
Model Predictive Control for First-Order Hyperbolic System Based on Quasi-
Shannon Wavelet Basis

Authors: 

Ling Ai, Kok Lay Teo, Liwei Deng, Desheng Zhang

Date Submitted: 2021-03-14

Keywords: wavelet-collocation method, Model Predictive Control, long duct heating system, interval quasi-Shannon wavelet, hyperbolic
distributed parameter systems

Abstract: 

In this paper, we consider a class of first-order hyperbolic distributed parameter systems. Our focus is on the design of a new class of
model predictive control schemes using a quasi-Shannon wavelet basis. First, the first-order hyperbolic distributed parameter system is
transformed into an equivalent system using collocation techniques for the approximation of spatial derivatives and Euler forward
difference method for the approximation of the time component. Then, a model reduction method is applied to obtain a reduced-order
system on which a nonlinear model predictive controller is designed through solving a nonlinear quadratic programming problem with
input constraints. For illustration, the temperature control of a flow-control long-duct heating system is considered to be an example. A
comparative simulation study is conducted to demonstrate the effectiveness of the proposed method.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2021.0106
Citation (this specific file, latest version): LAPSE:2021.0106-1
Citation (this specific file, this version): LAPSE:2021.0106-1v1

DOI of Published Version:  https://doi.org/10.3390/pr8091114

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



processes

Article

Model Predictive Control for First-Order Hyperbolic
System Based on Quasi-Shannon Wavelet Basis

Ling Ai 1,2 , Kok Lay Teo 3,4 , Liwei Deng 1,* and Desheng Zhang 1

1 Department of Automation, Harbin University of Science and Technology, Harbin 150086, China;
ailing@hrbust.edu.cn.com (L.A.); byboy_al@163.com (D.Z.)

2 Schoo of Measure-control Technology & Communication Engineering, Harbin University of Science
and Technology, Harbin 150086, China

3 School of Mathematical Sciences, Sunway University, Bandar Sunway,
Selangor Darul Ehsan 47500, Malaysia; K.L.Teo@curtin.edu.au

4 The Coordinated Innovation Center for Computable Modeling in Management Science, Tianjin University of
Finance and Economics, Tianjin 300222, China

* Correspondence: dengliwei666@163.com

Received: 6 August 2020; Accepted: 1 September 2020; Published: 8 September 2020
����������
�������

Abstract: In this paper, we consider a class of first-order hyperbolic distributed parameter systems.
Our focus is on the design of a new class of model predictive control schemes using a quasi-Shannon
wavelet basis. First, the first-order hyperbolic distributed parameter system is transformed into an
equivalent system using collocation techniques for the approximation of spatial derivatives and Euler
forward difference method for the approximation of the time component. Then, a model reduction
method is applied to obtain a reduced-order system on which a nonlinear model predictive controller
is designed through solving a nonlinear quadratic programming problem with input constraints. For
illustration, the temperature control of a flow-control long-duct heating system is considered to be
an example. A comparative simulation study is conducted to demonstrate the effectiveness of the
proposed method.

Keywords: hyperbolic distributed parameter systems; interval quasi-Shannon wavelet; long duct
heating system; model predictive control; wavelet-collocation method

1. Introduction

Modeling and control of systems governed by partial differential equations (PDEs) have attracted
the interest of many researchers. See, for example, [1] and the references cited therein. These systems
are known as distributed parameter systems (DPSs). Among the controller synthesis methods for DPSs,
there are direct design strategies [2], post-centralized strategies [3], and prior-centralized strategies.
For these three strategies, the prior-centralized strategy is easier to be understood, so it has been
widely used to deal with DPSs. With the prior-centralized approach, a DPS is first approximated
by a system of ordinary differential equations, referred to as a lumped parameter system (LPS) [4].
However, the obtained LPS tends to have a high dimension, and hence it is essential to get a low-order
representation of the LPS and use it for the design of the controller. There are many effective control
schemes in the literature for the design of the controller.

For a system described by hyperbolic PDEs, the eigenspectrums of its differential operator
contain almost all the energy. As a consequence, the order of the model is higher than that of the
parabolic system [4]. The classical finite difference method (FDM) has long been recognized as a
popular numerical method for DPSs among the control community. For example, several FDM
numerical models have been developed to deal with various control problems, including optimal
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control problems governed by first-order hyperbolic systems. A coupled system involving PDE and
ODE is transformed into a zero-order neutral system with distributed delays [5]. An optimal boundary
control problem, where its underlying dynamical system is governed by linear hyperbolic partial
differential equations with a turnpike structure, is being applied to solve a control problem in gas
pipeline operation [6]. A boundary input-to-state stability of a class of coupled systems involving
hyperbolic PDE and ODE in the presence of uncertainties and external disturbances is investigated
and the results obtained is applied to an interconnected continuous stirred tank reactor coupled with
a plug-flow reactor [7]. Furthermore, the weighted residual methods (WRMs), such as the Galerkin
method, collocation method, and finite element method (FEM), have also attracted the attention of
many researchers among the control community. WRM has been widely used in various industrial
applications due to its high computational efficiency and flexibility in handling complex geometries
and boundaries [8]. For control problems governed by various DPSs, the weighted residual method
based on a wavelet basis is found to be effective, showing great potential [9]. The collocation method
involves finding a functional basis for the solution space of the equation, then making the residual zero
at n points within the domain [10]. Generally, wavelet-collocation method (WCM), created by choosing
a wavelet and some grid structure, is most appropriate for solving nonlinear PDEs with general
boundary conditions [11]. The computational model of hyperbolic wave equations is proposed by
using Haar wavelet operation matrix [12]. A non-Fourier heat conduction problem is solved through
the use of Haar wavelet basis implicitly in combination of finite difference and pseudospectral methods,
thereby avoiding numerical oscillations near wavefront jumping discontinuities [13]. Although the
Haar wavelet function has an explicit expression, it is non-differentiable. Thus, an integral smoothing
calculation is introduced. Furthermore, since the Haar wavelet has only one vanishing moment,
it does not perform well for the approximation of a smooth function. The Pennes bioheat transfer
equation is solved by the WCM and a multiresolution analysis is conducted using Daubechies
wavelets [14]. The Daubechies wavelet is tightly supported, smooth, and has n-order vanishing
moments, but its differential operator is difficult to obtain due to the lack of analytical expression.
By combining the operation matrix of integration for Legendre and Chebyshev wavelets with the
collocation method, an approximate solution of a one-dimensional hyperbolic PDEs with given
initial conditions is derived [15]. By the operation matrix of fractional integration combined with
the Galerkin method and the collocation method, a coupled system of Burgers’ equations with the
time-fractional derivative of Gegenbauer wavelets is obtained [16]. The operation matrix of Hermite
wavelet is derived, and on this basis a direct numerical method is developed for solving optimal control
problems [17]. By combining WRM with Shannon wavelet basis, a numerical method is proposed
to calculate the stationary solution of Fokker-Planck-Kolmogorov equation [18]. Shannon wavelet is
continuous, smooth, and infinitely differentiable, but it is not tightly supported. For the quasi-Shannon
wavelet [19], it is also tightly supported.

Model predictive control (MPC) is a successful method for the control of industrial processes
modeled as LPSs or DPSs with constraints and time delays. For the control of hyperbolic systems,
such as long duct heating systems [20], and convection-dominated chemical reactor [21], the need to
handle constraints and time delays is unavoidable. The key step in the design of an MPC algorithm for
DPSs is to build a prediction model through model reduction. For DPS, a linear MPC scheme using
Cayley-Tustin transformation is proposed in [22]. The FDM has also become a popular method
for constructing prediction models. MPC using FDM’s prediction model has been successfully
applied to several industrial processes, such as convection-dominated transport-reaction processes [21],
cocurrent fluid flow problems [22], non-isothermal plug-flow reactor [23,24], wind tunnel propagation
delay problems [25], and open irrigation canals [26]. The characteristic line method (CLM) is a
spatio-temporal discretization method. It has been applied to the study of control problems, where
the SO2 concentration is to be controlled in a circulating fluidized bed [27]. It has also been applied to
uncertain hyperbolic systems [28], and a counterflow plug-flow reactor [29]. On the other hand, model
predictive control based on the weighted residual method is being developed for hyperbolic systems.
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The control problem of selective catalytic reduction in diesel-powered vehicles is solved by CLM
combined with spectral decomposition [30]. Wavelet-based numerical methods have great potential in
MPC application design, but there is little related literature. A prediction model based on Haar wavelet
basis has been applied to the design of the MPC controller of discrete DPS [31]. However, in order to
improve the computational efficiency, it is necessary to develop a more suitable wavelet-based method.

In this paper, the WCM is used to construct the reduced-order model of first-order hyperbolic
system. The interval quasi-Shannon wavelet scaling function is used as a basis function to suppress
the boundary error. Then, a nonlinear MPC scheme is developed based on the above prediction model.
Nonlinear MPC schemes are also developed based on the models obtained by FDM and the Haar
wavelet transformation proposed in [31]. They are applied to solve the disturbance rejection problem
of long duct heating systems. Their computational efficiency has been compared.

The rest of the paper is organized as follows. In Section 2, the first-order hyperbolic system and
its control objective are introduced. Then, the interval quasi-Shannon wavelet is introduced, and a
nonlinear model predictive control scheme is developed based on the wavelet-collocation method for
the first-order hyperbolic system in Section 3. In Section 4, a simulation study involving a long duct
heating system is performed to verify the effectiveness of the algorithm proposed in Section 3. Some
concluding remarks are given in Section 5.

2. Problem Formulation

We consider the following class of distributed parameter systems described by first-order
hyperbolic evolution equations:

yt(x, t) = f1(x, t)yx(x, t) + f2(y, u, x, t) (1)

subject to initial condition y(x, 0) = y0(x) and boundary condition y(α, t) = L(t), where x ∈ [α, β] ⊂ R

is the spatial variable, R is the set of real numbers, t ∈ [0, ∞) is the time variable, y(x, t) ∈H [(α, β), R]

is the controlled variable, H [(α, β), R] is an infinite-dimensional Hilbert space containing integrable
spatial differentiable functions defined in the interval [α, β], y(x, t) is differentiable with respect to x
and t, yt(x, t) = ∂y(x, t)/∂t, yx(x, t) = ∂y(x, t)/∂x, u(x, t) is a smooth and bounded manipulatable
variable, f1, f2 are sufficiently smooth nonlinear functions of x and t, L(t) is a smooth and bounded
function of time t, ‖ f1‖2 ≤ A < +∞, ‖ f2‖2 ≤ B < +∞, where ‖ · ‖2 is L2-norm.

The optimal control problem may now be stated as follows:

J(u) :=
∫ β

α

∫ t

0
(‖r(x, t)− ŷ(x, t)‖+ λ · ‖∆u(x, t)‖) ,

s.t. yt(x, t) = f1(x, t)yx(x, t) + f2(y, u, x, t),

umin ≤ u(x, t) ≤ umax,

∆umin ≤ ∆u(x, t) ≤ ∆umax

(2)

where J(u) is the objective function, and r(x, t), ŷ(x, t), u(x, t) and ∆u(x, t) are, respectively,
the reference trajectory, the prediction output and the control increment at position x and time t.
umin and umax represent, respectively, the upper bound and the lower bound of the control variables,
while ∆umin and ∆umax represent, respectively, the upper bound and the lower bound of the control
increment. λ is the weighting coefficient.

To proceed further, let us consider an actual situation, which is referred to as Problem (P),
as stated below.

Consider the situation where there are M = 2J + 1 sensors, which are uniformly located, and l actuators,
and let u(x, t) = ∑l−1

i=0 bi(x) · ui(t), bi(x) = H(x− (i− 1)π/4)− H(x− iπ/4), (i = 1, · · · , 4), where H is
the standard Heaviside function.

The discrete forms of the system and the cost function will be constructed using the
wavelet-collocation method to be described in Section 3.
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3. Model Predictive Control Using Quasi-Shannon Interpolating Wavelet

This section describes the principle and design process of the proposed MPC schemes using a
quasi-Shannon wavelet basis. After a brief introduction of the principle of FDM and WCM, the given
first-order hyperbolic system is transformed into an equivalent system using a collocation technique
for spatial derivatives combined with the Euler forward difference method for the approximation of the
time component. On this basis, the resulting prediction model is constructed. Since the quasi-Shannon
wavelet scaling function has advantages in approximating continuous functions, the quasi-Shannon
wavelet scaling function on a finite interval is selected as the basis function. On this basis, a prediction
model is constructed, which is then applied to design the MPC scheme for the first-order hyperbolic
system such that the discrete objective function is minimized.

3.1. Model Reduction for First-Order Hyperbolic Systems

There are various model reduction methods in the literature, such as the eigenfunction method,
Green’s function method, and WRMs [4]. For WRMs, they include Galerkin method, the collocation
method, the FEM, and the spectral method. We will consider the latter two methods because the
eigenfunction method and Green’s function method are not suitable for nonlinear DPSs.

3.1.1. Finite Difference Method

The FDM is the earliest and most popular approach to approximate PDE by difference equations
(in which the derivatives are approximated by finite differences) [32]. Based on the Taylor series
expansion, the PDE system is approximated by a system of difference equations. These difference
equations are obtained based on forward, backward or central differences. The accuracy of the
algorithm is determined by the grid size and the scheme for constructing the difference equations.
This scheme must satisfy the Courant-Friedrichs-Lewy (CFL) condition to ensure the stability of
the discretization.

We consider the first-order hyperbolic system (1). The mesh of the solution region is as shown in
Figure 1. Let the space discretization interval be ∆x and the time discretization interval be ∆t. Then,
xm = α + m · ∆x, m = 0, 2, · · · , M− 1, tn = n · ∆t, n = 0, 1, · · · , ∞, and yn

m = y(xm, tn), f |nm= f (xm, tn)

are, respectively, the approximations of y(x, t) and f (x, t) at xm and tn. The upwind discretized form
of system (1) can be expressed as:

yn+1
m = yn

m + ∆t/∆x · f1 |nm (yn
m+1 − yn

m) + ∆t · f2 |nm (3)

where the accuracy of the upwind discretized form is first-order, and the CFL condition is ∆t ≤
∆x/max{ f1 |nm}. The FDM-based MPC scheme will be compared with the proposed method in
Section 4.

FDM has two disadvantages. It is more complicated when solving PDEs on irregular domains,
and the mathematical analysis is difficult for nonlinear PDEs with FDM [11].
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Distributed parameter systems

Spatio-temporal reconstruction

Step lengthMeshing Difference format

Spatio-temporal discretization using difference Equations 

solving by elimination or iteration Method

Distributed parameter systems

Spatio-temporal reconstruction

Step lengthMeshing Difference format

Spatio-temporal discretization using difference Equations 

solving by elimination or iteration Method

Figure 1. The finite difference method.

3.1.2. Wavelet-Collocation Method

The wavelet-collocation method is derived based on the WRM, which is one of the most effective
numerical methods for solving PDE systems. The numerical method obtained based on WRM is
conceptually different from those obtained using FDM because WRM assumes that the solution
can be expressed analytically. It is well known that a continuous spatio-temporal variable can be
approximated in terms of a set of spatial basis functions

y(x, t) =
∞

∑
i=1

ϕ(x) · yi(t). (4)

Equation (4) is truncated as:

y(x, t) ≈ yM(x, t) =
M−1

∑
i=0

ϕ(x) · yi(t). (5)

For (1), we can express the residual R(x, t) as:

R(x, t) = yM
t (x, t)− f1yM

x (x, t)− f2

(
yM, u, x, t

)
. (6)

To minimize R(x, t), we let (
R(x, t), ϕi

)
= 0, i = 1, 2, ..., j (7)

where {ϕi}M−1
i=0 is a set of weighting functions. The residual R(x, t) is converted to its projection onto

the space of weighting functions. The key to the accuracy and efficiency of WRM is the selection of the
basis functions and the weighting functions.

The two most popular approaches to procure the weighting functions are Galerkin method and
the collocation method. For Galerkin method, only the basis functions {φi}M−1

i=0 need to be chosen
because the weighting functions {ϕi}M−1

i=0 are the same as the basis functions {φi}M−1
i=0 . The residual is

orthogonal to each basis function, so Galerkin method is simple and has been successfully applied,
especially in parabolic systems. The Dirac delta functions δ(x − xi) are chosen as the weighting
functions {ϕi}M−1

i=0 in the collocation method. The residuals vanish at the collocation nodes and the
collocation nodes can be specified optimally. Both Galerkin method and the collocation method, which
are linear reduction methods, are applicable to nonlinear DPSs.
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The selection of the basis functions {φi}M−1
i=0 is also crucial for the application of WRM. The basis

functions {φi}M−1
i=0 can be classified as global and local types. Typical basis functions include Fourier

functions, orthogonal polynomials, and wavelet functions. Various model reduction approaches have
been proposed through the application of Galerkin method and the collocation method using different
basis functions [4].

Because of the collocation nature of the WCM, it is a simple task to deal with
nonlinearities. Compare with wavelet-Galerkin method, the collocation method is more practical for
implementation [11] (see Figure 2).

Distributed parameter systems

Spatio-temporal reconstruction

Spatio-temporal separation

Basis functionODEs model

Distributed parameter systems

Spatio-temporal reconstruction

Spatio-temporal separation

Basis functionODEs model

Figure 2. The collocation method.

3.2. Interval Quasi-Shannon Wavelet

In this section, the quasi-Shannon wavelets are used as the basis functions of the proposed
prediction model taking into account its normalization conditions. Then, the choice of the parameters
is discussed. To eliminate the boundary effect, the interval quasi-Shannon wavelets are adopted.

Shannon wavelet functions are, which have analytic expressions, orthogonal, smooth,
and differentiable. However, they are not tightly supported. To derive a wavelet function with compact
support, Shannon wavelet is multiplied by Gauss window function, forming a semi-orthogonal wavelet
function with compact support. This wavelet function is called the quasi-Shannon wavelet [19].
The scaling function φ∆,σ and the wavelet function ψ∆,σ of the quasi-Shannon wavelet are, respectively,
given by

φ∆,σ(x) =

{
1 x = 0

sin(πx/∆)
πx/∆ exp

(
− x2

2σ2

)
x 6= 0

, (8)

ψ∆,σ(x) =

{
1 x = 0

sin(πx/∆)−sin(2πx/∆)
πx/∆ exp

(
− x2

2σ2

)
x 6= 0

(9)

where ∆ is the spatial mesh size, while σ is the window size.
The first-order derivative of the quasi-Shannon scaling function is depicted in Figure 3 obtained

by Matlab 2016b, and it is expressed as:

φ∆,σ
x (x) =

{
0 x = 0(

cos(πx/∆)
x − sin(πx/∆)

πx2/∆ − sin(πx/∆)
πσ2/∆

)
· exp

(
− x2

2σ2

)
x 6= 0.

(10)

To guarantee normalization conditions being satisfied, the following lemma [19] is given.

Lemma 1. Suppose that r̃ = σ/∆ �
√

2/π. Then the normalization condition
∫ +∞
−∞ φ∆,σ(x)dx ∝ 1

is satisfied.
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Proof.∫ +∞

−∞
φ∆,σ(x)dx = er f (

πσ√
2∆

) = 1− er f c(
πσ√
2∆

)

=
∫ +∞

−∞

sin(πx/∆)
πx/∆

exp
(
− x2

2σ2

)
dx =

√
2π · σ

∆

+∞

∑
k=0

(−1)k

k!(2k + 1)

(
πσ√
2∆

)2k

= 1−
√

2
π

1
σ

exp
(
− σ2π2

2∆2 ×
∫ +∞

0
exp
(
− t2

2σ2 −
π

∆
)
dt
)

where the error function er f (z) = 2/
√

π ·
∫ z

0 e−t2
dt. The residue term er f c(πσ/

√
2∆) approaches

zero extremely fast when r̃ = σ/∆ �
√

2/π, so that er f (πσ/
√

2∆) is extremely close to unity.
This phenomenon is observed in practical applications.

The choice of the parameter r̃ and the nature of the curve being described with wavelet as the basis
function will affect the accuracy of wavelet representation. A guide for the choice of r̃ and the resulting
mathematical estimation of the approximation error are given in [19]. When r̃ → ∞, the tight support
property of the wavelet is completely lost. On the other hand, when r̃ →

√
2/π, the normalization

conditions will fail to be satisfied.
Empirically, the parameter r̃ should be chosen in the interval [2.1 2.3] (respectively, [2.6 3.8]) when

approaching a linear function (respectively, a nonlinear function).

Figure 3. The first-order derivative of the quasi-Shannon scaling function on the interval [0, 1].

The wavelet transform is defined in the bilateral infinite interval, but the signals appearing in real
life are usually in a finite interval. The interval wavelets are often used to reduce boundary effects.
The interval quasi-Shannon wavelets based on the difference method [33] are given by

φjk =



φ(2jx− k) + 2
N

∑
i=1

φ(2jx + i) k = 0

φ(2jx−k)− φ(2jx + k) k = 1, ..., N

φ(2jx− k) k = N + 1, ..., 2j − N − 1

φ(2jx− k)− φ(2jx− 2j+1 + k) k = 2j − N, ..., 2j − 1

φ(2jx− k) + 2
2j+N

∑
i=2j+1

φ(2jx− i) k = 2j

(11)

where j is an integer, φ(2jx− k) is the quasi-Shannon wavelet scaling function, N is the number of the
outer wavelet scale function on each side of the boundary.
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3.3. The Prediction Model Developed Based on WCM

Based on WCM under the situation referred to as Problem (P). The spatio-temporal variable y(x, t)
in (1) is approximated by

y(x, t) ≈ yM(x, t) =
2j

∑
m=0

yM(xi, t) · φj |x−xm (12)

where yM(x, t) is the approximation at the spatial location x and the time t. Let φ(x) be the scaling
function of the quasi-Shannon wavelet, and let φj |x−xm= φj(x− xm). Then, the first derivative of the
spatio-temporal variable y(x, t) at any time t is given by

yx(x, t) ≈ yM
x (x, t) =

2j

∑
m=0

yM(xm, t) · φj
x |x−xm . (13)

By Euler forward difference method, it gives explicit format and a first-order accuracy
approximation to yt(xm, t), meaning that the error is proportional to h. Let yM(xm, t) ≈ yM |nm,
n = 1, 2, . . . , ∞. Then, we obtain

yt(xm, t) ≈ yM
t |nm =

yM |n+1
m −yM |nm

∆t
. (14)

Let F |nm= f1 |nm ·∑2j

n=0 yM |nm ·φ
j
x |x−xm + f2 |nm, and substituting (13) and (14) into (1) yields

yM |n+1
m −yM |nm

∆t
= F |nm . (15)

From (15), we can express the prediction value yM |n+1
m as:

yM |n+1
m = yM |nm +∆t ·F |nm . (16)

Since the sensor is located at xm, the approximation yM |nm can be replaced by the actual output
y |nm, where the approximation yM |n+1

m is the prediction output ŷ |n+1
m . Iteratively, the recurrence

formula of the P-step forward prediction output y(x, t) is given by

ŷ |n+p
m = yM |n+p−1

m +∆t ·F |n+p−1
m , p = 1, 2, · · · , P. (17)

3.4. Wavelet-Based Nonlinear Model Predictive Control

We consider (16), which is an approximation of (1). The discrete version of the objective function
(2) is used to design the MPC controller. It is given by

J(∆u) :=
2j

∑
m=0

N2

∑
p=N1

‖r |n+p
m −ŷc |n+p

m ‖2 +
Nc

∑
i=1

λi · ‖∆u |n+i ‖2,

s.t. ŷ |n+p
m = y |n+p−1

m +∆t ·F |n+p−1
m ,

umin ≤ u |n+i ≤ umax,

∆umin ≤ ∆u |n+i (x, t) ≤ ∆umax

(18)

where J(∆u) is the objective function, and r |n+p
m and ŷc |n+p

m are, respectively, the reference trajectory
and the correction prediction output defined at time tn+p and position xm. ∆u |n+i is the increment of
the control signal at time n + i, umin and umax represent, respectively, the upper bound and the lower
bound of the control variables, ∆umin and ∆umax represent, respectively, the upper bound and lower
bound of the control increment. N1 is the minimum cost horizon, N2 is the prediction horizon, Nc is the
control horizon, λi, i = 1, · · · , Nc, are the weighting factors for the prediction error and control signal.
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The reference trajectory r |n+p
m is defined as:

r |n+p
m = a |n+p

m ·y |n+p
m +(1− a |n+p

m ) · ysp |n+p
m (19)

where ysp |n+p
m are the output and pre-specified value of the output function at position xm and time

tn+p. a |n+p
m is the softening factor. For a real system, the presence of unknown disturbance and model

mismatch is unavoidable. Thus, the control action is required to be taken to compensate the deviation
of the control. Let d |n+p

m = y |n+p
m −ŷ |n+p

m . Then, the correction prediction output ŷc |n+p
m is given by

ŷc |n+p
m = ŷ |n+p

m +H |n+p
m ·d |n+p

m (20)

where H is the error weight vector, which is usually chosen to be the identity vector IM×1 .
At every sample time tn, the Nc-step optimal control actions ∆u∗ |n+1, · · · ,∆u∗ |n+Nc over the

prediction horizon are calculated through solving the optimization problem (18). This optimization
problem is, in general, much too complicated to admit an analytical solution and hence numerical
solutions are to be obtained. For this, the original problem is approximated by a series of
quadratic programming subproblems, and each of which is solved by using the sequential quadratic
programming (SQP) algorithm [34], which is recognized as one of the most efficient algorithms for
solving nonlinear optimization problems of small and moderate size. In this way, the increment of the
optimal control signal is obtained. The structure of the nonlinear MPC is depicted in Figure 4.

n
u

n

m
y

J

n p

sp m
y

n p

m
y

Figure 4. The structure of nonlinear predictive controller using quasi-Shannon wavelet basis.

4. Case Study

In this section, we consider the temperature control problem of a long duct heating system based
on flow control [20], as shown in Figure 5.

This is a one-dimensional incompressible convection heat transfer process. The fluid flows from
one end of the long duct to the other end. We assume that the axial direction of the long duct is the
cylindrical surface of the same diameter and that the ambient temperature of the entire system, the inlet
temperature and the thermal conductivity of the fluid in the long duct are constant. Furthermore,
both the fluid flow and the convection heat transfer are fully developed flows, and the diffusion
phenomenon is neglected. Under the above assumptions, the temperature distribution in the duct
depends only on the flow velocity. This problem is divided into three categories, corresponding to the
different relationships between the flow velocity and the delay time τ(t): (i). The flow velocity is high,
but the delay time is short. In this case, the influence of the flow velocity on the temperature is fast;
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(ii). The flow velocity is slow, but the delay time is large. In this case, the influence of the flow velocity
on the temperature is slow; and (iii). The flow velocity is particularly slow. In this case, the change
of the temperature in response to the flow velocity is negligible. In practice, the first two treatments
are similar, and the last case is rare. In actual industrial systems, the flow velocity is often affected by
unknown disturbances. When the flow velocity is affected, the axial temperature of the long tube will
be affected. The purpose of the controller is to quickly restore the axial temperature of the long duct
back to the equilibrium state by adjusting the opening of the regulating valve.

Heat exchanger

Regulating valve

Thermocouple

The inlet of fluid flow

Regulating valve

Thermocouple

The inlet of fluid flow

Thermocouple

Figure 5. The sketch map of long duct heating system.

The dimensionless form of the dynamical model can be expressed as:

Tt(x, t) + v(t) · Tx(x, t) + T(x, t) = 0 (21)

where T(x, t) is the axis temperature of the long duct, v(t) is the fluid velocity, Tt(x, t) and Tx(x, t) are,
respectively, the partial derivative with respect to t and x.

The numerical solution is to be obtained by using FDM as described in [32]. The spatial region is
evenly divided by uniform grid points {m|m = 1, 2, . . . , M}, and ∆x = 1/(M− 1). Similarly, let the
time step be fixed as ∆tn, n = 1, 2, . . . , N. Then, the discretized temperature value is T |nm= T(xm, tn)

at the space location xm and the time tn. The brackets are used to distinguish between time points and
indices. Let Krone number be CFL = v |n ∆tn/∆xm. Then, the discretized version of system (21) can
be expressed as:

T |n+1
m = (1− CFL− ∆t) · T |nm +CFL · Tn

m−1. (22)

The temperature value of the long duct is calculated iteratively by (22). The sensors are evenly
located in a sufficiently small interval ∆x to measure the real temperature value, whereas the time
interval ∆t is chosen such that Krone stability condition is satisfied, that is CFL ≤ 1. Thus, to ensure
that the stability condition is satisfied, we choose ∆t ≤ ∆x/max{v |n}, where max{v |n} is the
maximum flow velocity of the fluid in the long duct. The mesh is chosen to be more refine than that
in [20] with the same flow velocity. Thus, the numerical solution obtained is more accurate. The length
of the spatial interval ∆x is chosen to be 1/213, which is small enough to minimize the inaccuracy to be
an integer power of 1/2 such that it is consistent with the binary wavelet. Meanwhile, the discrete
time step ∆t is chosen to be 0.0001 such that the inaccuracy is minimized and the CFL condition is
satisfied. The flow velocity v(t) ∼ O(1) is selected randomly between 0.9 to 1.1. All the experiments
work on IBM PC-Intel Core I5-2500K using Matlab 2016b. The actual temperature in the long duct
after 10-time units is depicted in Figure 6.
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Figure 6. The curve of the output response T(x, t) and fluid velocity v(t) at v(t) ∼ O(1).

4.1. The Performance of the Prediction Model

In this subsection, we will test the performance of the prediction model using the method
proposed in Section 3.3. Assume that there are M = 2j + 1 temperature sensors evenly located along
the long duct. T |n+p−1

m = v |n ·∑2j

n=0 TM |n+p−1
m ·φj

x |x−xm +T |n+p−1
m . The P-step prediction of the

temperature value of (21) given by (17) is

T |n+p
m = T |n+p−1

m −∆t ·T |n+p−1
m , p = 1, 2, · · · , P. (23)

The choice of the parameters j, r, N of the interval quasi-Shannon interpolating wavelet will
significantly affect the performance. In Table 1, we show the L∞-error and the mean square
error (MSE) under two different sample times ∆ts = 0.1 and 0.01 for three different meshes
j = 2, 3, 4 with N = 2, 3, 7. Based on the results obtained in Section 3.2, the quasi-wavelet parameters
r = 2.2, 2.8, and 3.4 are chosen. Let the L∞ error function be defined as follows:

L∞ = max|T − T̂| (24)

and let the MSE function be given by:

MSE =
1
N

N

∑
n=1

(T − T̂)2. (25)

From Table 1, we can see that the sample time ∆ts has a significant impact on the prediction
performance. The single-step prediction performance meets the control requirements for both the
cases of ∆ts = 0.1 and 0.01. On the other hand, the multi-step prediction performance fails to meet the
control requirements for the case of ∆ts = 0.1. As j is increased from 2 to 3, the L∞ error is deduced
significantly. However, as j continues to increase, the decrease of the error is no longer significantly.
The optimal value of the parameter r is around 2.2. The L∞ error and MSE are the smallest for j = 2
and 3. However, the parameter r becomes insensitive to prediction performance when j = 4.
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Table 1. The prediction performance obtained by the proposed method.

∆ts j N r
Single-Step Prediction Error 3-Step Prediction Error

L∞ MSE L∞ MSE

0.1

2 2

2.2 0.01792 1.90 × 10−3 0.1158 3.70 × 10−3

2.8 0.2152 2.60 × 10−3 0.1525 5.60 × 10−3

3.4 0.2347 3.00 × 10−3 0.1848 6.50 × 10−3

3 3
2.2 0.0143 4.29 × 10−5 0.0449 3.43 × 10−4

2.8 0.0248 1.64 × 10−4 0.0851 2.20 × 10−3

3.4 0.0381 4.03 × 10−4 0.1267 6.80 × 10−3

4 7
2.2 0.0185 2.66 × 10−5 0.2394 4.83 × 10−4

2.8 0.017 2.70 × 10−5 0.2611 5.82 × 10−4

3.4 0.019 2.89 × 10−5 0.2771 7.63 × 10−4

0.01

2 2
2.2 0.0181 1.86 × 10−5 0.0478 1.43 × 10−4

2.8 0.0216 2.60 × 10−5 0.0567 1.99 × 10−4

3.4 0.0235 2.93 × 10−5 0.0614 2.26 × 10−4

3 3
2.2 0.0033 5.38 × 10−7 0.0087 3.71 × 10−6

2.8 0.0041 1.72 × 10−6 0.0107 1.44 × 10−5

3.4 0.0051 4.08 × 10−6 0.0134 3.65 × 10−5

4 7

2.2 0.0035 3.31 × 10−7 0.0092 1.86 × 10−6

2.8 0.0033 3.30 × 10−7 0.0087 1.85 × 10−6

3.4 0.0033 3.47 × 10−7 0.0075 2.00 × 10−6

The WCM, which is developed based on Haar wavelet basis in [31] and the FDM developed
in [32], are selected for comparison with the method proposed in this paper. The sample time ∆ts

is chosen small enough such that all errors are mainly originated from the spatial discretization.
Without loss of generality, we choose ∆ts = 0.01. In Table 2, a comparison of performance between
the FDM with ∆x = 1/4, 1/8, 1/16, the WCM using Haar wavelet basis with M = 4, 8, 16, and the
proposed method with j = 2, 3, 4 is given. The parameters of the interval quasi-Shannon interpolating
wavelet are selected as N = 2, r = 2.2 for j = 2; N = 3, r = 2.2 for j = 3; and N = 7, r = 2.8 for
j = 4. The predictive temperature and the error of the model, which are obtained by the FDM with
∆x = 1/16, the WCM using Haar wavelet basis with M = 16, and the proposed method with j = 4,
are depicted in Figure 7.

In Table 2, the prediction errors obtained by FDM and WCM using Haar wavelet basis decrease
slowly when M increases. On the other hand, the prediction errors obtained by the proposed method
decrease exponentially when j = 2 is increased to j = 3. Please note that with the increase of the
integer j, the truncation error of the proposed method using the regularized Shannon’s kernel decays
exponentially, but the Euler forward difference method has only the first-order accuracy [35]. Therefore,
we can see that the prediction performance of the model using the proposed method is better than
those obtained by using the other two methods. The model based on the WCM using Haar wavelet
basis with M = 4 is divergent, and the prediction performance is the worst among the three methods.
From Figure 7, the error caused by using the proposed method is smaller than those induced by using
the FDM and the WCM using Haar wavelet basis. The errors of the models caused by using the
proposed method and the FDM are smoother than that obtained by the WCM using Haar wavelet
basis. This is because Haar wavelet basis is discontinuous.
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(a) The predictive temperature value obtained by the
proposed method with j = 4.

(b) The errors caused by the proposed method with j = 4.

(c) The predictive temperature value obtained by the FDM
with ∆x = 1/16.

(d) The errors caused by the FDM with ∆x = 1/16.

(e) The predictive temperature value obtained by the
WCM using Haar wavelet with M = 16.

(f) The errors caused by the WCM using the Haar wavelet
with M = 16.

Figure 7. The predictive temperature value (left) and the errors (right).
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Table 2. A comparison of the three method.

Method j
Single-Step Prediction Error 3-Step Prediction Error

L∞ MSE L∞ MSE

FDM

2 0.0075 1.05 × 10−6 0.0222 8.29 × 10−6

3 0.0089 6.04 × 10−7 0.022 4.17 × 10−6

4 0.0082 4.30 × 10−7 0.017 2.58 × 10−6

Haar
2 in f in f in f in f
3 0.063 6.35 × 10−4 0.0956 9.60 × 10−4

4 0.1086 3.90 × 10−3 0.1217 1.90 × 10−3

Proposed method

2 0.0181 1.86 × 10−5 0.0478 1.43 × 10−4

3 0.0033 5.38 × 10−7 0.0087 3.71 × 10−6

4 0.0033 3.30 × 10−7 0.0087 1.85 × 10−6

4.2. The Performance of the Proposed MPC Scheme

Based on the above prediction model, a nonlinear predictive controller is designed to deal with
the temperature control problem. The controller is required to adjust the flow velocity to drive
the temperature back to the desired initial steady state. Assume that the quadratic criterion to be
minimized is given by

J(∆v) :=
2j

∑
m=0

N2

∑
p=N1

‖Tr |n+p
m −T̂c |n+p

m ‖2 +
Nc

∑
i=1

λi · ‖∆v |n+i ‖2,

s.t. T |n+1
m = (1− CFL− ∆t) · T |nm +CFL · Tn

m−1,

vmin ≤ v |n+i ≤ vmax,

∆vmin ≤ ∆v |n+i ≤ ∆vmax

(26)

where J(∆v) is the objective function, and Tr |n+p
m and T̂c |n+p

m are, respectively, the reference
temperature value and the correction prediction temperature value defined at time tn+p and position
xm. ∆v |n+i is the increment of the flow velocity at time n + i, vmin and vmax represent, respectively,
the upper bound and the lower bound of the flow velocity, ∆vmin and ∆vmax represent, respectively,
the upper bound and lower bound of the increment of the flow velocity. N1,N2, Nc, and λi are defined
in (18).

In this section, using the proposed method, the FDM, and the WCM using Haar wavelet basis,
three sets of comparison experiments are performed. The purpose is to estimate the temperature
at various spatial points along the long duct when the flow velocity v(t) is suddenly increased by
10% from 1 to 1.1 at the entrance. We suppose that there are 17 temperature sensors when the
proposed method and the FDM are used, while there are 16 controlled temperature sensors when the
WCM using Haar wavelet basis is used. Assume that vmin = 0.9, vmax = 1.1, ∆vmin = −0.1× 10−3,
∆vmax = 0.1 × 10−3. The predictive horizon N1 = 1, N2 = 10, and the control horizon Nc = 3,
the weighting factors λi = 1, i = 1, 2, 3 in the quadratic criterion expressed by (26) are chosen.
The temperature response at the terminal position and the flow velocity v(t) are depicted in Figure 8,
and the response curves of the temperature values at other positions x = {0.25, 0.5, 0.75, 1} are depicted
in Figure 9.

From Figure 8 to Figure 9, we see that the flow velocity v(t) changes smoothly, and the temperature
values at positions x = {0.25, 0.5, 0.75, 1} are driven back to the steady state position for all the three
methods. The results show that all the controllers obtained can solve the temperature control problem
at any measured position along the long duct. However, for the proposed method, the temperature is
driven back to the steady state position at a faster rate with smaller overshoots.
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Figure 8. The terminal temperature response T(1,t) (a) and the flow velocity v(t) (b).
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Figure 9. The performance of the controllers. (a) The temperature response at x = 0.25; (b) The
temperature response at x = 0.5; (c) The temperature response at x = 0.75; (d) The temperature
response at x = 1.

5. Conclusions

In this paper, a first-order hyperbolic system is considered, for which an equivalent system is
constructed based on the collocation technique for spatial derivatives and Euler forward difference
method for the approximations of the time component. The nonlinearities are handled by the
collocation method, while the accuracy of the approximate solution on the finite interval is guaranteed
using the interval quasi-Shannon wavelet basis. Then, a nonlinear model predictive controller
is designed through solving a nonlinear quadratic programming problem with input constraints.
The FDM, the WCM using Haar wavelet basis, and the proposed method are applied to the temperature
control problem of a flow-control long-duct heating system. In comparison, the multi-step prediction
accuracy of the model approximation using the proposed approach is distinctly higher, and hence
producing a superior control performance. From the simulation study, it is observed that the WCM
has a strong potential for dealing with singular problems. For future research, it will be of interest to
investigate the control of systems in the presence of local dramatic changes.
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The following abbreviations are used in this manuscript:

CFL Courant-Friedrichs-Lewy
CLM Characteristic line method
DPS Distributed parameter system
FDM Finite difference method
FEM Finite element method
LPS Lumped parameter system
MPC Model predictive control
MSE Mean square error
PDE Partial differential equation
SQP Sequential quadratic programming
WCM Wavelet-collocation method
WRM Weighted residual method
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