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Abstract: Graphene nanofluids have attracted the attention of many researchers because of a variety of
remarkable properties such as extraordinary electronic transport properties, high thermal conductivity,
and large specific surface areas. This paper investigates the shape effects of nanoparticles on the
Marangoni boundary layer of graphene–water nanofluid flow and heat transfer over a porous medium
under the influences of the suction parameter. The graphene–water nanofluid flow was contained with
various shapes of nanoparticles, namely sphere, column, platelet, and lamina. The problem is modeled
in form of partial differential equations (PDES) with boundary conditions. The governing transport
equations are converted into dimensionless form with the help of some suitable nondimensional
variables. The solution of the problem was found numerically using the NDSolve technique of
Mathematica 10.3 software. In addition, the numerical solutions were also compared with analytical
results. The homotopy analysis method (HAM) is used to calculate the analytical results. The results
show that lamina-shaped nanoparticles have better performance on temperature distribution while
sphere-shaped nanoparticles are more efficient for heat transfer than other shapes of nanoparticles.

Keywords: numerical solution; porous medium; nanoparticles; nanofluids; Marangoni boundary
layer flow

1. Introduction

Due to the abovementioned outstanding thermophysical properties of graphene, it has become
a solid candidate in the field of fluid heat transfer. The work of Novoselov et al. [1] in 2004 is
pioneering in its discussion of graphene. Graphene-based nanofluids have high heat transfer and
thermal conductivity characteristics as compared to other carbon materials [2]. Graphene is mostly
used as a nanofluid. A water–graphene nanofluid is preferable because it is a good coolant for real-time
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applications of heat transfer [3]. Many researchers have worked on graphene nanofluid flow due to
its outstanding thermophysical properties. Alay [4] examined the exact solution of water–graphene
nanofluid over a shrinking/stretching sheet. Upadhya et al. [5] numerically discussed water–graphene
nanofluid flow over a stretching cylinder and also performed a comparison with silver–water nanofluid.
Upadhya et al. [6] studied theoretically the unsteady flow of Carreau fluid in a suspension of graphene
and dust nanoparticles with Cattaneo–Christov heat flux. Noor et al. [7] discussed an analytical
solution of graphene nanofluid and heat transfer in a thin film. Shit and Mukherjee [8] examined
graphene–polydimethylsiloxane nanofluid between two plates with the thermal radiation effect.
Arif et al. [9] studied the analytical results of Maxwell fluid flow by using molybdenum disulfide and
graphene nanoparticles in engine oil. Mankiandan and Baskar [10] discussed the thermal conductivity
of water–graphene nanofluid using factorial design experiments.

Very challenging scientific phenomena and problems are displayed by nonlinear ordinary
differential equations (ODEs) or partial differential equations (PDEs). For instance, boundary layer fluid
flow can be mentioned as an example. The research on several techniques applied for solving nonlinear
differential equations (DEs) is a significant topic for analyzing mathematical problems related to
engineering. There are various techniques for solving nonlinear equations that range from completely
numerical to completely analytical ones. Besides the many advantages of applying numerical
techniques, closed results seem more appealing because they explain physical insights through the
physical problem. By using an analytical method, parametric studies become more convenient [11].
Some of these techniques include the variation iteration method [12], Galerkin method [13], optimal
homotopy asymptotic method [14], homotopy analysis method (HAM) [15], differential transformation
method [16], homotopy perturbation method [17], and Adomian decomposition method [18].

Marangoni convection flow appears with the change of surface tension along liquid–gas or
liquid–liquid interfaces, which was first observed by Napolitan [19,20]. Moreover, it is also significant
in daily life uses such as biomedical and industrial fields, coating flow technology, film drainage
in emulsions, the drying of semi-conductor wafers in microelectronics, foams, microfluidics, and
surfactant replacement therapy for neonatal infants [19]. Most significantly, Marangoni convection has
been demonstrated using the boiling test in microgravity; likewise, it is also significant in the absence
of gravity [21,22]. Pop et al. [23] examined Marangoni convection phenomena. Many researchers have
discussed Marangoni convection by considering different geometry shapes [23–27].

Arafune and Hirata [28] discussed an analytical solution for the velocity profile of Marangoni
convection by considering constant velocity at any point on the free surface. Various researchers studied
the different physical effects of Marangoni convection boundary layer flow by taking the thermophysical
properties model without any effect of the Prandtl number on base fluid and nanoparticles [29–32].
Marangoni convection is a significant part of the determination of fluid movement and material
processing, especially low gravity hydrodynamics, to analyze mass and heat transfer interaction [33].
Many researchers have worked on heat transfer in Marangoni convection flow. Marangoni convection
showed a dominant role played in heat transfer and flow properties of fluid due to the change in
liquid surface tension in a temperature gradient field regardless of system size. Marangoni convection
and heat transfer in non-Newtonian power-law fluid while imposing linear surface temperature have
been explored [34]. The Prandtl number effect was studied by Christopher and Wang [25], and they
ascertained the analytical solution of the temperature profile by considering Marangoni convection
over a flat surface. Lin and Zheng [35] studied the heat transfer in Cu–water Marangoni boundary
layer nanofluid flow over a disk.

Inspired by the above uses of graphene nanofluids, a graphene-water nanofluid was considered
in this study. As far as we are aware, studies on the shape effects of graphene nanoparticles have
never been done. The shape of nanoparticles is very significant in the enhancement of heat transfer.
It is necessary to find the heat transfer under exact nanoparticle shapes [36]. The main objective of
this study is to find the shape effects of graphene nanoparticles in Marangoni boundary layer flow
and heat transfer. The effect of the suction parameter under the influences of thermal radiation and a
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magnetic field was also considered. Finally, graphs of velocity, temperature, and the Nusselt number
were plotted and all their aspects are debated.

2. Description of the Problem

We consider a laminar, incompressible, steady, and two-dimensional Marangoni boundary layer
flow of graphene–water nanofluid over a porous surface with the effects of the suction parameter. It is
also considered that nanoparticles and base fluid water are in equilibrium and, also, that no slip occurs
between them. It is assumed that flow takes place at y ≥ 0. Furthermore, it is also assumed that surface
tension is linear with temperature. A uniform B magnetic field is applied in the normal direction to
the surface. The partial governing equations of the problem are modeled as [30]. The thermophysical
properties of graphene–water nanofluid are presented in Table 1. The values of empirical shape factor
and sphericity for different shapes of nanoparticles are presented in Table 2.

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
µnf

ρnf

∂2u
∂y2 −

σnfB
2u2

ρn f

−
µnf

σnf K
u (2)

u
∂T
∂x

+ v
∂T
∂y

=
kn f

(ρCp)n f

∂2T
∂y2 −

1
(ρCp)n f

∂qr

∂y
(3)

where u and v are components of velocity, along the x axis and y axis, respectively, and
T,µnf

ρnf , (ρCp)n f ,αnf are temperature, effective viscosity, effective density, heat capacity, and thermal
diffusivity of nanofluid, respectively. The quantities like viscosity, effective density, heat capacitance,
and electrically conductivity of nanofluid are the following as in [4].

ρn f = ρ f (1−φ) + ρsφ,µn f =
µ f

(1−φ)2·5 , (ρCp)n f = (ρCp) f (1−φ) + (ρCp)sφ

σnf = 1 +
3φ

(
σs
σ f
−1

)
(
σs
σ f

+2
)
−φ

(
σs
σ f
−1

) (4)

where f , n f , and s are denote the thermophysical properties of the base fluid, nanofluid, and
nanoparticle solid, respectively. Furthermore, the Hamilton–Crosser model is used for mixtures
of thermal conductivity and is effective for both nonspherical and spherical shapes of dispersed
nanoparticles. According to Hamilton–Crosser model, the mixture of thermal conductivity can be
calculated from the following formula

knf = kf

[
ks + kf(m− 1) − (kf − ks)(m− 1)φ

ks + kf(m− 1) + (kf − ks)φ

]
(5)

where m,φ are the shape factor and sphericity of solid nanoparticle.

Table 1. Thermophysical properties of the water and graphene nanoparticles [4].

Physical Properties Graphene Pure Water

Cp (J/kg K) 2100 4179
ρ (kg/m3) 2250 997.1
k (W/m K) 2500 0.613
σ (Ω m)−1 1 × 107 0.05
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Table 2. The values of shape parameters as [37,38].

Shape parameter Column Sphere Platelet Lamina

φ 0.4710 1 0.526 0.1857
m 6.3698 3 5.7 16.1576

We have used the Rosseland approximation for radiation. The radiative heat flux in simplified
form is expressed as

qr = −
σ∗

3k∗
·
∂T4

∂y
(6)

where σ∗ and k∗ are the Stefan Boltzmann constant and coefficient of mean absorption, respectively.
Further expanding T4 in a Taylor series about T∞ and neglecting terms of higher order, we get

T4
≈ 4T3

∞T− 3T4
∞. (7)

Equation (3) reduces to

u
∂T
∂x

+ v
∂T
∂y

=
kn f

(ρCp)n f

∂2T
∂y2 +

16σ∗

3(ρCp)n f K∗
∂2T
∂y2

1
(ρCp)n f

∂qr

∂y
. (8)

The boundary conditions subjected to the problems are

µnf

∂u
∂y

=
∂σ
∂T
∂T
∂σ

, v = 0, T = ax2 + T∞ at y = 0

u = 0, T = T∞ at y→∞ (9)

where a = ∆T
L . ∆T and L are constant characteristic temperature and length of surface, respectively.

The stream function ψ, similarity variable η, dimensionless temperature θ(η) and dimensionless
velocity f (η) are defined as: 

ψ(η) = ξ2x f (η),
θ(η) = T−T∞

ax2 ,
η = ξ1y,

(10)

where

ξ1 =

σ0γαρ f

µ f
2


1
3

, ξ2 =

σ0γαµ f

ρ f
2


1
3

, u =
∂ψ
∂y

, v = −
∂ψ
∂x

where T and T∞ are the reference temperature and nanofluid temperature far away the wall and γ is
the surface tension defined as

γ = [1− (T− T∞) γ] γ0 (11)

where γ0 and γ are surface tension and surface tension change with temperature, respectively.
Substituting Equations (4), (5), and (10) into Equations (1), (2), and (8), the following nonlinear

ODES are obtained

A1 f ′′′ + A2
(

f ′2 − f ′ f ′′
)
− f ′

(
A3M +

A1

Kp

)
= 0

1
A5

( 1
Pr

A4 + Rd
)
θ′′ + fθ′ − 2θ f ′ = 0. (12)

The boundary value equation becomes

f (0) = A, f ′′ (0) = −2(1−φ)2·5, f ′(∞) = 0, θ(0) = 1, θ(∞) = 0 (13)
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where A is constant mass transfer parameter, A > 0 is for suction parameter r, M =
H2

0σ f
ρ f

1
ξ1ξ2

denotes

the magnetic field, Kp =
µ f
ρ f k

1
ξ1ξ2

denotes the permeability parameter, Rd =
16σ∗T3

∞

3knf k∗ denotes the

radiation parameters, and Pr = νf
αf

is the prandtl number.


A1 = 1

(1−φ)2·5 , A2 =
ρs
ρ f
φ+ (1−φ), A3 =

3φ
(
σs
σ f
−1

)
(
2+ σs

σ f

)
−

(
σs
σ f
−1

)
φ
+ 1,

A4 =
[ks+(m−1)k f ]−(m−1)φ(k f−ks)
[kS+(m−1)k f ]+φ(k f−ks)

, A5 = (1−φ) + φ
(ρCp)s
(ρCp) f

.

(14)

The quantity particle of interest Nusselt number Nu is given as

Nu =
xqw(x)

k f [T − T∞]
(15)

where qw(x) is the wall heat flux given by

qw(x) = −kn f

(
∂T
∂z

)
y=o

(16)

Using Equation (6) in Equation (13), we get

Nu = −(A4 + Rd ∗ Pr)ξ1xθ′(0) (17)

3. Solution Methodology

The initial guesses are defined as

Lf = f′′′ − f′, Lθ = θ′′ − θ (18)

which satisfied the following properties

Lf[Z1 + Z2eη + Z3e−η] = 0, Lθ[Z4eη + Z5e−η] = 0 (19)

where Z1, Z2, Z3, Z4, and Z5 are arbitrary constants.
Let q ∈ [0,1] represent an embedding parameter and }1 , 0 and }2 ,0 are the auxiliary linear

operators. The generalized homotopic equations corresponding to Equations (12) and (13) (1− q)Lf
[
f̂(η, q) − f0(η)]= q}1Nf[f̂(η, q), θ̂0(η, q)

]
f̂(0, q) = fw, f̂′′ (0, q) = −2(1−φ)2·5, f̂(∞, q) = 0

(20)

 (1− q)Lθ

[
θ̂ (η, q) − θ0(η)

]
= q}2Nθ

[
θ̂0(η, q), f̂(η, q)

]
θ̂(0, q) = 1, θ̂(∞, q) = 0

(21)

and
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Due to Taylor’s series, with respect to q, we have

f(η, q) = f0(η) +
∞∑

m=1

fm(η)qm, θ(η, q) = θ0(η) +
∞∑

m=1

θm(η)qm (24)
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∣∣∣∣∣∣
q=0
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m!
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∣∣∣∣∣∣
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(25)

And, thus, higher-order deformation problems are{
Lf [fm(η) − χmfm−1(η)] = }fR

m
f (fm−1(η), θm−1(η))

fm(0) = 0, f′′m(0) = 0, f’
m(∞) = 0

(26)

{
LLf [θm(η) − χmθm−1(η)] = }θRm
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θm(0) = 0, θm(∞) = 0.
(27)

Here,

χm =

{
0 when m ≤ 1,

1, m > 1
(28)

where

R
m
f fm(η) = A1f′′′m−1(η) − A2
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z=0

f′zf′′m−1−z + A2

m−1∑
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(
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θ
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m−1 +
m−1∑
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fzθ
′

m−1−z − 2
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z=0

θzf′m−1−z. (30)

4. Comparison of Results and Discussion

The numerical and analytical solutions of shape effects of nanoparticles in Marangoni convection of
graphene–water nanofluid under the influence of suction parameter are discussed here. The significant
theme of the present section is to check the dimensionless physical quantities such as velocity and
temperature of fluid for various values of pertinent parameters, namely suction parameter, permeability
parameter, magmatic field, solid volume fraction, and radiation parameter.

Figure 1 presents the schematic model of the problem. Figure 2 reveals the effect of nanoparticles
and also shows that the lamina-shaped nanoparticles have better performance in temperature
distribution as compared to other shapes of nanoparticles in nanofluid. The reason is that the
lamina-shaped nanoparticles have the lowest viscosity and thermal conductivity as compared to the
other nanoparticle shapes, while an opposite performance is noted in sphere-shaped nanoparticles.
The impacts of M on velocity and temperature of nanofluids are presented in Figure 3. It is clear
from Figure 3 that the velocity of nanoparticles is inversely proportional but that the temperature
is directly proportional to M. This is due to Lorentz force which is induced by a magnetic field that
opposes the motion of nanofluid and also Lorentz force heating in the energy equation, which assists
as an increment in heat to the boundary layer. The lamina nanoparticles act as though they have a
dominant role in temperature distribution with the impact of M. The influences of Kp on velocity and
temperature profiles are shown in Figure 4. This figure reveals that Kp has direct and inverse relations
with velocity and temperature profiles, respectively. The reason is that with the enhancement of Kp,
there is an increment in porous medium permeability which decreases the resistance in the nanofluid.
As compared to other shapes of nanoparticles, lamina-shaped nanoparticles have a dominant role
in temperature distribution under the impact of Kp. The variation effects of ϕ on velocity and
temperature profiles are displayed in Figure 5. The velocity of nanofluid decreases, but the temperature
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profile intensifies with an increase in ϕ. The reason is that because of the nanoparticles, the thermal
conductivity of the nanofluid increases which, in turn, boosts the thermal boundary layer thickness.
The performance of lamina-shaped nanoparticles is dominant in temperature profiles with a variation
in ϕ. Figure 6 describes the influences of A on velocity and temperature distribution and also shows
that the velocity and temperature distribution of nanofluid decrease with intensifying of the suction
parameter; physically, this happens because of the decreasing wall shear stress. The fact is that the
heated nanofluid is pushed toward the wall where the buoyancy forces can increase the viscosity,
so it decreases the wall shear stress. Under the influences of A, lamina-shaped nanoparticles have
excellent performance in temperature profiles. Figure 7 portrays the potential of Rd on the temperature
distribution and demonstrates that Rd has a direct relation with the temperature profile, physically, in
the existence of thermal radiation significance increment in radiative heat, which assists in increasing
the thermal stat of nanofluid, initiating its temperature to increase. It is also noted form Figure 7 that
lamina-shaped nanoparticles show an effective role in temperature distribution. The performance
of nanoparticles in the form of heat transfer is presented in Figures 8–13. From Figures 8–13, it is
observed that the heat transfer rate of sphere shape nanoparticles in graphene–water is much better
than for other nanoparticles. From Figures 8–13, it is noted that sphere > platelet > column > lamina.
The accuracy of the numerical results are checked by comparison with the analytical results which
are obtained by the homotopy analysis method. In order to provide a comparison of the solution in a
graphical form, Figures 14–17 were plotted. The validation of results for each nanoparticle shape is
presented in Tables 3–6. Figure 18 displays the error decay for the 10th-order approximation.
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Table 4. Comparison results for platelet-shaped nanoparticles.

η HAM Results Numerical Results Absolute Error

0 1.000000 1.000000 2.22050 × 10−16

1 0.879780 0.875368 0.004413
2 0.77126 0.756973 0.014289
3 0.665913 0.644504 0.021409
4 0.563643 0.537663 0.025970
5 0.464400 0.436170 0.028230
6 0.367944 0.339756 0.028187
7 0.274100 0.248168 0.025932
8 0.182831 0.161164 0.021668
9 0.091886 0.078512 0.013374
10 0.000045 −0.000012 0.0000057

Table 5. Comparison results for column-shaped nanoparticles.

η HAM Results Numerical Results Absolute Error

0 1.00000 1.00000 1.110220 × 10−16

1 0.880803 0.876647 0.0004157
2 0.772721 0.759171 0.013550
3 0.667628 0.647293 0.020335
4 0.565433 0.540745 0.024688
5 0.466112 0.439275 0.026849
6 0.369449 0.342639 0.026810
7 0.275239 0.250608 0.024631
8 0.183575 0.612962 0.020612
9 0.92388 0.079491 0.012897
10 0.000045 −0.000015 0.0000060

Table 6. Comparison results for lamina-shaped nanoparticles.

η HAM Results Numerical Results Absolute Error

0 1.00000 1.00000 1.110220 × 10−16

1 0.886622 0.886708 0.000085
2 0.779944 0.776596 0.003348
3 0.675410 0.669576 0.005834
4 0.573134 0.565560 0.007574
5 0.473222 0.464464 0.008757
6 0.375596 0.366207 0.009272
7 0.279981 0.270708 0.009272
8 0.186039 0.177891 0.008148
9 0.923294 0.087678 0.005616
10 0.000045 −0.000012 0.0000058
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5. Concluding Remarks

The shape effects of four different graphene nanoparticles (sphere, column, platelet, and lamina)
on Marangoni boundary layer nanofluid flow and heat transfer with the effects of suction parameter
were computed and discussed. On the basis of illustrative discussion, the following deductions
are obtained:

• The accuracy of the numerical results has been verified with analytical results.
• The nanoparticles of lamina shape play a significant role in the disturbance of temperature profile.
• The nanoparticles of sphere shape play the smallest role in the disturbance of temperature profile.
• The nanoparticles of sphere shape play a remarkable role in the rate of heat transfer.
• The nanoparticles of lamina shape play the smallest role in the heat transfer rate.

Author Contributions: Conceptualization, U.R., H.L., A.I. and J.u.R.; methodology, U.R., D.B. and A.I.; software,
U.R., M.A. and A.I.; validation, U.R., D.B., H.L., M.A. and J.u.R.; formal analysis, U.R., H.L., M.A., A.I. and J.u.R.;
investigation, U.R., D.B., H.L., M.A., A.I. and J.u.R.; resources, D.B. and M.A.; writing—original draft preparation,
U.R., M.A. and A.I.; writing—review and editing, U.R., D.B., H.L., M.A., A.I. and J.u.R.; visualization, D.B., M.A.
and A.I.; supervision, D.B. and H.L.; funding acquisition, D.B. and M.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the anonymous referees for their careful reading of this
manuscript and also for their constructive suggestions which considerably improved the article. We also thank
Muhammad Kashif Iqbal, GC University, Faisalabad, Pakistan for his assistance in proofreading the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PDEs Partial differential equations
ODEs Ordinary differential equations
DEs Differential equations
HAM Homotopy analysis method

References

1. Novoselov, K.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A.
Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [CrossRef]

2. Yu, X.; Wu, Q.; Zhang, H.; Zeng, G.; Li, W.; Qian, Y.; Li, Y.; Yang, G.; Chen, M. Investigation on synthesis,
stability, and thermal conductivity properties of water-based SnO2/reduced graphene oxide nanofluids.
Materials 2017, 11, 38. [CrossRef]

3. Rehman, A.; Salleh, Z.; Gul, T.; Zaheer, Z. The Impact of Viscous Dissipation on the Thin Film Unsteady
Flow of GO-EG/GO-W Nanofluids. Mathematics 2019, 7, 653. [CrossRef]

4. Aly, E.H. Dual exact solutions of graphene–water nanofluid flow over stretching/shrinking sheet with
suction/injection and heat source/sink: Critical values and regions with stability. Powder Technol. 2019, 342,
528–544. [CrossRef]

5. Upadhya, S.M.; Raju, C.S.K.; Saleem, S.; Alderremy, A. Mahesha Modified Fourier heat flux on MHD flow
over stretched cylinder filled with dust, Graphene and silver nanoparticles. Results Phys. 2018, 9, 1377–1385.
[CrossRef]

6. Upadhya, S.M.; Mahesha; Raju, C.S.K. Unsteady Flow of Carreau Fluid in a Suspension of Dust and Graphene
Nanoparticles With Cattaneo–Christov Heat Flux. J. Heat Transf. 2018, 140, 092401. [CrossRef]

7. Khan, N.S.; Zuhra, S. Boundary layer flow and heat transfer in a thin-film second-grade nanoliquid embedded
with graphene nanoparticles. Adv. Mech. Eng. 2019, 11, 1–11. [CrossRef]

8. Shit, G.C.; Mukherjee, S. MHD graphene-polydimethylsiloxane Maxwell nanofluid flow in a squeezing
channel with thermal radiation effects. Appl. Math. Mech. 2019, 40, 1269–1284. [CrossRef]



Processes 2020, 8, 1120 16 of 17

9. Arif, M.; Ali, F.; Sheikh, N.A.; Khan, I. Enhanced heat transfer in working fluids using nanoparticles with
ramped wall temperature: Applications in engine oil. Adv. Mech. Eng. 2019, 11, 1–11. [CrossRef]

10. Periasamy, S.M.; Baskar, R. Assessment of the Influence of Graphene Nanoparticles on Thermal Conductivity
of Graphene/Water Nanofluids Using Factorial Design of Experiments. Period. Polytech. Chem. Eng. 2018, 62,
317–322. [CrossRef]

11. Azimi, M.; Riazi, R. Heat transfer analysis of GO-water nanofluid flow between two parallel disks.
Propuls. Power Res. 2015, 4, 23–30. [CrossRef]

12. Moosavi, M.; Momeni, M.; Tavangar, T.; Mohammadyari, R.; Rahimi-Esbo, M. Variational iteration method
for flow of non-Newtonian fluid on a moving belt and in a collector. Alex. Eng. J. 2016, 55, 1775–1783.
[CrossRef]

13. Maghsoudi, P.; Shahriari, G.; Rasam, H.; Sadeghi, S. Flow and natural convection heat transfer characteristics
of non-Newtonian nanofluid flow bounded by two infinite vertical flat plates in presence of magnetic field
and thermal radiation using Galerkin method. J. Cent. South Univ. 2019, 26, 1294–1305. [CrossRef]

14. Aliy, G.; Kishan, N. Optimal Homotopy Asymptotic Solution for Cross-Diffusion Effects on Slip Flow and
Heat Transfer of Electrical MHD Non-Newtonian Fluid Over a Slendering Stretching Sheet. Int. J. Appl.
Comput. Math. 2019, 5, 80. [CrossRef]

15. Freidoonimehr, N.; Rostami, B.; Rashidi, M. Predictor homotopy analysis method for nanofluid flow through
expanding or contracting gaps with permeable walls. Int. J. Biomath. 2015, 8, 1550050. [CrossRef]

16. Usman, M.; Hamid, M.; Khan, U.; Din, S.T.M.; Iqbal, M.A.; Wang, W. Differential transform method for
unsteady nanofluid flow and heat transfer. Alex. Eng. J. 2018, 57, 1867–1875. [CrossRef]

17. Eldabe, N.; Abou-Zeid, M. Homotopy perturbation method for MHD pulsatile non-Newtonian nanofluid
flow with heat transfer through a non-Darcy porous medium. J. Egypt. Math. Soc. 2017, 25, 375–381.
[CrossRef]

18. Bakodah, H.O.; Ebaid, A. The Adomian decomposition method for the slip flow and heat transfer of
nanofluids over a stretching/shrinking sheet. Rom. Rep. Phys. 2018, 70, 115.

19. Al-Mudhaf, A.; Chamkha, A.J. Similarity solutions for MHD thermosolutal Marangoni convection over a
flat surface in the presence of heat generation or absorption effects. Heat Mass Transf. 2005, 42, 112–121.
[CrossRef]

20. Zhang, Y.; Zheng, L.; Liu, J. Approximate Analytical Solutions for Marangoni Mixed Convection
Boundary Layer. In Proceedings of the 4th International Heat Transfer Conference, Washington, DC,
USA, 8–13 August 2010; pp. 413–417. [CrossRef]

21. Christopher, D.; Wang, B.-X. Marangoni Convection Around a Bubble In Microgravity. Heat Transf. 1998, 3,
489–494. [CrossRef]

22. Straub, J. The role of surface tension for two-phase heat and mass transfer in the absence of gravity. Exp. Therm.
Fluid Sci. 1994, 9, 253–273. [CrossRef]

23. Pop, I.; Postelnicu, A.; Grosan, T. Thermosolutal Marangoni Forced Convection Boundary Layers. Meccanica
2001, 36, 555–571. [CrossRef]

24. Golia, C.; Viviani, A. Non isobaric boundary layers related to Marangoni flows. Meccanica 1986, 21, 200–204.
[CrossRef]

25. Christopher, D.M.; Wang, B. Prandtl number effects for Marangoni convection over a flat surface. Int. J.
Therm. Sci. 2001, 40, 564–570. [CrossRef]

26. Chamkha, A.J.; Pop, I.; Takhar, H. Marangoni Mixed Convection Boundary Layer Flow. Meccanica 2006, 41,
219–232. [CrossRef]

27. Magyari, E.; Chamkha, A. Exact analytical results for the thermosolutal MHD Marangoni boundary layers.
Int. J. Therm. Sci. 2008, 47, 848–857. [CrossRef]

28. Arafune, K.; Hirata, A. Thermal and solutal Marangoni convection in In–Ga–Sb system. J. Cryst. Growth
1999, 197, 811–817. [CrossRef]

29. Lin, Y.; Li, B.; Zheng, L.; Chen, G. Particle shape and radiation effects on Marangoni boundary layer flow and
heat transfer of copper-water nanofluid driven by an exponential temperature. Powder Technol. 2016, 301,
379–386. [CrossRef]

30. Aly, E.; Ebaid, A. Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary
layer nanofluid flow past a surface embedded in a porous medium. J. Mol. Liq. 2016, 215, 625–639. [CrossRef]



Processes 2020, 8, 1120 17 of 17

31. Hayat, T.; Khan, M.I.; Farooq, M.; Alsaedi, A.; Yasmeen, T. Impact of Marangoni convection in the flow of
carbon–water nanofluid with thermal radiation. Int. J. Heat Mass Transf. 2017, 106, 810–815. [CrossRef]

32. Sheikholeslami, M.; Chamkha, A.J. Influence of Lorentz forces on nanofluid forced convection considering
Marangoni convection. J. Mol. Liq. 2017, 225, 750–757. [CrossRef]

33. Bognár, G.; Hriczó, K. Series Solutions for Marangoni Convection on a Vertical Surface. Math. Probl. Eng.
2012, 2012, 1–18. [CrossRef]

34. Yan, Z.; Liancun, Z.; Xiaojing, W.; Guhua, S. Analysis of Marangoni convection of non-Newtonian power law
fluids with linear temperature distribution. Therm. Sci. 2011, 15, 45–52. [CrossRef]

35. Lin, Y.; Zheng, L. Marangoni boundary layer flow and heat transfer of copper-water nanofluid over a porous
medium disk. AIP Adv. 2015, 5, 107225. [CrossRef]

36. Kandasamy, R.; Adnan, N.A.B.; Mohammad, R. Nanoparticle shape effects on squeezed MHD flow of water
based Cu, Al2O3 and SWCNTs over a porous sensor surface. Alex. Eng. J. 2018, 57, 1433–1445. [CrossRef]

37. Rashid, U.; Ibrahim, A. Impacts of Nanoparticle Shape on Al2O3-Water Nanofluid Flow and Heat Transfer
over a Non-Linear Radically Stretching Sheet. Adv. Nanopart. 2020, 9, 23–39. [CrossRef]

38. Aman, S.; Khan, I.; Ismail, Z.; Salleh, M.Z. Impacts of gold nanoparticles on MHD mixed convection Poiseuille
flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion
and chemical reaction. Neural Comput. Appl. 2016, 30, 789–797. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

