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Abstract: The development of fuel cell electric vehicles in recent years has led to increased interest in
the use of fuel cells as sources of renewable energy. To achieve successful commercialization of fuel
cell vehicles, it will be necessary to guarantee the safety, reliability, and lifetime of fuel cell systems by
predictive fault detection and isolation (FDI). In this study, the parity equation, an observer, and a
Kalman filter are employed together to compare the characteristics of FDI, focusing on the sensors of
the thermal management system. Residuals corresponding to the difference between temperature
outputs of linear models under driving cycles and nonlinear temperature outputs are used to isolate
faults. Then, assessment of three model-based sensor FDI schemes is used to isolate sensor faults
using the Cumulative Sum Control Chart (CUSUM) method. Generated residuals are evaluated by
CUSUM to detect the presence of a sensor fault. As a result, isolated sensor faults are assessed.

Keywords: fuel cell vehicle; cooling system; sensor fault; detection and isolation; parity equation;
state observer; Kalman filter

1. Introduction

The development of fuel cell electric vehicles (FCEVs) in recent years has led to increased interest
in the use of fuel cells as sources of renewable energy for fuel cell vehicles, owing to their high efficiency,
low pollution, and good power density [1–6]. Proton exchange membrane fuel cell (PEMFC) systems
are widely applied to fuel cell vehicles because of their quick fuelling and extended running time [7,8].

To achieve commercialization, however, it will be necessary to solve technical issues related to the
safety, reliability, and lifetime of fuel cell systems [9,10]. For commercialization, automakers around the
world are targeting 5000 h of operation for transportation applications by 2020. However, according
to a research survey, 78% of fuel cell vehicles did not exceed 2000 h of durability. Especially, since
the reliability and durability affect human safety during vehicle operation, many researchers have
performed durability tests and faults diagnosis. In addition, fault detection and fault diagnosis have
become more important at the system level, in particular because fuel cell systems such as air supply,
fuel supply, thermal management, power converter, etc., are dependently operated, and thus a fault in
any subsystem can damage the entire fuel cell vehicle system. Therefore, it is necessary to detect initial
faults early, before a minor fault becomes a serious fault.

A few researchers have attempted to address the FDI of fuel cell systems using model-based
methods. Pei et al. investigated water fault diagnosis-based pressure drop using different indicators.
They reviewed recent studies on the use of pressure drop, as found in calculation results, to diagnose
water fault [11]. Shao et al. presented an ANN (artificial neural network) ensemble method to diagnose
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faults of PEMFC. They verified the efficiency of the fault diagnosis method [12]. Pahon et al. proposed a
novel signal-based approach for PEMFC fault diagnosis. The proposed method performed verification
with experimental data for faults of the air management system [13]. A model-based fault diagnosis
method was designed by Escobet et al. based on computing residuals and binary signature matrixes of
analytical residuals [14]. Li et al. proposed a novel data-driven fault diagnosis method and diagnosis
rule for PEMFC [15,16]. Puig et al. reported the MPC (Model Predict Control) algorithm to control the
oxygen excess ratio under compressor voltage and air valve opening area faults [17]. Philippe et al.
reported a DoE (Design of Experiments) diagnostic for faulty water management, and they also
determined the ageing parameters of the fuel cell [18]. A fault detection and isolation algorithm using
a model-based diagnostic algorithm was presented by Polverino et al. Simulations in a software
environment were performed on sensor and actuator faults. [19]. Rosich et al. proposed model-based
fault detection and isolation (FDI) for PEM fuel cell systems [20]. Zhang et al. presented fault detection
methodology using the state space model of hybrid DC power sources [21]. Through a case study,
Lira et al. illustrated model-based fault detection using an LPV(Linear Parameter-Varying) design that
was linearized for non-linear fuel cell systems using Jacobian linearization and fault scenarios [22].
Kamal et al. designed an RBF (radial basis function) to improve the sensitivity of residuals for one
actuator fault and three sensor faults [23]. Even though PEMFC fault detection and isolation methods
have been reported in the literature, previous studies have generally considered only certain limited
approaches to analysing the fuel cell vehicle system.

In fuel cell vehicle systems, various faults can occur not only in the sensors but also in the
actuators. Especially, the temperature of the stack and coolant is closely related to stack durability
and performance. Particularly for a fuel cell vehicle system, the system temperature must be properly
regulated due to frequent heat release caused by load variations. Thus, it is important to detect sensor
faults of the thermal management system before the stack degrades and stack performance drops.

Fault detection algorithms are generally categorized as either model-based or hardware-based
approaches. Since hardware redundancy and the associated cost are disadvantageous, model-based
approaches are preferred. The model-based approaches include the parity equation method, state
observer method, and Kalman filter method. Model-based approaches reduce the number of hardware
components such as sensors, as well as the system costs.

The parity relation method involves easy design of parity equations to generate a residual
without state estimation. However, the model should work with linear fuel cell systems. The state
observer method can overcome the drawbacks of the parity relation but may lead to system noise and
disturbances. A Kalman filter is useful to detect sensor faults via noise-free measurements; it is also
robust and simple. However, it is challenging to implement Kalman filters for nonlinear systems.

In this study, the parity equation, observer, and Kalman filter methods were employed together to
compare the characteristics of the FDI residual. Then, an assessment of three model-based sensor FDI
schemes is used to isolate a sensor fault using the Cumulative Sum Control Chart (CUSUM) method.
Two sensor fault scenarios are selected—one for stack temperature sensor faults, the other for coolant
inlet temperature sensor faults. The three methods are applied to detect a temperature sensor fault
and, to generate a residual, the output signal in the normal operating model is compared with the
output signal in the model-based FDI schemes. The generated residual is evaluated using CUSUM to
detect the presence of a sensor fault. Finally, the isolated sensor fault is assessed.

2. Nonlinear Model for Normal Operation Conditions

The model-based fault detection and isolation algorithm requires a nonlinear fuel cell model
to capture the electrochemical properties and perform fault detection and isolation. The lumped
parameter approach is incorporated into the stack model to mitigate the otherwise high computational
load. As a compromise for the accuracy of the designed model and to reduce the computational load,
the model is validated with testing data. The fuel cell system model is composed of a dynamic blower
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with a motor, a dynamic fuel cell stack, a humidifier, a hydrogen tank, and a cooling system, as shown
in Figure 1. More detailed nonlinear fuel cell models can be found in previous studies [24–26].
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Figure 1. Schematic diagram of whole fuel cell system.

The design of the nonlinear dynamic fuel cell models assumes:

1. The fuel on the anode side contains hydrogen and water vapour and the air on the cathode side
contains oxygen, nitrogen, and water vapour;

2. In the humidifier model, the injected water is vaporized without heat losses;
3. Both the fuel and air were assumed to be ideal gases;
4. The temperature in the fuel cell stack is uniform; and
5. The electrochemical reaction is quasi-steady.

2.1. Fault Free Model of Fuel Cell System

2.1.1. Air Supply Model

Air is supplied to the stack with a blower. A semiempirical model is applied to build a model of a
turbo blower. The experimental data were obtained from Franklin et al. [27], and the performance
curve and efficiency of the blower are shown in Figure 2a,b. The experimental data for the blower
were provided in the form of a look-up table. The blower is operated by a DC motor. The model of
the dynamic electric motor was derived from the specification data [24]. In addition, the PI controller
regulates the motor speed to maintain an oxygen excess ratio of 2.2.
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2.1.2. Hydrogen Supply Model

The anode fuel flow includes the hydrogen flow rate and the humid vapour. The inlet anode mass
flow rate into the stack is calculated as

.
mH2,in =

J
2F
×A× n× stoH2 ×MH2 (1)

where J is the current density, stoH2 is the hydrogen stoichiometry ratio, A is the active area through
the cell, and n is the number of cells. The relative humidity φin,an at the anode inlet is calculated as

φin,an =
yH2O,in,an × pin,an

psat ×MH2O
(2)

where yH2 O,in,an is the mass fraction of vapor at the anode side, MH2 O is the molecular weight of water,
and psat is the saturation pressure.

2.1.3. Dynamic Model

A dynamic model of the fuel cell stack is designed to implement the sensor fault scenario. The stack
model assumes a lumped mass for the dynamic response of thermal energy input. The lumped stack
obtains heat from the electrochemical reaction (

.
Hrea) and the heat is rejected via convection heat transfer

to the surroundings (
.

Qsurr), involving gases exhausted from the anode channel and the cathode channel
(

.
Qgas), and convection in the water coolant (

.
Qcool). The stack model is as follows [28]:

mstacp,sta
.
Tsta =

.
Hrea −

.
Qgas −

.
Qcool −

.
Qsurr (3)

where msta, and cp,sta are the mass and the specific heat of fuel cell stack, and
.
Tsta is the stack temperature.

A dynamic cooling reservoir model is also developed. The water in the fuel cell stack and cooling
circuit is considered as a lumped mass. The reservoir is assumed to be placed at the inlet of the fuel
cell stack. The governing equation of the coolant reservoir, then, is

mc,Rvcp,Rv
.
TRV = cp,c

.
mc(Tmix − TRV) (4)

where mc,Rv, cp,RV is the mass of reservoir, and specific heat of reservoir, TRV is the reservoir temperature.
Tmix is the sum of coolant outlet temperature through the stack and the radiator.

The total mass of water present in the reservoir, radiator, and cooling channel of the stack is 7 kg.
A bypass valve and radiator fan are used to control the coolant inlet temperature. The dynamic thermal
management system with fault diagnosis is shown in Figure 3.
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2.1.4. Electrochemical Reaction Model

The fuel cell stack produces electric power and heat by chemical reaction. When the fuel cell stack
is requested to supply power, electric power is determined by the current and the electric potential.
The electric potential of the fuel cell stack is calculated by the following equation:

Vsta = (Vnern − J ·R(λ)mem −Vact) × ncell (5)

where Vsta is stack voltage, R is electric resistance, λ is water content, and Vact is activation loss;
the Nernst voltage, Vnern, is described as follows [25]:

Vnern = 1.229− 8.5× 10−4
· (Tsta − 298.15) + 4.308× 10−5

× Tsta ×
(
ln pH2 + 0.5 ln pO2

)
(6)

In Equation (5), the activation loss Vact can be expressed as follows [26,29].

Vact = ε1 + ε2Tsta + ε3Tsta
[
ln

(
cO2

)]
+ ε4Tsta[ln(I/n)] (7)

where ε is a tuning factor that can be adjusted by experimental data (ε1 = −0.5708, ε2 = 0.0017,
ε3 = 0.000017903, ε4 = −0.0001) and cO2 is the oxygen concentration at the cathode.

The Ohmic loss is expressed by the ionic resistance in the membrane. This loss term is applied in
Equation (5) in terms of the water content (λ). The electric resistance in the membrane can be expressed
as follows [29]:

R(λ)mem =

∫ z=tmem

z=0

1

exp
[
1268

( 1
303
−

1
Tsta

)]
(0.005139λ− 0.000326)

dz (8)

where z is membrane thickness.
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2.2. State Variables for Design of FDI

For sensor FDI, the state variables in our study are the temperature of the fuel cell stack and the
coolant inlet temperature. The selected state variables can be represented in nonlinear state space form.

.̃
x = [

.̃
Tsta

.̃
TRV ] =

[ .̃
x1

.̃
x2

]
(9)

The coolant flow rate and the opening area of the bypass valve are employed as the manipulated
variables:

ũ = [ m̃c k ] =
[

ũ1 ũ2
]

(10)

The output variables are the same as the state variables:

ỹ = [
.̃
Tsta

.̃
TRV ] =

[
ỹ1 ỹ2

]
(11)

Disturbances are the result of fluctuation of current and ambient temperature:

d̃ = [ Ĩ T̃amb ] =
[

d̃1 d̃2

]
(12)

Thus, the state and measurement equations in the nonlinear system are rewritten using Equation (9): .̃
x(t) = f (x̃(t), ũ(t)) + w(t)
ỹ(t) = g(x̃(t), ũ(t)) + v(t)

(13)

where f (x̃(t), ũ(t)) is the nonlinear system function and g(x̃(t), ũ(t)) is the nonlinear measurement function;
w(t) and v(t) are the Gaussian white noise and the covariance of the measurement noise, respectively.

3. Application of Fault Detection and Isolation

3.1. Scheme of Model-Based FDI

The fault detection and isolation algorithms of the temperature sensors applied in our study
are a parity space, a state observer, and a Kalman filter, shown in Figure 4. Sensor faults in a fuel
cell system are diagnosed by detection algorithms, in parallel with the nonlinear fuel cell system
model, based on inputs such as the current and the bypass valve fraction. The residual is a clue
allowing us to judge sensor faults; residuals are generated by comparing the outputs of the nonlinear
fuel cell system to the outputs of the parity space, state observer, and Kalman filter. When a fault is
detected, the residual signal shows trends different from the regular pattern. Since the trends vary
according to the algorithms, it is necessary to evaluate sensor faults by established criteria. In Figure 4,
while the parity space algorithm produces residuals independently from the inputs, the state observer
and Karman Filter deliver their output to the healthy model. Those outputs are used to evaluate
signal faults.
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3.2. Fault Definition Model

The stack temperature and coolant inlet temperature are key control factors for the thermal
management system (TMS) of a fuel cell. Thus, this study considers sensor faults regarding the
stack temperature and coolant inlet temperature. In Equation (14), fs is the sensor fault in the stack
temperature sensor, and the coolant inlet sensor of the fuel cell.
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In this study, two typical sensor faults are presented. Fault types are stuck and scaling, due to
sensor core degradation and external shock or vibrations [30]. A stuck fault has a constant value
caused by flaws resulting from sensor degradation during normal operation. Scaling is assumed to be
in a form that does not change. Thus, the stuck and scaling faults can be considered additive faults,
and can be expressed by the following equation:

y(t) = x + fs + noise (14)

where x is a state variable that represents the stack temperature or the coolant inlet temperature, y is
the corresponding sensor measurement, and fs is the sensor fault variable.

3.3. Model-Based FDI Design

3.3.1. Design of Parity Space Algorithm

The parity space approach is an open-loop method, one that utilizes analytical redundancy. It is
based on the discrete state space model expressed by Equation (14). This equation is established to link
the sensor outputs and inputs, as follows [31]:

Y(k) = Tx(k) + HuU(k) + HwW(k) + HvV(k) + H f F(k) (15)

where T, Hu, Hw, Hv, and Hf are the related matrices, and, Y(k) is the temperature sensor output.
In this study, a first-order discrete linear dynamic model is used, consisting of two inputs, two

disturbances, and two outputs. The state variables are directly output. The detailed matrices T, Hu, U,
Y, and F are as follows:

T =

(
C

CA

)
, Hu(k) =


0 0 0
B 0 0

AB B 0

, U(k) =
(

u0

u1

)
, Y(k) =

(
y0

y1

)
, F(k) =

(
f0
f1

)
(16)

3.3.2. Design of State Observer Algorithm

A linearized model was derived to implement the sensor FDI for thermal management of the fuel
cell. The linear fuel cell system was developed in our previous study [31]. The nonlinear model was
linearized by a Gaussian Jacobian method along the reference operating point. The vector

.
x(t), which

depends on the states x1 and x2, is approximated by

.
xi(t) =≈

.
xre f (t) +

dhi
dx1

∣∣∣∣∣
x=xre f

(x1 − x1,re f ) +
dhi
dx2

∣∣∣∣∣
x=xre f

(x2 − x2,re f ) (17)

After the nonlinear state space form is redesigned into a continuous state space form, the state
space representation of dynamic temperature that includes the sensor fault term is rewritten as follows:

.
x(t) = Ax(t) + B(u(kt + d(t)) + w(t)
y(t) = C(t) + F fs(t) + v(t)

(18)

where F is assumed to be a known matrix, and fs is the magnitude of the sensor faults. The system
matrix form is defined as follows:

A =

[
−0.1028 0.0923
0.7979 −1.0257

]
B =

[
−0.8001 0
5.3641 −3.7828

]
C =

[
1 0
0 1

]
(19)
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The state observer approach uses the output error between the estimated output and the model
output. Hence, the linear fuel cell model was used to design the state observer. Among other
approaches, the Luenberger state observer was designed for FDI. The linear fuel cell system, which
can be described by the state space model in Equation (18), was used. Then, the state observer was
designed to reconstruct the estimation state variable based on the measured inputs and outputs, as in
the following equation:

.̂
x(t) = Ax̂(t) + B(u(t) + d(t)) + w(t)
e(t) = y(t) −Cx̂(t)

(20)

Using the observer gain, Equation (20) yields the implementation form of the state observer. It is
assumed that the linear fuel cell system is observable.

.̂
x(t) = [A− LC]x̂(t) + B(u(t) + d(t)) + w(t) (21)

3.3.3. Design of Kalman Filter Algorithm

A Kalman filter algorithm for the fuel cell system requires the discretization of the continuous
state. Hence, the input u is assumed to be piecewise constant over the sampling period.

u(t) = u(kT) =: u(k) f or kT ≤ t < (k + 1)T (22)

Thus, the input value is changed at discrete-time intervals kT, where upon Equation (13) becomes

x[k + 1] = Adx[k] + Bdu[k]
y[k] = Cdx[k] + Ddu[k]

(23)

With the system matrix Ad = eAT, Bd = (
∫ T

o eAτdτ)B, Cd = C, and Dd = D.
While the Kalman filter algorithm is used to generate the residual, the noise covariance is adjusted

by the residual-based temperature. The Kalman filter algorithm requires system dynamic modes,
initialization, and a measurement model based on Equation (14). It is assumed that an initial estimate
of the state variable is known at time tk. Then, the corresponding error covariance matrices can be
calculated as:

P−k = Ak−1P+
k−1Ak−1 + Qk−1 (24)

The gain of the steady-state Kalman filter is as follows:

Kk = P−k CT
k

(
CkP−k CT

k + Vk−1

)
(25)

The updated state estimate measurement is then

x̂+k = x̂−k + Kk
[
yk −Cx̂−k

]
(26)

3.4. Residual Generation between Nonlinear System and Fault Free Model

The residual was generated using the difference between the output of the nonlinear and linear
fuel cell models and the parity space algorithm, state observer algorithm, and Kalman filter algorithm.

ri = ynoi − ŷloi (27)

where ri is the residual of the temperature i, and ynoi and ŷloi represent the output signals measured in
the nonlinear model and the estimated output temperature, which are defined by Equations (18), (21),
and (26).
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3.5. Fault of Sensor Evaluation with Residual and Isolation

Evaluation of the residual of the fault diagnosis scheme is important, and helps to identify the
presence of a fault. A nonzero residual can be generated because of model error or sensor noise even
when the system is in a normal state. This may induce missed or false fault detections. The number
of false alarm signals was minimized by applying the Cumulative sum (CUSUM). Therefore, the
log-likelihood ratio of the residual is defined as:

L(r(k)) = loge
σ0

σ1
−
(z− u2

1)

2σ2
1

+
(z− u2

0)

2σ2
0

(28)

where r(k) is the residual, L(.) is the log-likelihood ratio, and u and σ are the average value and standard
deviation, respectively.

Then, CUSUM can be expressed as:

Lk =

[
Lk−1 + L(r(k)) Lk−1 + L(r(k)) > 0

0 Lk−1 + L(r(k)) < 0

]
(29)

Eventually, fault detection is defined as:

f =
[

1 i f Lk ≥ H
0 i f Lk < H

]
(30)

where H is the residual threshold calibrated through the mean value. A result of f = 1 indicates a fault.

4. Results and Discussion

4.1. Validation of Stack Model by Polarization Curve

The I-V characteristic curve of the fuel cell is generally used to verify the fuel cell system model.
In this study, the test bench for the unit cell was constructed to conduct model verification to confirm
the accuracy of the model in terms of the static characteristics. Figure 5a,b shows the test bench for the
unit cell and the validation results. The test facilities were composed of a unit cell, an MFC to measure
the flow rates, a humidifier to humidify the gases, an air fan to reject the heat in the unit cell, and
other sensors. The active area of the fuel cell stack is 25 cm2, the stack temperature is 70 ◦C, and the
pressure of anode and cathode is 3 atm. To verify the designed fuel cell model, a turning coefficient
was selected. Details of the tuning coefficients can be found in our previous research [25]. As shown
in Figure 5b, I-V performance curves between the experimental data and the model over time are in
good agreement.
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4.2. Fault Scenarios

The ability to detect fault of the parity, the observer, and the Kalman filter models proposed in this
study is illustrated as the fault detection. Fault scenarios such as stuck and scaling are considered and
implemented using the nonlinear fuel cell simulation. Table 1 summarizes the set of faults implemented
in this study as a case study.
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Table 1. Implemented fault scenarios.

Signal Fault Description Type Magnitude

f1
A suddenly stuck fault occurs after 450 s in stack

temperature sensor Sensor stuck 40 ◦C

f2
A suddenly stuck fault occurs after 450 s in coolant inlet

temperature sensor Sensor stuck 10 ◦C

f3
Suddenly scaling occurs after 300 s in coolant inlet

temperature sensor Sensor scaling −20%

4.3. Fault Detection and Isolation System

The first purpose of this section is to evaluate the detection performance of the proposed FDI
scheme. The FDI scheme was tested under a realistic driving cycle; the Highway Fuel Economy
Test (HWFET) was selected. The HWFET cycle, which has a high velocity profile, was converted
and scaled based on a value of current density of 0.7 A/cm2. Before loading the HWFET profile,
the temperature of the stack and the coolant inlet were set to 25 ◦C to ensure each sensor had the same
initial state. The HWFET profile of the current, based on the current density, is plotted in Figure 6a.
The corresponding temperature sensors of the stack and the coolant inlet in the fuel cell system are
shown in Figure 6b,c. The residuals under normal conditions are given in Figure 6d,e.
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In the simulation test, before implementing the fault scenarios, the alarm residual threshold under
normal conditions needs to be determined. The thresholds were selected by calculating the standard
deviation using the step load with three cases. The first case changed the load from 0.6 to 0.8 to 1.0,
and 1.2 A/cm2. The second case changed the load from 0.8 to 1.0 to 0.6, and 0.9 A/cm2. The final cases
changed the load from 1.0 to 0.8 to 0.6, and 0.4 A/cm2. The value of the standard deviation was derived
by obtaining the mean value of the three residuals. Then, the values of the residual tolerance of the
stack temperature sensor and the coolant inlet temperature sensor were obtained by multiplying the
standard deviation by the allowable factor. The threshold was selected to be slightly greater than the
maximum value of the allowed deviation in the no-fault tests. As a result, the residual threshold of the
stack temperature was set at 5, −5; that of the coolant inlet temperature was also set at 5, −5, as shown
in Table 2.

Table 2. Residual threshold value of stack and coolant inlet for three cases.

Residual Type Sensor Standard Deviation Allowed Deviation

Parity
Stack
Stack 6.27 ±5

Coolant Inlet 3.18 ±5

Estimator

Stack
Stack 4.79 ±5

Coolant Inlet 1.45 ±5

Kalman

Stack
Stack 0.004286 ±5

Coolant Inlet 0.026468 ±5

4.3.1. Fault Detection and Isolation with Stack Temperature Sensor Stuck

A test of stack temperature sensor fault f 1 stuck at 40 ◦C after injection at time 450 s is
shown in Figure 7, with the actual stack and coolant inlet temperature sensor outputs, residuals,
and corresponding detection and isolation results that were recorded. First, the real stack temperature
and real coolant inlet temperature were determined; it can be observed from Figure 7a,b that the
real stack temperature value increased after 450 s, while the real coolant inlet temperature value was
maintained at 60 ◦C despite the occurrence of downshoot at 450 s. When the stack sensor stuck fault
occurs, the water pump does not operate because the stack temperature sensor output is lower than
the desired temperature control value (70 ◦C). This explains why the real stack temperature increased.

It can be seen in Figure 7c that the responses of the parity and Kalman filter residuals of the stack
temperature to this fault are highly sensitive, whereas the estimator residual responds only slightly to
this fault. Moreover, it can be seen from Figure 7d that the responses of the parity and Kalman Filter
residuals of the coolant inlet temperature to these faults are slight. On the other hand, the estimator
residual does not respond to this fault. According to the residual characteristics listed in Table 2,
fault f 1 will occur when the stack temperature sensor responds to this fault. The CUSUM test result Lk
of the residual confirms the presence of this fault, as shown in Figure 7e,f. This is because the stack
CUSUM value, Lk(r(s)), exceeds the allowed threshold value at the time 450 s. On the other hand,
the coolant threshold H does not cross the allowed threshold value. Therefore, there is no sensor fault
in the coolant inlet temperature sensor. Finally, the isolated fault f 1 is shown in Figure 7g.
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driving cycle ((a)—stack temperature values, (b)—Coolant inlet temperature value, (c)—residual from
the stack sensor, (d)—residual from the coolant inlet temperature, (e)—Cumulative sum (CUSUM)
result from the stack temperature sensor, (f)—CUSUM result from the coolant inlet temperature sensor,
(g)—isolated temperature sensor fault f 1 signal.).

4.3.2. Fault Detection and Isolation with Coolant Inlet Temperature Sensor Stuck

Similarly, coolant inlet temperature sensor detection and isolation in the case of a coolant inlet
sensor stuck fault was evaluated under HWFET cycles based on the current density. Taking a fault
resulting from the coolant inlet temperature sensor being stuck at 10 ◦C upon injection into the coolant
inlet at time 450 s, the detection and isolation results are plotted in Figure 8. Figure 8a,b shows the
value measured by the temperature sensor and the real temperature value of the stack and coolant inlet,
respectively. Figure 8a,b indicates that the real stack temperature increased after 450 s, because the
radiator fan stopped. Because the real coolant inlet temperature increases, the stack temperature
increases continuously, even though the water pump speed increases. Thus, a faulty coolant inlet
temperature sensor can cause critical damage to the fuel cell stack.

In addition, Figure 8c,d shows the generated residual values r obtained with the three respective
methods. The figure shows that the parity and the Kalman filter residuals exhibit a shift drop after 450 s,
after which the value is maintained until the end of the cycle. On the other hand, the estimator residual
undergoes a distinct drop at approximately 450 s; then, the residual immediately becomes similar
to what it was before fault injection. Therefore, the results of the CUSUM test, shown in Figure 8e,f,
show that the threshold was exceeded at 450 s, indicating a fault in the coolant inlet temperature sensor.
Consequently, the CUSUM result Lk of the residual ri confirms this result as the threshold H is crossed
at 450 s, as shown in Figure 8e. That is why even if the residuals in the stack are zero, the actual and
sensor values are the same. This means that the stack sensor has not failed.

The isolated fault signal of the temperature sensor is plotted in Figure 8g.
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driving cycle ((a)—Coolant inlet temperature value, (b)—Stack temperature value, (c)—residual from
stack sensor, (d)—Residual from coolant inlet temperature, (e)—CUSUM result from stack temperature
sensor, (f)—CUSUM result from coolant inlet temperature sensor, (g)—Isolated temperature sensor
fault f 2 signal).

4.3.3. Fault Detection and Isolation by Scaling of Coolant Inlet Temperature Sensor

This section presents an evaluation of the coolant inlet temperature sensor. The sensor experiences
20% off-scaling in terms of degrees of temperature at 450 s. The detection and isolation results are
plotted in Figure 9. Figure 9a,b shows the temperature sensor measurements and the real temperature
values of the stack and coolant inlet, respectively. From the temperature screening results, it can be seen
that the value of the stack temperature sensor is the same as the real temperature. On the other hand,
the real value of the coolant inlet temperature increased when a scaling fault occurred at the coolant
inlet temperature sensor. However, the coolant inlet temperature was maintained by the radiator fan
controller, even during sensor faults. Figure 9c,d shows the speed of the water pump and the radiator
fan. Under normal conditions, the motor speed of the radiator fan decreased from its operating speed
after 450 s. This is why the motor controller detected the scaled value of the coolant inlet temperature
from the sensor. Hence, the controller reduced the motor speed because of the low heat capacity in
the cooling water and, consequently, the real temperature of the coolant inlet increased. This, in turn,
caused the water pump motor speed to increase in response to the high temperature at the coolant inlet.

It can be seen from Figure 9e,f that the parity and Kalman filter residuals of the stack responded
to this fault in the form of a peak, in contrast to the estimator residual, which responded only slightly.
Furthermore, Figure 9e shows that the residuals of the stack temperature hardly responded to this
fault. Especially, the maximum peer value cannot be exceeded in the case of the three residuals. That is
why the temperature measured by the stack temperature sensor recovered immediately because of
the water pump. On the other hand, the estimator residual of the coolant inlet temperature did not
respond to this fault, whereas the parity and the Kalman filter residuals exceeded the threshold value.
According to the residual characteristics in Table 2, fault f 2 will be detected when the coolant inlet
temperature sensor responds to this fault. Unlike the stuck case, the residuals of the stack and the
coolant inlet exist in the form of a peak. This is why the controllers of the water pump and the radiator
fan continue operating in the case of a sensor scaling fault. The CUSUM test results indicate that a fault
occurred in the coolant inlet temperature sensor, as shown Figure 9g,h. The coolant inlet temperature
Lk(r(c)) crossed the allowed threshold value at 450 s, and Lk(r(c)) was maintained. On the other hand,
the coolant threshold did not cross the specified threshold value. Thus, a sensor fault in the coolant
inlet temperature sensor was indicated. Finally, the isolated fault signal f2 is shown in Figure 9i.
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5. Conclusions

To evaluate three methods of fault detection and isolation under a real driving load profile, a parity
equation, a state observer, and a Kalman filter method have been designed. Also, this paper presents
a comparison of three residuals derived from the parity equation, state observer, and Kalman filter,
as well as a method for detection and isolation of faults in a cooling system temperature sensor in a
lumped fuel cell system.

1. The parity equation, state observer, and Kalman filter methods for fault detection were developed
in this study. The temperature outputs of a nonlinear fuel cell system were monitored;
then, estimated linear model outputs were compared with those of the nonlinear fuel cell
system to generate a residual. The generated residuals were evaluated by the CUSUM method to
identify the presence of a sensor fault.
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2. The fuel cell was operated under normal conditions, with a load step, to determine the allowed
residual threshold. The HWFET driving cycle was used to evaluate the proposed fault diagnosis
methods under real vehicle operating conditions.

3. The proposed FDI schemes can effectively detect faults in the stack temperature sensor and
coolant inlet temperature sensor. In addition, CUSUM can effectively identify locations of
temperature irregularity.
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Nomenclature

A Active area [cm2]
c Concentration [-]
f Fault signal [-]
H Energy of the electrochemical reaction [J]
h Enthalpy [J]
I Current [A]
J Current density [A/cm2]
M Molecular weight [-]
m Air flow rate [kg/s]
n Number of cells [-]
η Efficiency [%/100]
p Pressure [Pa]
Q Heat transfer rate [kW]
R Local resistance [Ωcm2]
γ Ratio of specific heats [-]
sto Stoichiometry ratio [-]
T Temperature [K]
t Thickness [m]
V Voltage [V]
y Mass fraction [-]

Subscripts and Superscripts

act Activation
an Anode
bl Blower
c Coolant
cell Cell
cool Coolant side
gas Gas side
in Inlet
mem Membrane
nern Nernst voltage
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out Outlet
RV Reservoir
rea Reaction
ref Reference
sat Saturation
surr Surrounding
sta Stack
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