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Abstract: Predicting bubble properties in fluidized beds is of high interest for reactor design and
modeling. While bubble sizes and velocities for low velocity bubbling fluidized beds have been
examined in several studies, there have been only few studies about bubble behavior at superficial
gas velocities up into the turbulent regime. For this reason, we performed a thorough investigation
of the size, shape and velocity of bubbles at superficial gas velocities ranging from 0.18 m/s up to
1.6 m/s. Capacitance probes were used for the determination of the bubble properties in three different
fluidized bed facilities sized of 0.1 m, 0.4 m and 1 m in diameter. Particles belonging to Geldart’s
group B (Sauter mean diameter: 188 µm, solid density: ρs = 2600 kg/m3) were used. Correlations for
the determination of bubble phase holdup, vertical bubble length and bubble velocity are introduced
in this work. The shape of bubbles was found to depend on superficial gas velocity. This implies that
at large superficial gas velocities the horizontal size of a bubble must be much smaller in comparison
to its vertical size. This leads to a decrease of pressure fluctuations, which is observed in the literature
as a characteristic of transitioning into a turbulent regime.

Keywords: bubbling; turbulent; fluidized bed; regime transition; Geldart group B; capacitance probe;
phase holdup; bubble size; bubble velocity

1. Introduction

Bubble properties in a fluidized bed are of high interest for reaction modeling and the prediction
of the behavior in scale-up. If the size, shape, distribution and velocity of bubbles are known, the
volume-specific area of the bubble phase can be predicted, which is an important factor for modeling
mass-transfer behavior. Furthermore, it enables predicting the expansion of the fluidized bed and
consequent impact on the reactor design and reaction conversion.

Most investigations of bubble properties in fluidized beds were done in the bubbling fluidized
bed regime [1]. Different methods of measuring were used, such as surface photography, photography
in quasi two-dimensional fluidized beds, capacitance probes, fiber optical probes, electro-resistive
probes, X-ray photography, magnetic resonance imaging and more [1,2]. Capacitance probes were used
by several authors as a reliable tool for fluid-dynamic and bubble flow investigations [3–9]. This type
of probe can be operated in extreme conditions, such as high temperature beds, for both the dilute and
dense phases with high solids concentrations [10–12].

Capacitance probes measure temporal local changes in the solid concentration. The simultaneous
measurement of two channels aligned vertically above each other allows to determine the time lag of
sudden changes in concentration induced by bubbles rising in the fluidized bed [3]. Because movements
of bubbles are much larger in the vertical direction than horizontally, the local measurements of these
concentration variations give information about vertical movements and bubble sizes only.
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Bubbles in fluidized beds are three dimensional and their horizontal size can only be determined
by imaging measurement techniques, such as magnetic resonance imaging of miniature size plants
or photography in quasi two-dimensional fluidized beds. The shape of bubbles in fluidized beds is
known to be non-spherical. In the bubbling fluidized bed flow regime several studies were conducted
to determine bubble shapes slightly above the minimum fluidization velocity [1]. Most of the authors
described bubbles as spherical caps pushing a cloud of particles above them and dragging particles
in a wake below them [1,4]. The shape of a bubble was found to be of a cap, with different sizes in
the horizontal and vertical directions. Determining the vertical length of a bubble using capacitance
probes poses a challenge: depending on the radial position of the probe in which it penetrates in the
bubble, different values will be measured. A stochastic distribution is thus observed [13], and instead
of referring to a definite vertical length, the term “pierced length” is employed. Superimposed to
this are the statistic processes of bubble formation, movement, coalescence and preferred flow paths,
leading to local distributions of bubble sizes [4]. For this reason, vertical sizes measured are a product
of the overlapping distributions of size and pierced length.

Horizontal bubble sizes can only be estimated from capacitance probe measurements when the
ratio of vertical bubble size to horizontal bubble size is known. Bar-Cohen et al. [5] assumed the
vertical bubble size to be equal to the volume-equivalent diameter (bubbles are spheres), whereas
Werther [7] described the bubbles based on spherical caps as rotationally symmetrical ellipsoids
with a size-independent shape factor. Some authors assumed a shape factor of 1.6 to calculate the
volume-equivalent diameter from the pierced length [13–15].

Most research about bubble sizes in a turbulent regime or at the regime transition from bubbling
to turbulent was performed for particles of Geldart group A [16–19]. In fluidized beds with these
particles, bubbles attain a maximum size and break up. Consequently, bubble size does not increase
even if the gas flow rate is increased. This corresponds to a maximum in the pressure fluctuations,
which is the most conventional regime change measurement technique [16]. This phenomenon results
in high heat and mass transfer in a turbulent fluidized bed in comparison to a bubbling fluidized bed
thanks to higher particle and gas mixing.

For beds containing particles of Geldart group B, Lee and Kim found a decrease of bubble sizes in
the turbulent regime just as for smaller particles [20]. By contrast, Werther and Wein and Andreux
et al. measured larger bubble sizes with increasing superficial gas velocity even beyond the point of
transition to the turbulent regime under similar conditions [21,22]. These findings contradict the theory
of the decrease of pressure fluctuation intensities at larger superficial gas velocities in the turbulent
regime due to lower bubble sizes. The studies of Lee and Kim and Werther and Wein considered a
constant shape factor of the bubbles to calculate the bubble diameter from the measured pierced length
as described above [20,21]. Magnetic resonance imaging showed that bubbles are irregular in shape
in the turbulent regime [23]. Thus, the assumption of the same constant shape factor for bubbles in
turbulent beds as well as for bubbling beds is questionable. Bubbles in turbulent beds are generally
described to be transient and to have indistinct or irregular boundaries [16]. For this reason, they are
often termed void.

The behavior of bubbles in bubbling fluidized beds show similarities to the rise of large bubbles
in highly viscous liquids. For the rise velocity of a single bubble (UB,single), Davidson and Harrison [24]
found the relation of the volume-equivalent bubble diameter (dB,V) given in Equation (1), which origins
from gas-liquid systems.

UB,single = 0.711
√

g dB,V (1)

Because bubbles in fluidized beds rise in large numbers simultaneously, they influence each other
by coalescence or breakup depending on the superficial gas velocity. This swarm behavior is considered
in several correlations [1]. These correlations are mostly based on the velocity of a single bubble
(Equation (1) or a similar relationship of UB as a function of dB,V

0.5) added by the influence of the swarm
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in bubbling fluidized beds. Velocities of bubbles rising at large superficial gas velocities in turbulent
beds were found to be overestimated by the correlation given by Davidson and Harrison [16,22].

In this study, superficial gas velocities were varied over a broad range from bubbling into the
turbulent fluidized bed regime. In the available literature, most studies have focused on the bubbling
fluidized bed regime covering only low gas velocities [1]. Only few studies exist with contradicting
statements describing bubble behavior in turbulent beds of Geldart group B particles [16,19–22].
For this reason, we investigated the influence of fluidized bed size and radial and axial measurement
for beds of particles of this group in this work to achieve a deeper understanding of the mechanisms
on bubble properties, such as size, velocity and shape.

2. Materials and Methods

2.1. Fluidized Bed Setups

Three fluidized bed plants having diameters of 0.1 m (FB100), 0.4 m (CFB400) and 1 m (FB1000)
were used for the investigation of the bubble properties. The scheme of the smallest plant is shown in
Figure 1a. Superficial gas velocities in a range of 0.18 to 1.4 m/s are set with a mass flow controller
(F 203AC FA by Bronkhorst High-Tech B.V.), which is supplied from a pressurized air network.
A porous plate is used as the gas distributor. The fluidized bed plant is made of acrylic glass. To prevent
electrostatic charging, which influences capacitance probe measurements, the inner wall of the plant is
layered and grounded with a thin layer of alumina up to a height of 0.3 m. The total height of the
fluidized bed is 1 m with an extended section above to prevent solids entrainment. Probe ports are
installed at heights of 0.05 m (P11), 0.1 m (P12), 0.15 m (P13) and 0.2 m (P14) above the gas distributor.
Measurements are carried out at two different static bed heights of 0.2 and 0.3 m. At these static
bed heights, transition velocities from bubbling to turbulent fluidization of 0.98 and 1.16 m/s were
measured in previous works for the same type of particles [25,26].

The scheme of the fluidized bed plant with a diameter of 0.4 m can be found in Figure 1b.
Depending on the superficial gas velocity, two different roots blowers are used as air supply. In the
range of 0.3 to 1 m/s the GMa 11.3 roots blower and in the range of 1 to 2 m/s the GMb 14.9 roots
blower, both by Aerzen Maschinenfabrik GmbH, are used. The superficial gas velocity is measured
by an orifice flowmeter. A porous plate is installed as a gas distributor. The fluidized bed has a total
height of 15.6 m. Entrained solids material is separated by a cascade of two cyclones and returned
into the fluidized bed via a loop-seal. Probe ports are installed at heights of 0.19 m (P21), 0.26 m
(P22), 0.33 m (P23), 0.43 m (P24), 0.53 m (P25) and 0.73 m (P26). Static bed heights of 0.4 and 0.8 m
are adjusted. Transition velocities from bubbling to turbulent fluidization of 0.94 and 1.09 m/s are
measured at these static bed heights in previous works for the same type of particles [25,26].

The scheme of the fluidized bed plant with a diameter of 1 m is shown in Figure 1c. Analog
to the plant having a diameter of D = 0.4 m, two roots blowers, the GMa 13.8 for a superficial gas
velocity range of 0.3 to 0.7 m/s and the GMb 16.12 for a range of 0.75 to 1.25 m/s, both by Aerzen
Maschinenfabrik GmbH, are used as an air supply. The superficial gas velocity is determined by
an orifice flowmeter. The plant is equipped with a porous plate as a gas distributor. To prevent
electrostatic charging the supplied air is humidified by steam. The fluidized bed has a height of 4.6 m
and entrained solid material is separated in a cyclone and lead back. Probe ports are installed at heights
of 0.18 m (P31), 0.53 m (P32), 0.88 m (P33) and 1.23 m (P34). The static bed height is set to 1 m. Due to
a maximum superficial gas velocity of 1.25 m/s, the transition velocity from bubbling to turbulent
fluidization could not be determined.



Processes 2020, 8, 1098 4 of 19

Processes 2020, 8, x FOR PEER REVIEW 4 of 19 

 

 
Figure 1. Flow sheets of the fluidized bed facilities having diameters of (a) D = 0.1 m, (b) D = 0.4 m 
and (c) D = 1 m including the different capacitance probe measurement ports used. 

The scheme of the fluidized bed plant with a diameter of 0.4 m can be found in Figure 1b. 
Depending on the superficial gas velocity, two different roots blowers are used as air supply. In the 
range of 0.3 to 1 m/s the GMa 11.3 roots blower and in the range of 1 to 2 m/s the GMb 14.9 roots 
blower, both by Aerzen Maschinenfabrik GmbH, are used. The superficial gas velocity is measured 
by an orifice flowmeter. A porous plate is installed as a gas distributor. The fluidized bed has a total 
height of 15.6 m. Entrained solids material is separated by a cascade of two cyclones and returned 
into the fluidized bed via a loop-seal. Probe ports are installed at heights of 0.19 m (P21), 0.26 m (P22), 
0.33 m (P23), 0.43 m (P24), 0.53 m (P25) and 0.73 m (P26). Static bed heights of 0.4 and 0.8 m are 
adjusted. Transition velocities from bubbling to turbulent fluidization of 0.94 and 1.09 m/s are 
measured at these static bed heights in previous works for the same type of particles [25,26]. 

The scheme of the fluidized bed plant with a diameter of 1 m is shown in Figure 1c. Analog to 
the plant having a diameter of D = 0.4 m, two roots blowers, the GMa 13.8 for a superficial gas velocity 
range of 0.3 to 0.7 m/s and the GMb 16.12 for a range of 0.75 to 1.25 m/s, both by Aerzen 
Maschinenfabrik GmbH, are used as an air supply. The superficial gas velocity is determined by an 
orifice flowmeter. The plant is equipped with a porous plate as a gas distributor. To prevent 
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and (c) D = 1 m including the different capacitance probe measurement ports used.

All plants are operated at ambient conditions. Quartz sand belonging to Geldart group B was used
as bed material in all plants. Mean diameter d50,3, Sauter mean diameter, solids density ρs, bulk density
ρb, fixed bed solids concentration cV,fb and minimum fluidization velocity Umf of the bed material can
be found in Table 1.

Table 1. Properties of sand particles used in this study.

d50,3 (µm) SMD 1 (µm) ρs (kg/m3) ρb (kg/m3) cV,fb (-) Umf (m/s)

196 188 2600 1405 0.54 0.073
1 SMD—Sauter mean diameter.
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2.2. Capacitance Probes

The principle of the electrical capacitance measurement technique is based on the change of the
dielectric constant depending on the amount of solid entering the electric field between two electrodes.
Figure 2 gives a schematic sketch of the two-channel probe tip used in this work. In this case, both
channels consist of three electrodes each. In addition to the core (wolfram) and ground electrodes,
a guard electrode is installed between them. This electrode shields the core from electric fields and
guarantees the formation of a constant electric field for measurement. The working principle is
explained in detail in [11].
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Figure 2. Schematic of a two-channel capacitance probe with a distance dch between the channels and a
total diameter of dcap.

Three different capacitance probes were used for the investigations in the fluidized bed plants.
Because capacitance probes are an invasive measurement technique, the aim was to construct probes
as small as possible to minimize influences of the probe on the fluid dynamic behavior in the fluidized
bed. Due to the reason of larger forces acting in larger beds in comparison to small ones, the size of
the probe was constructed differently for each plant to withstand these forces. The combinations of
probe diameters (dcap), probe channel distances (dch) and plants, as well as probe locations, are given in
Table 2.

Table 2. Dimensions of the different capacitance probes used.

Probe Used in dcap (mm) dch (mm) r/R (-)

CP1 FB100 8 3.5 0.9, 0.8, 0.6, 0.4, 0.2, 0
CP2 CFB400 16 5.9 0.95, 0.9, 0.75, 0.5, 0.25, 0,

−0.25, −0.5, −0.75, −0.9, −0.95
CP3 FB1000 22 6.6 0.96, 0.9, 0.8, 0.6, 0.4, 0.2, 0

The signal of each channel is treated by a pre-amplifier and amplifier (capaNCDT 600 system
by Micro-Epsilon). The AD-converted voltages of the channels are recorded with a frequency of
10,000 Hz. For the determination of bubble properties, a recording duration of 10 min was chosen for
each measurement point to measure an adequate amount of bubbles.

Different correlations for the calculation of the solids concentration cV from the measured voltages
by capacitance probe are given in the literature [10,11]. The linear approach proposed by Hage and
Werther in Equation (2) is used in this work [12].

cV = cV, f b
U −U f

U f b −U f
(2)

This approach requires knowledge about the signal levels at fixed bed concentration Ufb and
fluidizing fluid Uf. Both voltages are measured before and after the experiment for calibration.
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For experiments using humidified air, the voltages are measured under humidified conditions.
The fixed bed concentration cV,fb is given by the bed material used.

Because a capacitance probe is a local measurement technique, different radial positions at each
axial position in the bed are measured. In the smallest plant with a diameter of 0.1 m, axial symmetry
was assumed. The dimensionless radial measurement positions (r/R) are given in Table 2. Due to the
high stresses acting on the probe at large depths of penetration in a plant having a diameter of 1 m,
bubble properties are only measured over the radius of the plant.

2.3. Determination of Bubble Phase Holdup

The determination of the bubble phase holdup was done by evaluation of the local probability
distribution of concentrations measured in the fluidized bed under different conditions. Examples of
two histograms are shown in Figure 3. A kernel probability density distribution (non-parametric) is
fitted to the concentration data, and estimates the measurement data well. Small deviations of the fit in
contrast to the measured data at fixed bed concentration (cV = 0.54) and air (cV = 0) can be observed.
The error due to these deviations was assumed to be negligible.
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Figure 3. Probability density histograms at D = 0.1 m, H0 = 0.2 m and U0 = 0.7 m/s measured
in the fluidized bed center (r/R = 0) and in the wall region (r/R = 0.9) with their fitted probability
density distributions.

The peaks that can be found at high concentrations show the solids concentrations’ distributions
of the dense phase whereas the peaks at low concentrations show the occurrence of the bubble
phase. Bubble phase concentrations are not always completely at a value of zero. According to
two-phase theory, the bubble phase is considered empty of solids. However, bubbles contain a
small particle concentration due to continuous coalescence or breakup phenomena or dispersion.
The concentration depends on the size of a bubble and the location at which the probe penetrates the
bubble. The capacitance probe has a fixed measurement volume. If a bubble is small or measured at
the phase border both phases can be measured simultaneously, and an averaged concentration of both
phases is measured in this case. The capacitance probe is an invasive measurement method. Solids
can be decelerated by the probe or stuck at the probe, which leads to larger concentrations measured
inside the bubble. Contrary to a gas-liquid bubbles, in a fluidized bed, the transition from bubble
to suspension phase is not a sharp transition. Thus, a distribution of different low concentrations
represents the bubble phase in the probability density distribution.

The dense phase concentration changes as a function of radial and axial measurement position
and superficial gas velocity. Different locations of peaks have been found by evaluation of the different
measurement points. Therefore, the same effects of concentration variation that happen in the bubble
phase can occur also in this case.
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This study was based on the two-phase theory of dense fluidized beds. Probability
density distributions are used to define these phases, as developed by Werther and Molerus [3].
Peaks representing bubble and dense phase as shown in Figure 3 occur at each superficial gas velocity
investigated. Peak concentrations of the dense phase decrease with increasing superficial gas velocity,
meaning a larger expansion of the dense phase. By contrast, bubble phase peak concentrations are
independent of the superficial gas velocity and close to a value of zero. The mean value of the peaks
of dense phase and bubble phase results in the fitted Equation (3) as a definition of the phase border
concentration (cV,border) in dependence on the superficial gas velocity (U0).

cV,border = −0.017 U0 + 0.242 (3)

All concentrations above this phase border are assumed to belong to the dense phase. The repeated
occurrence of concentrations below Equation (3) due to the penetration of bubbles by the probe was
further analyzed to determine bubble properties.

The bubble phase holdup (φB) is calculated according to Equation (4), which describes the
probability densities (P(cV)) of occurring bubble phase concentrations normalized by the integral of the
whole probability density function.

φB =

∫ cV,border
0 P(cV) dcv∫ cV, f b

0 P(cV) dcv
(4)

2.4. Determination of Bubble Properties

The determination of bubble properties, such as their velocity, frequency and length, follow an
algorithm that detects the presence of a bubble. A minimum bubble length is defined for two reasons:

• Close passes of bubbles along the probe (probe not fully entering the bubble), as explained before
(this is likely to happen in the turbulent state);

• Electrostatic charging in the fluidized bed (occurring at larger velocities and larger diameters with
dry air), leading to spontaneous discharges visible in the probe voltage signal.

The minimum bubble length time (tB,length,min) was set to 5 ms. For bubbles rising with a velocity
of 2 m/s the minimum bubble size would therefore be registered by the algorithm as 1 cm, which is
far lower than the size a bubble rising with this velocity should have according to the literature and
measurements [1].

To prevent influences of electrostatic charging or short time crossing of the phase border on the
bubble size, a minimum bubble distance time (tB,distance,min) of 2 ms was introduced. This means
that bubbles occurring within the minimum bubble distance time are counted as one and as separate
bubbles otherwise. The minimum bubble distance time was chosen to be small because a larger time
would cause bubbles following each other closely to be counted as one bubble. If bubbles rise with a
velocity of 2 m/s in this case the bubbles can have a maximum distance of 4 mm to be counted as one
bubble. This is unlikely to happen unless the bubbles already started coalescing.

Two channels are recorded simultaneously with one in the flow shadow of the other. Slightly
different signals at both channels are the result. To be sure to determine bubbles, an overlap check of
bubbles of both channels is done. All detected bubbles fulfilling the conditions of the algorithm are
counted and give the bubble frequency f B when related to the signal length. For the determination
of the bubble velocity (UB), the time lag (τ) between both channels is estimated. Equation (5) gives
the normalized cross-covariance function (ψcV1,cV2(τ)) that directly yields the Pearson correlation
coefficient (R) of both signals for each time step of the signal shift.

ψcV1cV2 = lim
T→∞

1
2TσcV1σcV2

T∫
−T

(cV1(t) − cV1)(cV2(t + τ) − cV2)dt (5)
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where σcV1 and σcV2 are the standard deviations and cV1 and cV2 are the mean values of the solid
concentrations cV1 and cV2 of the channels, respectively; t is the time and T is the maximum
integration time.

This approach additionally offers a comparison of the signals according to their self-similarity.
The correlation coefficients can vary between −1 and 1 with the highest value being the highest
similarity in the signals. For the determination of the lag of both signals the time shift location of
the peaks with the highest values is determined. Only signals with a correlation coefficient above
0.9 are considered to guarantee a high similarity in the signals and avoid errors in the measurement.
The time lag of the peaks is then determined. The knowledge about the vertical distance (dch) of both
channels to each other leads together with the time lag (τ) to the velocity of the bubble (UB) as given in
Equation (6).

UB =
dch
τ

(6)

The occurrence of negative bubble velocities was neglected in this study. Assuming a bubble is
not accelerated while passing the capacitance probe, the duration a bubble needs to pass the probe (tB)
and its velocity give the pierced length (lp) of a bubble in Equation (7).

lp = UB tB (7)

Coalescence and bubble formation are stochastic processes. Thus, bubble properties follow a
natural distribution, which is a logarithmic normal distribution. The density function of the log-normal
distribution f (x) of the parameter x is defined by Equation (8) [27].

f (x) =
1

√
2πσx

exp

− (ln(x) − µ)2

2σ2

 (8)

where µ and σ are the expected value and the standard deviation of the parameter’s natural logarithm,
respectively. The arithmetic mean value (E(X)) is given by Equation (9):

E(X) = exp
(
µ+

1
2
σ2

)
, (9)

and the arithmetic standard deviation (SD(X)) is given by Equation (10).

SD(X) = exp
(
µ+

1
2
σ2

)√
exp(σ2) − 1 (10)

Examples for histograms of the pierced lengths measured at two different superficial gas velocities
are given in Figure 4. The log-normal distributions fit the measured histograms well. Higher gas
velocities show a broader distribution of pierced lengths.
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Figure 4. Probability density histogram of the pierced lengths measured at the center (r/R = 0) of the
fluidized bed at D = 0.1 m, H0 = 0.3 m and z = 0.1 m at bubbling fluidization (U0 = 0.3 m/s) and
turbulent fluidization (U0 = 1.4 m/s) and their fitted log-normal distributions.

The same behavior as for the pierced lengths can be found for the bubble velocities in Figure 5. Lags
in the histogram at large velocities can be explained by the measurement frequency and the resulting
minimum recorded time step, which has a large influence as given by Equation (6). Furthermore,
the deviation of the histograms from the fitted log-normal distributions is larger than for the pierced
lengths. Reason for these deviations are velocity variations due to mutual interactions of the bubbles
(e.g., acceleration due to coalescence). These interactions increase with larger amounts of bubbles
resulting in the largest fitting errors occurring in the turbulent regime.
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Figure 5. Probability density histogram of the bubble velocity measured at the center (r/R = 0) of the
fluidized bed at D = 0.1 m, H0 = 0.3 m and z = 0.1 m at bubbling fluidization (U0 = 0.3 m/s) and
turbulent fluidization (U0 = 1.4 m/s) and their fitted log-normal distributions.

The arithmetic mean values of the distribution functions calculated by Equation (9) were used
in this study to compare the bubble velocities and mean pierced lengths under different conditions.
Furthermore, the mean pierced length and the mean bubble velocity were cross-sectional averaged,
separately. This was done in relation to the cross-sectional area belonging to a radial measurement
position and the amount of bubbles occurring in this area.
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3. Results and Discussion

3.1. Bubble Phase Holdup

As expected, the bubble phase holdup increased with increasing superficial gas velocity.
The intensity of the change of the bubble phase holdup depended on the fluidized bed diameter, as
can be seen in Figure 6. At larger diameters, the holdup of the bubble phase was generally smaller
than in small plants. The main reason for this observation is the much larger sizes that bubbles can
grow to in a larger bed and consequently pass through the bed with higher velocity, as bubble velocity
is a function of bubble size. This relationship is expected for small laboratory-scale units, where
bed diameter is in the order of magnitude of bubble size. Therefore, no impact is expected above
certain bed diameters and bed heights. In large fluidized beds, bubbles and the downflow of solids
develop preferred stable flow patterns [4], where the interaction between up- and downflow is lower
than in small beds. The resulting smaller bubble holdup in larger beds also leads to a smaller bed
expansion. These impacts are expected both for bubbling (mainly for group B particles) and turbulent
fluidized beds.
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Figure 6. Cross-sectional averaged bubble holdups in dependence of superficial gas velocity and bed
diameter at different heights above the gas distributor.

Fluctuations of bubble phase holdup showed no clear correlation with the measurement height.
In the fluidized bed with a diameter of D = 0.4 m and a static bed height of H0 = 0.8 m, the phase
holdup was measured at six positions above the gas distributor. The measurement position showed
no significant influence on the cross-sectional averaged bubble holdup. Close to the bed surface, the
bubble phase holdup decreased. This phenomenon occurs due to the eruption of bubbles.

A correlation was developed to model bubble holdup (φB) as a function of bed diameter (D),
superficial gas velocity (U0) and the minimum fluidization velocity (Umf) based on the
experimental results:

φB =
1

1 +
(

4.735D
0.128+D

)(
U0 −Um f

)−0.641
(11)

In this correlation, it is assumed that the bubble holdup is independent of the height above the
gas distributor, as discussed above.

The correlation fits the experimental data well (Figure 6), considering the large spread in the
experimental data for small diameters. The parity plot (Figure 7) confirms reasonable agreement for
larger fluidized beds, with most predictions being within a band of ±10% deviation as shown in the



Processes 2020, 8, 1098 11 of 19

parity graph (Figure 7). The largest errors occurred for the smallest diameter of 0.1 m. The main
reason is the large influence of bubble size in small diameters as mentioned above. With increasing
height above the gas distributor, larger bubbles are formed due to coalescence [3,6,13,24,28]. These
bubbles interact with the downflowing solids at the wall, which leads to a higher bubble phase holdup.
Thus, an influence of the measurement height above the gas distributor can occur in small beds.
Radial profiles of the bubble phase hold up in this study show that small amounts of bubbles can
move in the wall region in small beds. By contrast, almost no bubbles occurred in the wall region
in large beds, which proves a larger interaction of rising bubbles and downflowing solids in small
beds. The wall effect reduced as bed diameter increased as can be observed in the results, where the
difference between 0.4 m bed and 1 m bed results was much smaller than between the 0.1 m bed and
0.4 m bed. The difference became less significant for larger bed diameters.
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Figure 7. Parity plot of the measured bubble phase holdup and the developed correlation for all
investigated plant diameters.

Equation (11) was developed for only one fraction of bed material classified to Geldart group
B. Influences of particle properties are considered in the minimum fluidization velocity but the
applicability for other beds needs further investigation of the model parameters with regard to
particle properties.

3.2. Bubble Size

The distribution of pierced lengths of bubbles and the resulting arithmetic mean value depend on
the radial position and axial position of the measurement as well as on superficial gas velocity and bed
properties. Larger mean pierced lengths were found to occur in regions of deprived bubble flow due
to coalescence behavior. These phenomena are well described by Werther and Molerus [4].

The cross-sectional averaged arithmetic means of the pierced length (lp) as a function of superficial
gas velocity (U0) for different heights above the gas distributor (z) are plotted in Figures 8 and 9.
The tests were carried out on the plants with diameters of 0.1 and 1 m. The mean pierced length
increased with higher superficial gas velocities as with the bubble phase holdup. Furthermore, a
clear dependence of the mean pierced length on the height above the gas distributor could be found.
This behavior was expected due to coalescence phenomena occurring more likely at higher superficial
gas velocities and resulting in larger bubbles above the gas distributor. In the literature, the transition
from bubbling to turbulent fluidization is assumed to involve a decrease of average bubble sizes, which
lead to a decrease of pressure fluctuations in the turbulent regime [16]. In this study, bubbles with
larger mean pierced lengths were also found in the well-developed turbulent regime. The experimental
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data of the pierced bubble length from three plants were used to develop a correlation expressed in
Equation (12):

lp = 0.751 z0.356 (D+0.089)
D

(
U0 −Um f

)0.148 (D+0.232)
D (12)
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Figure 8. Cross-sectional averaged mean pierced lengths measured at different heights above the
gas distributor compared with the correlation prediction as function of superficial gas velocity in the
FB100 unit.
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Figure 9. Cross-sectional averaged mean pierced lengths measured at different heights above the
gas distributor compared with the correlation prediction as function of superficial gas velocity in the
FB1000 unit.

Figures 8 and 9 show correlation results compared to the experimental data. The correlation
prediction was in good agreement with the measured cross-sectional averaged mean pierced lengths,
especially at larger velocities. The correlation overestimated the mean pierced length at low gas
velocities. The mean pierced lengths were small compared to the bed diameter of 0.1 m at this velocity.
This difference is mainly related to the wall effect, where the shape of bubbles is impacted mainly in
smaller beds particularly at higher elevations above the distributor at higher gas velocities. Bubbles of
this size (e.g., lp = 0.13 m at z = 0.2 m and U0 = 0.3 m/s) are clearly influenced by the size of the fluidized
bed, resulting in vertically stretched bubbles. In addition, bubbles are compressed by the backflowing
solids along the wall of the plant, resulting in larger mean pierced lengths in comparison to smaller
bubbles at a superficial gas velocity of 0.18 m/s. This effect is partially covered by the bed diameter
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terms in the correlation. This dependence on the bed diameter in the correlation is mostly present at
smaller diameters. This can be observed in Figure 9, where the correlation is in good agreement with
the experimental results while the bed diameter term has a negligible effect. The correlation helps in
extrapolating small-scale lab unit results to larger scales.

Comparison of the measured pierced lengths at heights of z = 0.2 m in Figure 8 and z = 0.18 m in
Figure 9 with similar operating conditions for two different bed diameters showed that bubbles had
larger mean pierced lengths at larger beds under similar conditions. One reason for this observation
is the higher probability of coalescence in a larger bed. Coalescence can take place horizontally and
vertically whereas vertical coalescence is more likely according to the literature [29–33]. However,
these observations are probably influenced by bed diameter. If a bubble in a small plant reaches a size
close to the diameter of the fluidized bed, lateral coalescence cannot take place because it is the only
bubble rising in the cross-sectional area. It is unlikely that following bubbles have a larger velocity
than the leading one, which reduces probability of vertical coalescence in this case. Therefore, a
semi-slugging state will be reached as bubble diameters cannot reach the full diameter of the fluidized
bed. In a larger fluidized bed, lateral and vertical coalescence can still take place, supporting higher
probability for the formation of larger bubbles. Another reason for larger bubbles in larger fluidized
beds is the formation of larger bubbles at the gas distributor [1]. Here, regions of deprived bubble flow
and solids backflow can be larger compared to a small fluidized bed. Because weaker shear forces
occur in large fluidized beds, the formation of large bubbles in the regions of deprived bubble flow is
not hindered. This increases the probability of forming larger bubbles. The parity plot in Figure 10
shows that Equation (12) is in good agreement with experimental results. The largest errors occur at
low velocities in the bubbling regime as discussed before.
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Figure 10. Parity plot of correlation prediction vs. experimental result of cross-sectional averaged
mean pierced length for all plant diameters investigated.

Geldart group B particles do not have a distinct bubble size limit, in contrast to group A
particles [15]. The impact of particle density and diameter was taken into account via the minimum
fluidization velocity (Umf) in the developed correlations. However, further experimental tests are
required regarding this issue. In this study, only the vertical dimension of bubbles was investigated.
As described in the introduction, capacitance probe measurements of bubbles do not yield any
information about horizontal bubble properties without assumptions about the bubble shape. Bubbles
in turbulent fluidized beds do not have a regular shape as in bubbling fluidized beds. They have a
much more irregular and dispersed form, as shown by Holland et al. [23]. Visual observations in this
study confirmed the irregular shape of bubbles. The distinction between both phases under assumption
of the two-phase theory was difficult visually, and the gas seemed to rise in vertical stretched gas
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pockets or voids with small horizontal sizes. These observations agree with the vertical sizes of bubbles
measured in this study. The bubbles in all plants reached vertical sizes in the range of or larger than
the diameter of the fluidized bed itself. Bubbles having a volume-equivalent diameter of this size
would lead to slugging, which cannot be observed. This leads to the conclusion that bubbles in the
turbulent regime must be much smaller in the horizontal dimension than in the vertical dimension,
particularly in small beds. The transition of the shape from spherical caps in the bubbling regime to the
vertical stretched shape at turbulent fluidization is a continuous process as the measurements showed.
The vertical length of bubbles rose monotonously with increasing superficial gas velocity.

This subject needs further investigations to determine the shape of bubbles and particularly the
impact of the bed on their horizontal dimension in order to be able to use this information for the
scale-up of processes.

3.3. Bubble Velocity

Most studies in the literature about the velocity of bubbles concentrated on superficial gas
velocities of up to U0 = 0.3 m/s [1]. This study also investigated bubble velocities up to superficial gas
velocities of U0 = 1.6 m/s, covering the upper region of the bubbling regime up to turbulent fluidization.
Figure 11 shows all measurements of the cross-sectional averaged mean bubble velocities as a function
of their mean pierced length. In contrast to the relationship of volume-equivalent bubble diameter to
bubble velocity of (UB ~ dB,V

0.5) found in the literature [1], a linear relationship between pierced length
lp and bubble velocity UB was found. This relationship is given by Equation (13):

UB = 0.587
U0 −Um f

U0
+ 4.344 lp (13)
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Figure 11. Bubble velocity as a function of the mean pierced length at different plant diameters,
heights above the gas distributor and superficial gas velocities (cross-sectional averaged) including
Equation (13) at U0 >> Umf as a limiting case.

Correlations developed only for the bubbling regime result in an overestimation of the velocity
of bubbles, which was also found in the literature [16,22]. Equation (13) was developed under the
condition that the superficial gas velocity be much higher than the minimum fluidization velocity
(U0 >> Umf). Superficial gas velocities above 1 m/s almost fulfill this condition and the relation of
bubble velocity to pierced length is similar to the solid line plotted in Figure 11. At lower superficial
gas velocities (e.g., U0 = 0.18 m/s), the ratio of both parameters depends on the superficial gas velocity.
In bubbling fluidization such a behavior was also observed in the literature and explained by the swarm
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behavior of bubbles [24,34]. The rise of bubbles in a swarm and in the wind shadow leads to larger
bubble rise velocities. At higher superficial gas velocities the influence of swarm behavior is limited.
This behavior can be observed in the experimental results from this study and developed equation.

Equation (13) fits the experimental data with a maximum error of 12%, as can be seen in Figure 12.
The largest errors occur at large measurement heights above the gas distributor in comparison to
the diameter of the fluidized bed (in most cases z/D > 1.5) in the bubbling fluidized bed regime.
In these cases, the bubbles were large enough in horizontal size to be influenced by the bed diameter.
The increased resistance due to solids moving downward at the wall increased the drag force acting on
the bubbles, which slowed them down and deformed the bubbles.
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pierced length of the bubbles.

The formation of bubbles in a fluidized bed happens due to the tendency of the system to minimize
energies. Due to the fact that bubbles in fluidized beds have no surface tension [2,24], the shape of a
bubble is formed to minimize the drag force acting on the bubble. Bubbles in (bubbling) fluidized
beds behave like bubbles in highly viscous liquids [30]. At low velocities, they were found to have a
shape of a spherical cap with a drag coefficient (CD) of 2.64 [30]. By contrast, the measurements in the
turbulent fluidized bed regime show a change of the bubble shape, which must lead to a change of the
drag coefficient of a bubble. The drag coefficient of a bubble can be determined via a force balance of
drag force (FD), buoyancy force (FB) and gravity force (FG), as given by Equation (14).

FD = FB − FG (14)

The drag force is defined by Equation (15) with the drag coefficient CD, the density of the fluidized
bed ρfb, the horizontal cross-section of the bubble AB and the bubble velocity UB:

FD =
1
2

CD ρ f b AB UB
2, (15)

the buoyancy force is defined by Equation (16) with the density of the fluidized bed ρfb, the volume of
the bubble VB and the gravitational acceleration g:

FB = ρ f b VB g (16)
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and the gravity force is defined by Equation (17) with the density of the fluid ρf, the volume of the
bubble VB and the gravitational acceleration g:

FG = ρ f VB g. (17)

Under the assumption that bubbles are ellipsoids having a horizontal diameter b and a vertical
diameter equal to the pierced length lp, the volume VB and the bubble cross-sectional area AB are
defined as in Equation (18).

VB =
π
6

b2 lp ; AB =
π
4

b2 (18)

The density of a fluidized bed is more than two order of magnitudes higher than the gas density
at ambient conditions (ρfb >> ρf), which leads to the conclusion that gravity force acting on a bubble
is negligible in comparison to the buoyancy force. This leads to the drag coefficient definition in
Equation (19).

CD =
4
3

g
lp

UB2 (19)

The calculated drag coefficients (from measured cross-sectional averaged mean pierced lengths
and bubble velocities) are shown in Figure 13 together with curves of the drag coefficient determined by
combining Equations (19) and (13) at different superficial gas velocities. The calculated drag coefficients
can be smaller than the ones in reality because the swarm effect is not considered in this calculation.
This can be a reason for calculated drag coefficients (CD) lower than a value proposed by the literature
of 2.64 in the bubbling regime [30].
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According to Figure 13, the drag coefficient first increases as long as the pierced length is below
the range of 0.08–0.13 m (depending on superficial gas velocity); it then reaches a maximum and
decreases when they grow further. Bubbles in the first (increasing) section occur in the bubbling
fluidized regime. These bubbles contain a small volume of gas, which precludes the formation of a
large wake, especially given the high inertia of Geldart group B particles. Therefore, these bubbles
might have a shape closer to a sphere. With growth of bubble size, the formation of a larger wake
is probable. These large bubbles must carry more material in their wake in comparison to their size
compared to smaller bubbles [35]. This leads to a change in shape tending to the bubble cap form the
one often described in the literature [1]. If bubbles grow further, the inertia of the solids and the large
forces acting on the bubble result in higher deformation of the bubble. The resulting shape is a vertical
stretched one and increasing pierced lengths can be measured. Furthermore, a smaller horizontal
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bubble diameter does not allow the formation of an even larger wake. Thus, the change of the shape
results in a lower drag coefficient for larger bubble sizes even in the bubbling fluidized bed regime.

With increasing superficial gas velocity, the bubble velocities increase as in Equation (13).
The increasing bubble velocities lead to larger forces acting on the bubbles, which in turn change the
shape of the bubble and wake. A reduction of the drag coefficient at larger superficial gas velocities is
the result that can be seen in Figure 13.

3.4. Effect of Bubble Size and Shape on the Transition from Bubbling to Turbulent Fluidization

The transition from bubbling to turbulent fluidization is defined by a maximum in the pressure
fluctuations [16]. Pressure fluctuations occur due to bubble formation, coalescence, bubble break-up
and bubble eruption at the surface. Large bubbles occurring in a fluidized bed induce high pressure
fluctuations due to their large pressure gradients at cloud and wake and the displacement of large
amounts of solids. The displacement of solids and the forces acting on a bubble increase with its
cross-sectional area. It was found in this study that bubbles must change their horizontal size when
they grow due to an increase of the superficial gas velocity, while the amount of displaced solid and
the forces acting per bubble volume decreases as a result. At the same time, the amount of bubbles
rising increases with increasing superficial gas velocity, as measurements of the local bubble frequency
showed. Due to an increase in the coalescence rate and the formation of larger bubbles at the gas
distributor at high superficial gas velocities, the increase of the bubble frequency stagnates. At a certain
superficial gas velocity, the reduction of the bubble volume-dependent forces overcome the increasing
number of bubbles. Pressure fluctuations reach a maximum at this point and decrease with a further
increase of the superficial gas velocity.

Due to the wall effects explained in Sections 3.1 and 3.2 and the tendency of the system to reduce
drag force, bubbles in small fluidized beds are forced to coalesce even at larger superficial gas velocities.
This leads to a later transition into the turbulent regime at lower bed diameters at the same static bed
heights, which was reported in the literature [16,26,36–38]. The size of bubbles increases with distance
from the gas distributor due to coalescence. These larger bubbles must change their shape at lower
superficial gas velocities in contrast to smaller bubbles at the bottom of the fluidized bed in order to
minimize energy. This explains why the turbulent bed is normally formed in the top section of the bed
and developed downwards into the bottom section at larger superficial gas velocities, as observed in
the literature [39,40].

4. Conclusions

Capacitance probes were used for the measurement of vertical bubble sizes and bubble velocities.
Bubble phase behavior was investigated over a large range of superficial gas velocities ranging from
bubbling fluidization (U0 of 0.18 m/s) up to turbulent fluidization (U0 of 1.6 m/s). Experiments were
carried out in laboratory scale-fluidized bed facilities of different sizes of 0.1, 0.4 and 1 m in diameter.

Results of the investigation showed a clear dependence of the bubble phase holdup on the
fluidized bed diameter and the superficial gas velocity. Bubble holdup was higher in beds with a
smaller diameter. This was mainly due to the wall effects on the bubbles, which attain sizes comparable
with the bed diameter.

An empirical correlation was developed for the prediction of the cross-sectional averaged mean
pierced length as a function of bed diameter, height above the gas distributor and superficial gas
velocity. The vertical mean pierced length was found to grow even in the turbulent fluidization regime.
Large measured mean pierced lengths in the turbulent regime led to the conclusion that the shape
of bubbles was influenced by wall effects, superficial gas velocity and the size of the bubble itself.
Small bubbles at low superficial gas velocity had a higher probability to have a spherical shape and
spherical cap, whereas larger bubbles and velocities led to a deformation of the bubble into a vertical
stretched shape.
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The velocity of a bubble mainly depends on its vertical size. Experimental results showed a linear
dependence of the bubble velocity on its pierced length. The influence of the superficial gas velocity
and thus the influence of swarm behavior are limited. The transition from bubbling to turbulent
fluidization was found to mainly depend on the shape of the bubbles. The occurrence of vertical
stretched bubbles having a small horizontal size compared to their vertical dimension leads to a
reduction in the pressure fluctuations.
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