing systems
including needs, methodologies, best practices, and future challenges of PHM.

Zhong et al. [149] reviewed different types of data-driven fault prognosis approaches for various
industrial processes. In this overview, they first introduced critical issues as well as unique characteristics
of several data-driven fault prognosis approaches and also addressed the links between fault prognosis
methods and fault diagnosis methods. Furthermore, they summarized the current development,
future trends, and challenges of researches on data-driven fault prognoses as well as their pros and cons.

6. Conclusions and Future Research

FDD approaches for effective process monitoring have gained considerable attention from both
various process-oriented industries as well as academia [18], and thus many useful process monitoring
systems including FDD techniques have been exploited and implemented for several industrial
processes [19].
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However, there are still lots of difficulties in the implementation of the FDD methods for real
industrial processes due to the unique characteristics (e.g., multivariate, correlation, non-linearity,
non-stationarity, multimodality, class imbalance, etc.). So, to bridge the moderately large gulf between
the theoretical approaches and the implementations, it is necessary to consider novel hybrid approaches
as well as to design more elaborate FDD models using various intelligent techniques [77,79,122].

Fault prognosis is also a very important future research area. If the location and moment of
faults arising in the processes can be estimated or predicted properly, then a suitable action may be
taken for preventing further degradation and serious damage of the products, and avoiding certain
safety problems in advance [79]. Finally, in the era of big data, the real-time and comprehensive FDD
strategies using all the information should be developed. In conclusion, this review would be helpful
for both practitioners and researchers in this field to comprehend the key characteristics, applications,
and future challenges of the process monitoring and FDD approaches [149].
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