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Abstract: In this paper, a methodology of calculating the tortuosity in three-dimensional granular
beds saved in a form of binary geometry with the application of the A-Star Algorithm and the Path
Searching Algorithm is presented. The virtual beds serving as examples are prepared with the use
of the Discrete Element Method based on data of real, existing samples. The obtained results are
compared with the results described in other papers (obtained by the use of the Lattice Boltzmann
Method and the Path Tracking Method) as well as with the selected empirical formulas found in
the literature. It was stated in the paper that the A-Star Algorithm gives values similar (but always
slightly underestimated) to the values obtained via approaches based on the Lattice Boltzmann
Method or the Path Tracking Method. In turn, the Path Searching Algorithm gives results in the same
value range as popular empirical formulas and additionally it is approximately two times faster than
the A-Star Algorithm.

Keywords: porous media; granular beds; binary tortuosity; Discrete Element Method; A-Star Algorithm;
Path Searching Algorithm

1. Introduction

The prediction of the pressure drop occurring during fluid flows is one of the most important
tasks in mass or heat transport in porous media. If the dynamics of the fluid flow is correctly mapped,
then the more complicated phenomena or processes may be taken into account. Despite many years of
investigations into the relationships between features of porous media and pressure losses, the problem
is still not fully resolved. The main difficulty results from the huge variety of porous materials occurring
in nature as well in industry.

In the literature, many laws for calculating the pressure drop in fluid flow systems with porous
media can be found; however, most of them may by saved in one unified form [1]

− dp
dx

= A(Φ)[µ~v f ] + B(Φ)[ρ~v2
f ] (1)

where p is the pressure [Pa], x is a coordinate along which the pressure drop occurs [m], A(Φ) and
B(Φ) are two generalized terms, dependent on the set Φ characterizing the spatial structure of the
porous medium, µ is the dynamic viscosity of the fluid [kg/ms], ρ is the density of the fluid [kg/m3],
and ~v f is the filtration velocity [m/s].

The set Φ may be defined as follows,

Φ = {d, φ(V, Vf ), ε(V, Vs), τ(Lp, L0), S0(SS, V, Vs), Ψ, ...} (2)

where d is a representative (e.g., average) particle diameter [m], φ is the porosity [−], V is the volume
of the porous body [m3], Vf is the volume of the pore space (filled by a fluid) [m3], ε is the volume
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fraction [−], Vs is the volume of the solid part of the porous body [m3], τ is the tortuosity [−], Lp

is the actual path length inside pore space [m], L0 is the thickness of the porous medium [m], S0 is
the specific surface of the porous body [1/m], Ss is the inner surface of the solid body [m2], and ψ

is a sphericity coefficient [−] (less than 1 in general and equal to 1 when the particles are spherical
in shape).

In the literature, one can find many formulas for A(Φ) and B(Φ) terms matching the topology of
Equation (1), e.g., Darcy (1856) [2], Forchheimer (1901) [3], Kozeny-Carman (1937) [4,5], Ergun (1952) [6],
Mian (1992) [7], Skjetne (1999) [8], Samsuri et al. (2000) [9], Belyadi (2006) [10], Belyadi (2006) [11],
Lord et al. (2006) [12], and Wu et al. (2006) [13], but almost all of them are related to the geometrical
structure of the porous media (elements of the set Φ).

In a porous body consisting of spherical particles (a granular bed), most elements of the set Φ
may be easy calculated in an analytical way on the basis of the particle locations and sizes. In fact,
the tortuosity, defined as the ratio of the actual path length inside pore channels to the thickness of the
porous medium, is the only parameter which is difficult to determine.

There are three main approaches to the calculation of tortuosity in porous media:

• Direct analysis of the pore channels geometry. The computational space may be expressed directly
in a form of the vector geometry, or indirectly, by a grid of nodes, cells, elementary volumes,
pixels, or voxels. Algorithms may have analytical origins or may be based on different discrete
techniques. In this approach the tortuosity is expressed as follows [4,5],

τ =
Lp

L0
(3)

If the tortuosity is calculated directly, on the basis of shapes of pore channels, then it is called the
geometric or geometrical tortuosity. Examples of models based on pore channel geometry may be
found in [14–16].

• The analysis of transportation properties of fluids flowing through pore channels. In this approach [17,18]

τ =
〈|v|〉
〈vx〉

(4)

where |v| is the the absolute value of local flow velocity obtained for a creeping flow, vxis the
X-component of velocity (where X is the direction of main flow), and 〈〉 is a spatial average over
the pore space. The tortuosity calculated with the use of Equation (4) is in the literature called
the hydraulic tortuosity. If a velocity field is available, than the so-called streamline tortuosity
may be also calculated [19]. Other examples of calculating the hydraulic tortuosity may be found
in [20–22].

• The analysis of diffusional properties of porous media and the application of the following
relationship [23,24],

De f f = D
ε

τf
(5)

where De f f is the effective diffusivity [m2/s], D is the intrinsic diffusivity of the conductive phase
[m2/s], ε is the volume fraction of the conductive phase [−], and τf is the tortuosity factor [-]
defined as the square of the tortuosity. The diffusional approach is applied, e.g., in [25–27].

Based on the above-mentioned methodologies, as well as on the experimental measurements
that are not described here, different empirical formulas were proposed. In Table 1, examples of such
formulas destined for packed beds are presented. It may be seen that the tortuosity is usually treated
as a direct function of the porosity. In the last column, some examples of results illustrating the range
of the tortuosity for a chosen porosity are shown (see Section 2.1).



Processes 2020, 8, 1105 3 of 19

Table 1. Examples of empirical formulas serving to calculate the tortuosity for packed beds.

No. Source Formula τ(φ = 0.413)

1 Bartell & Osterhof (1928) [28,29] τ = 0.5π 1.5708
2 Carman (1937) [4,5] τ =

√
2 1.4142

3 Weissberg (1963) [28,30] τ = 1− 0.49 ln(φ) 1.4333
4 Du Plessis & Masliyah (1988) [28,30] τ =

φ

1−(1−φ)2/3 1.3816

5 Comiti & Renaud (1989) [28,30,31] τ = 1− Cln(φ) 1.3626 for C = 0.41 [29]
6 Boudreau (1996) τ =

√
1− ln(φ2) 1.6639

7 Lanfrey et al. (2010) [29] τ = 1.23 (1−φ)4/3

φk2 , where k is a shape factor 1.4638 for k = 1

In the context of the hereby investigation different methodologies based on the so-called
Random Walk technique [32] are particularly interesting. In this approach a virtual object is created,
which randomly moves in the available calculational space.

Nakashima and Watanabe (2002) [33] applied the Random Walk method to calculate the tortuosity
in a granular bed consisting of spherical particles with the average diameter equal to 2.11 [mm] and
the standard deviation 0.06 [mm]. The geometry of the porous medium is described by a discrete
lattice of voxels. The walker executes a random jump to one of the six nearest unoccupied sites. If the
randomly selected site or a voxel is occupied by an obstacle or solid, the jump is not performed.
This model shares many features with the Path Searching Algorithm developed by the author and
described in Section 2.4.

Boudreau and Meysman (2015) [34] proposed a geometrical tortuosity model which serves for
predicting the tortuosity in marine muds represented by the nonoverlapping disks arranged in layers
and located randomly. In this model a virtual walker is defined, attempts to move through the pore
space in a direction parallel to the cylindrical axis of the disks. In their model, if the walker is in the
pore space between the disks, it will simply move along the main direction. If the walker encounters a
disk, it will choose a random direction and take a straight line along the disk surface, until it reaches
an edge of the disk and the movement in the main direction will be again possible. The idea is
quite similar to the Path Searching Algorithm described in Section 2.4, but the model developed by
Boudreau and Meysman is analytical and destined only for obstacles having one shape. In this context
the Path Searching Algorithm is more universal.

Huang et al. (2019) [35] propose the so-called Random Walking Particle Tracking (RWPT) method.
The random walk of a particle in an advection velocity field is modeled by a stochastic differential
equation containing certain terms responsible for the particle displacement, the advection displacement,
and a random walk displacement. The geometry is saved in the form of a structural grid, in which
each cell represents the pore space or the solid part of the porous medium. Walkers follow a straight
trajectory and change this trajectory only as a result of collisions with walls.

Amien et al. (2019) [36] used the Simple Neurite Tracer (SNT) to analyze the tortuosity in four
kind of digital samples of porous rock model with the size of 256×256 pixels. NST is a plugin of ImageJ
software designed to allow easy semi-automatic tracing of neurons or other filament-like structures
(e.g., microtubules and blood vessels) through either 2D images or 3D image stacks [37]. Details related
to the method applied are not described, but on the home page of the software it is mentioned that
A-Star algorithm is also implemented in this code. In the context of the paper, it is quite important to
underline that this approach may be applied only in specific geometries.

Cao et al. (2019) [38] presented an analytical model of calculating the tortuosity in cement-based
materials containing aggregates with spherical or quasi-spherical shape. Paths are expressed as
straight lines. However, when the path meets an obstacle, it bypasses it and returns to the original
trajectory. Their results seem to be debatable, because the obtained tortuosity values are very high
(between 25 and 50) and this does not correspond with the schemas presented in this work, in which
paths are relatively straight.

In the hereby paper a methodology, based on porous media in which the geometry is saved in a
form of binary matrix of zeros and ones, is proposed. The idea was inspired by the Lattice Boltzmann
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Method [39]. Formula (3), in which the path length is calculated by the use of the A-Star Algorithm
or the Path Searching Algorithm, is applied to calculate the tortuosity. In Figure 1, the main idea is
presented. Black circles represent the solid part of the porous body. In turn, the white circles represent
the grid nodes belonging to the pore space. An example of path is marked by red color. It is important
to note that the trajectory depends on the assumptions of the algorithm used (for this reason in Figure 1
two variants of paths are shown). The tortuosity obtained in the described way is called here the binary
tortuosity (it is a kind of the geometrical tortuosity). The main difference between binary algorithms
described in the paper and Random Walk methods is that the binary algorithms are determined by
rigid rules (except for one specific case in the Path Searching Algorithm) and not by random choices.

Figure 1. The idea of calculating the so-called binary tortuosity.

It should be underlined that the A-Star algorithm is relatively often applied to calculate paths
in a space containing different obstacles or limitations. However, it is usually used in other research
areas, such as mobile robots, vehicle traffic, transportation, or logistics [40,41]. Papers in which
the A-Star algorithm is used directly in the context of porous media are very difficult to find.
However, the mentioning of the implementation of A-Star algorithms in the ImageJ code suggests
that such papers most probably exist. The implementation of both algorithms (for in the case of the
A-Star Algorithm there are two variants) was performed by the author in 2019. The Patch Searching
Algorithm was developed by the author the same year.

The proposed methodology covers the following steps.

• Preparing the geometry of a porous body with the use of any method. In the hereby paper, virtual
beds generated by the use of the Discrete Element Method (Section 2.2) are applied. They represent
the existing bed samples consisting of glass marbles. Such a choice was dictated by the fact that
the alternative results for these bed samples are available and thus can be used as comparative
data. At this stage, it is assumed that the porosity of virtual bed samples must be the same as the
porosity of a real bed sample. The formulas collected in Table 1 clearly indicate that porosity is
the most important factor influencing the tortuosity value.

• Converting the available vector geometry to a binary geometry.
• Calculating the path lengths (Section 3.3) and then calculating the binary tortuosity (Section 3.4)

with the use of the A-Star Algorithm (Section 2.3) and the Path Searching Algorithm (Section 2.4).
At this stage, it is assumed that all calculations will be repeated for three geometries (Section 3.1)
and for a few different resolutions of the binary geometry (Section 3.2).

• Comparing the obtained results with other independent data as well as with the data obtained
from empirical formulas collected in Table 1 (Section 3.4). At this stage, the hydraulic tortuosity,
calculated with the use of the Lattice Boltzmann Method (which is also based on the geometry
expressed by binary matrices), as well as the geometric tortuosity, determined by the Path Tracking
Method, serve as the reference data [42]. These tortuosities were obtained for the same material
as in the present study (Section 2.1). Additionally, the results obtained by Wang, who investigated
tortuosity in very similar granular systems [22], are taken into account during the comparison.

It should be highlighted, however, that the proposed methodology may be used only in the pore
system with all channels open. If some pore channels are closed (blind cavities appear), then the path
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length will be much too long and the tortuosity will be strongly overestimated [21]. There are two
kinds of systems in which the binary tortuosity may be calculated: granular beds (in 3D only, where
a particle has contact points and the space around these contact points is always available) and any
system (in 2D or 3D) with relatively high porosity consisting of separate solid objects. The limitation
mentioned here is related to both algorithms used.

The main aim of the study is to find a method for calculating the tortuosity in high scale
granular beds (which means the beds consisting of a high number of particles) within a reasonable
calculation time. In other words, it is a try to find a good alternative for the approach proposed by
Koponen et al. [17], which may be applied only in relatively small systems and which demands a
huge computational power [21,42,43]. The hereby paper may be also treated as a continuation of
investigations described in the three cited papers.

2. Materials and Methods

2.1. Materials

It was assumed that the numerical investigations are related to a real sample of granular bed
consisting of SiLibeads Glass beads (Type S) [44] (Figure 2). To obtain the data related to particle sizes,
100 beads were randomly selected and then their diameters were measured, along two axes, with the
use of the micrometre screw of ±0.01 [mm] accuracy. It was stated that the diameters follow Gaussian
distribution at significance level 0.01 of the Kolmogorov–Smirnov test [45]. The mean diameter was
equal to 6.072 [mm] with the standard deviation of 0.051 [mm]. During the next measurements,
based on a graduated 200 [mm] cylinder, it was found out that the average porosity (obtained from
15 repetitions) was equal to 0.413 [−]. Such a value agrees with the literature data [46,47].
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Figure 2. Glass marbles (a), a bed sample (b), and a cumulative discrete distribution function consisting
of 25 fractions (c).

2.2. Discrete Element Method

The Discrete Element Method (DEM) is a method of analyzing various solid systems, which is
based on the classic Newton’s dynamic principles [48]. Typically, two kinds of solids are considered:
particles, most often representing a granular matter, and walls, representing in turn various parts
of technical infrastructure (tanks, bins, silos, pipes, chutes, conveyors components, etc.). Originally,
the particles could only have a spherical shape, but nowadays other simple shapes (such as cylinders,
cuboids, polyhedrons, etc.) or complex shapes consisting of rigidly connected bodies with basic shapes
(the so-called clumps) are increasingly used. Due to the article context, the discussion is limited to
analyzing spherical particles only. However, the methodology described may be also used in beds
consisting of particles with a more complicated shape.
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In general, a progression movement equation and a rotation movement equation in DEM is
considered. In the case of i-th spherical body, which is in contact with other bodies (Figure 3),
the equations may be saved as follows,

mi
d~vi
dt

=
nc

∑
j=1

(
~Fn,ji + ~Ft,ji

)
+ ~Fe (6)

and

Ii
d~ωi
dt

=
nc

∑
j=1

(
ri × ~Ft,ji + fij × ~Fn,ji

)
(7)

where m is the mass [kg], I is the moment of inertia [kg m2], ~v is the linear velocity [m/s], ~ω is the
angular velocity [1/s], t is time [s], nc is the number of contacts [−], ~Fn is the normal force [N], ~Ft is the
tangential force [N], ~Fe is the external force [N], r is the radius [m], and f is the distance between the
direction of acting the normal force and the mass centre [m].

Figure 3. Interaction of two circular or spherical particles: (a) hard contact model, (b) soft contact
model.

If the touching circular or spherical bodies are non-deformable, the contact zone is limited to a
point, and the distance fij = f ji is equal to zero (Figure 3a). The distance between the centers of the
particles i and j is equal to ri + rj. This type of contact is called hard contact in the literature. If the
bodies are deformable (Figure 3b), instead of a point contact, a linear (in 2D) or surface (in 3D) contact
will be created. In this case, the point of acting of the resulting normal force depends on the distribution
of normal stress on this line or surface. Consequently, normal force will generate an additional moment
of force. Because the particles are deformable, the distance between their centers is smaller than the
sum of the radiuses ri and rj. In this way, the degree of the overlap of particles becomes a measure of
their deformation. The contact of deformable particles is called soft contact in the literature. Looking at
Figure 3, it can be seen that there are two key problems in the Discrete Element Method. The problems
are related to (a) searching for all contact points and (b) calculating forces and moments of forces
at all contact points based on appropriate contact models. The original Cundall and Strack model
(1979) [48,49] or the Hertz theory (1881) [50] is very often used to calculate the normal forces in contact
points [51–54]. In the literature, other contact models may be found, e.g., Kelvin-Voigt (1890) [55],
Hunt-Crossley (1975) [56], Kuwabara-Kono (1987) [57], Lankarani-Nikravesh (1990) [58], Tsuji et al.
(1992) [59], Zabulionis et al. (2012) [60], and Singh et al. (2014) [61]. Two ranges are usually considered
when determining the tangential force. If the tangential force is relatively small, then the tangential
deformation is calculated. In this range, similar formulas are used as for the calculation of normal force.
If the tangential force exceeds the static friction force, it slips with a constant dynamic friction force.
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2.3. A-Star Algorithm

The A-Star (A*) Algorithm is an iterative algorithm serving for finding paths in a graph or a
grid of nodes based on a specific weighted function. The aim is to find a path from a chosen Start
Point to a given Stop Point at the smallest cost (i.e., the least distance traveled). Points may be freely
located in the space or arranged in a form of a structured grid. A binary geometry may serve as a
calculation space for the A-Star Algorithm. In such a case, the path may go only through the nodes
with a value representing the pore space. Another limitation is that a path cannot go twice through the
same grid node. The A-Star Algorithm was described in 1968 by Peter Hart, Nils Nilsson, and Bertram
Raphael [62]. In general, the algorithm may be used not only to search distances, but also, for example,
to calculate the minimum time of traveling. In the traditional approach, the algorithm is applied for
2D systems, but in the hereby study a 3D implementation has been developed.

The main idea of the A-Star Algorithm acting may be saved as follows,

f (x, y, z) = g(x, y, z) + h(x, y, z) (8)

where f (x, y, z) is a function serving to choose the next point of the graph or grid of nodes, g(x, y, z)
is the movement cost (the distance between the Start Point and the current node), and h(x, y, z) is
a heuristic function (the distance between the current node and the Stop Point).

In the regularly structured grids (i.e., the grids with a uniform distance between the nodes in
each direction), the function g(x, y, z) may have only three values: D · 1 for nodes having two common
indexes with the current Start Point (point A in Figure 4); D ·

√
2 for nodes having one common index

with the current Start Point (point B in Figure 4); D ·
√

3 for nodes without common indexes with the
current Start Point (point C in Figure 4). The current Start Point is marked in Figure 4 by black color. In
regular structured grids the space scale coefficient D is usually equal to 10. In such a way, the values of
g(x, y, z) function are approximately equal to 10, 14, or 17. In fact, the exact values are not important
because what really matters is the relation between particular values.

Figure 4. A schema of directions in a regular grid of nodes.

In the regularly structured grids, the function h(x, y, z) may be calculated with the use of a few
different heuristic functions. The most popular of them are as follows.

• Manhattan function

h(x, y, z) = D ·
(∣∣xi − xstop

∣∣+ ∣∣yi − ystop
∣∣+ ∣∣zi − zstop

∣∣) (9)

• Diagonal function

h(x, y, z) = D ·max
(∣∣xi − xstop

∣∣+ ∣∣yi − ystop
∣∣+ ∣∣zi − zstop

∣∣) (10)
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• Euklides function

h(x, y, z) = D ·
√(

xi − xstop
)2

+
(
yi − ystop

)2
+
(
zi − zstop

)2 (11)

• Quasi-Euklides function

h(x, y, z) = D ·
((

xi − xstop
)2

+
(
yi − ystop

)2
+
(
zi − zstop

)2
)

(12)

where D is a space scale coefficient; xi, yi, and zi are coordinates of i-th point located adjacent to
the Start Point; and xstop, ystop, and zstop are coordinates of the assumed Stop Point of the path.

After calculating the value of f (x, y, z) function for every node neighboring to the current Start
Point (there are 26 such points in 3D space, see Figure 4), the node with the minimum value of this
function is finally selected as the next point of the path. In the next iteration, this new node is treated
as the next Start Point.

2.4. Path Searching Algorithm

Path Searching Algorithm (PSA) is destined to search free passages through pore structures saved
in a form of binary geometry. The Path Searching Algorithm has the same limitation as the A-Star
Algorithm: (1) the path may go only through the nodes with the value representing the pore space
and (2) the path cannot go twice through the same grid node. The algorithm may be used in 2D as
well as in 3D domains. The algorithm was developed by author in 2019 [21]. It was used in order to
filter data in a set of pore structures consisting of 15,000 cases (with random geometries without a free
passage omitted). In the present study, the algorithm is employed to calculate the tortuosity.

In the opposition to the A-Star Algorithm, PSA has a solely local character and the locations of
Stop Points are not needed for its acting. Other differences are as follows. (a) The path may change
the direction only at right angles; (b) the path length increases in each iteration by 1, which simplifies
the way of calculating the total paths lengths; and (c) in some specific cases the next node is drawn
in a random process (which means that after running a search twice, both paths may have different
shapes and lengths).

The acting of the algorithm may be summarized as follows (see Figure 5).

• If the movement forward is possible (it is a so-called free node), than the path goes straight in this
direction (Figure 5a). A free node means here a node located in the pore space and not belonging
to the current path. In Figure 5, the main direction in which the path is determined is from the left
to the right.

• If the movement forward is impossible (the next node in the main direction is not free), then the
path turns at a right angle (Figure 5b). The movement is possible only to a free node. If there
is more than one free node (Figure 5c), then the movement direction is drawn by the use of the
random number generator.

• If the movement forward is impossible, the path cannot go perpendicular to the main direction,
but the node located behind the current node is free, then the path turns back (Figure 5d).

• If no further movement is possible (such a case is called as a cavity, Figure 5e), then the path
points are deleted in sequence until another free node (not used before) is found.

Figure 5. Movement possibilities in the PSA algorithm: (a) forward movement, (b) one side movement,
(c) random sideways movement, (d) backward movement, (e) no possibility of movement.
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3. Results and Discussion

3.1. DEM Simulations

To generate a set of virtual beds, the Discrete Element Method implemented in the YADE
code [49,63] was used. The so-called three-axial compression technique was applied, in which in
the first phase a random particle cloud inside a cuboid is generated. In the second phase, the cuboid
walls are getting closer and the particle cloud is compressed until a target porosity equals to the
porosity of real bed samples. The YADE code was used two times in the presented investigations.
In the first stage, the relation between the number of particles and the porosity was investigated.
In this study, uniform particles were used with the diameter equal to 6.072 [mm]. The number of
particles was in the range between 100 and 1000 and during each simulation, one million time steps
was performed. The friction angle was set at 0 to facilitate the particle relative movement and to
accelerate compression. The traditional Cundall’s linear elastic-plastic contact model in the calculations
was used (class Law2_ScGeom_FrictPhys_CundallStrack [49]). It was assumed that the particles are
made of glass and the walls of steel.

The results of the calculations are presented in Figure 6. It may be seen that ~1000 particles have
to be assumed to obtain the porosity at the similar level as in the experiment. Due to the random
character of the particle cloud creation, the resulting porosity varies in some range. It means that not
every simulation will fulfill the condition of obtaining an assumed experimental porosity.
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Figure 6. Relationship between the number of particles and the bed porosity.

In the second stage of the investigations, the number of particles was set to 1000 and the simulation
was continued until the target porosity (equal to 0.413) was reached. The other difference was that the
particle size was defined by a cumulative discrete distribution function consisting of 25 bins. In such a
way the average diameter and the standard deviation of samples described in Section 2.1 have been
mapped. The details related to this issue may be found in the paper [64]. The simulation had to be
repeated several times in order to obtain three examples of virtual beds with appropriate porosity.
In Figure 7, the resulting virtual beds are visible.
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Figure 7. Virtual bed samples numbered 1, 2, and 3 (counting from the left).

3.2. Geometry Conversion

The virtual beds generated by the Discrete Element Method are expressed in a form of a vector
geometry. It is done by saving coordinates of all particle centers and their diameters. It is important to
remember that these particles cannot be treated as elements of a graph or as nodes of a non-structural
grid for the A-Star Algorithm or the Path Searching Algorithm (tortuosity is calculated between solid
objects and not inside them). It means that for the following purposes, the geometry of the pore space
must be mapped in some way. To reach this aim, first, the space in which the virtual bed is located, is
covered by a structural grid of nodes. Next, a binary value is assigned to each node: TRUE (or 1) if the
node is located inside a sphere, and FALSE (or 0) if the node is belonging to the pore space.

As the resolution of grids of cells or nodes in numerical techniques is usually very important,
it is probably this factor (for the appropriate data are not available in the literature), which may have
an impact on the results in the methodology proposed. For this reason, four numerical node grids
with the following resolutions of 50 × 50 × 50 (Figure 8), 100 × 100 × 100 (Figure 9), 150 × 150 × 150
(Figure 10) and 200 × 200 × 200 (not possible to visualize with the available computer) were prepared
for every virtual bed. The total number of nodes was limited by the available computational power.
It may be seen (Figure 8, right) that the smallest resolution does not provide circular cross sections
of the spherical particles. The geometry of the virtual beds used is represented better by higher
resolutions. The bed geometry visible in Figures 8–10 is rotated in comparison to the original geometry
obtained from the YADE code, but this does not matter due to the isotropic character of the sample.

Figure 8. Virtual bed sample number 3 in resolution 50 × 50 × 50.
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Figure 9. Virtual bed sample number 3 in resolution 100 × 100 × 100.

Figure 10. Virtual bed sample number 3 in resolution 150 × 150 × 150.

3.3. Determination of Path Lengths

Virtual beds in the binary representation were used to calculate lengths of paths on the basis of
the A-Star Algorithm and the Path Tracking Method. Both algorithms were self-implemented in the
Fortran programming language. All results were saved in VTK file format, which is very convenient
to visualize, e.g., in the ParaView software. The A-Star Algorithm was applied to both versions,
i.e., a standard one (here called static) and a modified one (here called dynamic). In the static approach,
the coordinates of the Stop Point in the plane perpendicular to the main direction (here X direction) are
the same as the coordinates of the Start Point:

istop = nx, jstop = jstart, kstop = kstart (13)

In the modified version, the Stop Point changes their locations during the calculation as follows,

istop = nx, jstop = ji, kstop = ki (14)

where index i means the current path node and nx the number of grid nodes in the X direction.
The modification is proposed due the fact that, in the transport processes in porous media, the fluid
trajectory depends mainly on the local conditions (geometry). In other words, it is not strongly
determined by a point located somewhere on the outflow surface far down the flow.



Processes 2020, 8, 1105 12 of 19

In each case, 25 different Start Points regularly arranged in the inflow plane were used.
Their locations were calculated as follows,

istart = 1, jstart = spj · int

(
ny

nspj + 1

)
, kstart = spk · int

(
nz

nspk + 1

)
(15)

where spj is the ordinal number of Start Points in Y direction [−], spk is the ordinal number of Start
Points in Z direction [−], ny is the number of grid nodes in the Y direction [−], nspj is the total number
of Start Points in Y direction [−], nz is the number of grid nodes in the Z direction [−], and nspk is the
total number of Start Points in Z direction [−]. The function int() means that the resulting value is
rounded to the nearest integer number.

In Figure 11, an example of using the A-Star Algorithm in the static variant for grid resolution
equal to 200 × 200 × 200 is presented. On the left, all of the obtained paths for the first geometry are
visible. Path points are colored according to the order of adding. On the right, four chosen paths for
the same Start Points and three geometries are compared. It should be noted that in the static variant
all paths are relatively straight due to assumed “attraction” to the Stop Point. In Figure 12, analogical
results, but this time for the A-Star Algorithm in dynamic variant, are visible. It may be seen that the
effect of the Stop Point “attraction” does not occur here. In Figure 13, the results of acting of the Path
Searching Algorithm are visible. Paths are not as smooth as in the A-Star Algorithm, which is caused
by the limitation when it comes to choosing the next path points (a diagonal direction is prohibited).

Figure 11. Paths calculated by the A-Star Algorithm in static variant (resolution 200 × 200 × 200).

Figure 12. Paths calculated by the A-Star Algorithm in dynamic variant (resolution 200 × 200 × 200).
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Figure 13. Paths calculated by the Path Searching Algorithm (resolution 200 × 200 × 200).

In Figure 14, four chosen paths for the first virtual sample and different resolutions are visible.
Paths obtained for resolution 50 × 50 × 50, 100 × 100 × 100, 150 × 150 × 150 and 200 × 200 × 200
are marked by black, green, blue, and red color, respectively. It may be seen that the resulting
number of paths depends on the grid resolution. All Start Points located in the solid space are
omitted. If the resolution is low, the probability that a Start Point will be located in a solid node
is higher. This probability decreases when the grid resolution increases. This relationship is
illustrated in Figure 15.

a) b) c)

Figure 14. Impact of grid resolution on the results: A-Star static (a), A-Star dynamic (b), and Path
Searching Algorithm (PSA) (c).
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In Figure 16, the total number of path points divided by the number of grid nodes in the main
direction is visible. This number depends on the grid resolution and the method applied. It may
be observed that the results obtained for the 50 × 50 × 50 resolution differs in all cases from the
other results. Therefore, it may be concluded that the quality of the binary representation of the real
geometry is in this case too low. This conclusion is obvious however: the minimum value may depend
on the approach used in the investigations. For example, in his study based on the Lattice Boltzmann
Method (LBM), Wang stated [22], that the radius of sphere in a binary representation should have
at least ten grid nodes and the media length along flow direction should be more than twenty radii.
Looking at Figure 7, it may be seen that within the domain, 9 particles are usually located along an
edge. It means that the number of nodes per sphere diameter is approximately equal to 6, 11, 17, and 22
for the resolutions of 50× 50× 50, 100× 100× 100, 150× 150× 150 and 200× 200× 200, respectively.
It seems that if the A-Star Algorithm and the Path Searching Algorithm (which are qualitatively similar)
are used, the resolution may be two times smaller then the one mentioned by Wang. It is an important
information, because the demand for computing power increases linearly with the number of grid
nodes. Lower resolution means faster acting and shorter solution times. The conclusion related to the
minimum size of a sample is similar to this, which was reported by Wang. In all virtual bed samples
used in the investigations, the domain length was higher than 18 radiuses, which is very close to the
value mentioned by Wang (20 radiuses).
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One problem with the LBM method is that it works incorrect for the channels narrower than
approximately four lattice units [19]. It means that the binary geometry obtained in the current study
should be refined at least four times to fulfill this condition. In such a way the resolution of the highest
grid should be equal to 800 × 800 × 800 (512 × 106 nodes) instead of 200 × 200 × 200 (8 × 106 nodes).
It is impossible to analyze such big data with a PC computer. In this context, it is very comfortable that
the channel width in the proposed methodology may be equal to only one node and a grid refinement
is not needed at all.

In Figure 17, the real calculation time via the function of grid nodes is presented. It turns out
that the Path Searching Algorithm works approximately 2 times faster than the A-Star Algorithm.
Moreover, no significant differences between A-Star Algorithm in static and dynamic versions are
visible. It should be also noted that in general the calculation time is relatively short. In previous
investigations, in which the Lattice Boltzmann Method to calculate the hydraulic tortuosity in a virtual
bed consisting of 50 particles was used [43], the calculation time was much longer. For example, the
calculation time for a grid with the resolution of 32 × 32 × 64 and 8000 iterations was equal to 8990
s. It is 2.36 times more than the longest calculation time in this study (equal to 3815 second for the
A-Star Algorithm in static version, the virtual bed sample number 1 and the grid resolution of 200 ×
200 × 200). The difference seems to be not very significant, but previously the binary grid had only
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65,536 nodes, while here the number of nodes is equal to 8 × 106 (and the number of particles is 20
times higher). The conclusion is that the application of algorithm, such as the A-Star or Path Searching
Algorithm, to calculate the path lengths (and tortuosity) is very attractive in comparison with the
Lattice Boltzmann Method.
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Figure 17. Real calculation time in the function of the number of grid nodes.

3.4. Tortuosity Calculation

In the last stage of investigations, the tortuosity was calculated according to the Formula (3),
wherein L0 is equal to nx − 1. In Figure 18, all the obtained results are collected. On the left, the
data for all resolutions are visible, whereas on the right, only these for the highest grid resolution
are presented. In Table 2, a comparison between the average values of tortuosity calculated for all
the method applied in this investigation and results from the literature [22,42]. It turned out that in
comparison with hydraulic tortuosity calculated on the basis of the Lattice Boltzmann Method as well
as with geometric tortuosity calculated with the use of the Path Tracking Method (details in [42]),
the A-Star Algorithm underestimates the result and the Path Searching Algorithm overestimates it.
Additionally, the Path Searching Algorithm gives in all cases higher relative error. The differences
between static and dynamic variants of the A-Star Algorithm are very small, however, the static variant
leads to obtaining results with the smallest relative errors.

Table 2. Relative errors between the results obtained in the investigation and data from the works
in [22,42].

Method τ δWang δLBM δPT M
[-] [%] [%] [%]

A-Star static 1.1464 −4.27 −7.01 −5.53
A-Star dynamic 1.1259 −5.98 −8.67 −7.21

PSA 1.4220 18.75 15.35 17.19

The situation differs if the obtained data are compared with the results of calculations based on
empirical formulas collected in Table 1. In this comparison (visible in Figure 19), the Path Searching
Algorithm provides results in the same range. It is visible once more that the smallest resolution does
not have enough good quality.

It may be stated that the binary algorithms such as the A-Star Algorithm or The Path Searching
Algorithm may be a good alternative for other techniques of calculating the tortuosity, particularly
these based on the numerical methods. They are not complex in theory, are relatively easy to implement
and use, fast, and do not generate big data files.
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Figure 18. Comparison of tortuosity values (for alternative calculating methods).
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4. Summary

The following conclusions can be formulated based on the results of the present study.

• To obtain the same porosity as in a real bed sample, the virtual bed has to contain
approximately 1000 particles.

• The resolution of the binary representation of a real (or virtual) bed cannot be too small.
However, this resolution may be still much lower than the resolution of grids required by other
numerical techniques, in particular by the Lattice Boltzmann Method (used by Wang [22] or in
the previous investigations described in the [42]).

• It is possible to calculate tortuosity with algorithms working on a geometry saved in a form of
binary matrices.

• The Path Searching Algorithm gives always higher values of the tortuosity than the A-Star Algorithm.
• The A-Star Algorithm (in both implemented variants) underestimated the tortuosity in comparison

with the tortuosity (hydraulic or geometric) calculated by alternative numerical techniques.
• The Path Searching Algorithm overestimates the tortuosity in comparison with the tortuosity (hydraulic

or geometric) calculated by alternative numerical techniques. However, the results are in good
agreement with the values calculated with the use of empirical formulas collected in Table 1.

• The Path Searching Algorithm is about two times faster than the A-Star Algorithm.
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