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Abstract: The fault detection method has been used usually to give a diagnosis of the performance
and efficiency in the proton exchange membrane fuel cell (PEMFC) systems. To be able to use this
method a lot of sensors are implemented in the PEMFC to measure different parameters like pressure,
temperature, voltage, and electrical current. However, despite the high reliability of the sensors,
they can fail or give erroneous measurements. To address this problem, an efficient solution to replace
the sensors must be found. For this reason, in this work, the immersion and invariance method is
proposed to develop an oxygen pressure estimator based on the voltage, electrical current density,
and temperature measurements. The estimator stability region is calculated by applying Lyapunov’s
Theorem and constraints to achieve stability are established for the oxygen pressure, electrical current
density, and temperature. Under these estimator requirements, oxygen pressure measurements of
high reliability are obtained to fault diagnosis without the need to use an oxygen sensor.

Keywords: estimator development; Lyapunov’s Theorem application; non-linear system;
PEMFC system; sensor replacement

1. Introduction

Fuel cell (FC) system is an advanced power system necessary for a clean, sustainable,
and environmentally friendly future, because FCs are promising candidates as an alternative to
conventional fossil fuels, due to their higher energy density, energy efficiency, and very low
emissions [1–3]. The main operation of the FCs is to transform gaseous fuel chemical energy into
electricity. Besides, the FCs can be used as alternative stationary and mobile power source [4,5].
The main types of FCs are proton exchange membrane, direct methanol, solid oxide, molten carbonate,
phosphoric acid, alkaline, and microbial [6].

In particular, the proton exchange membrane fuel cell (PEMFC) has attracted the attention of
researchers in the last few decades due to its characteristics as low operating temperature, low noise,
quick start-up capability, light mass, and high-power density [2,4,6,7]. The PEMFCs have recently
passed the test phase and have slightly reached the commercialization stage due to the impressive
research effort [8]. However, the two biggest limitations preventing the PEMFC system from further
commercialization are its reliability and durability [7].

A lot of studies on PEMFC performance have been carried out, since three-dimensional
simulation models to more detailed measurement techniques, such as electrochemical impedance
spectroscopy [9,10]. To have a PEMFC diagnosis, the fault detection method has been used commonly
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to guarantee correct and safe operation in the PEMFC system [7,11,12]. However, to achieve such
a diagnosis, several sensors have been used to measure different parameters like the mass flow,
oxygen pressure, hydrogen pressure, compressor velocity, electrical current, water pressure, voltage,
and temperature of the stack [11,13,14].

A lot of researchers have worked on the development of sensors with high reliability [15–18].
These devices must present characteristics, such as high sensitivity and selectivity, robustness,
fast response time, operation at high temperature and low power consumption [19–21]. However,
in real applications, the reliability of sensors during the system operation is variable. Thus, inaccurate
sensor measurements can provide misleading results in PEMFC fault diagnosis, which can end in
failures and damages of the PEMFC system [7,11]. To solve this problem, novel methods have been
proposed to reduce errors in PEMFC fault diagnosis [9,10]. For this reason, an efficient method
to replace the oxygen sensor is proposed in this work, since the oxygen management system is an
important subsystem, which is used for supplying proper oxygen pressure in the PEMFC stack cathode.
Besides, the complexity and nonlinearity of the oxygen pressure are difficult to model [22]. So, using the
voltage, electrical current density, and temperature measurements and applying the immersion and
invariance (gradient estimator) method it is possible to develop an oxygen pressure estimator for
getting high-reliability oxygen measurements avoiding the use of oxygen sensor for PEMFC system
fault diagnosis.

The paper is organized as follows, the formulation of a gradient estimator to develop the oxygen
pressure estimator is described in Section 2. The PEMFC potential-current behavior is discussed
in Section 3. The oxygen pressure estimator applied to a PEMFC system is presented in Section 4.
The simulation and results are introduced in Section 5. Finally, some concluding remarks are presented
in Section 6.

2. Formulation of Gradient Estimator

The immersion and invariance (gradient estimator) method has been proposed to solve problems
of stabilization and adaptive control of nonlinear systems, which are present in any real practical
problem [23–26]. The key step for the estimator development using this method is the construction of
a monotone mapping, which explicitly depends on some of the estimator tuning parameters [27,28].
For these reasons, in this work, this method has been used to develop the oxygen pressure estimator.

The estimator design is formulated by proposing a function where the system behavior
representation distinguishes between measurable and not measurable signals. As shown in [28,29],
there is a general kind of function dependent on two variables θ and ξ expressed by

F(θ, ξ) = G(θ) + H(ξ) + K(θ, ξ) (1)

with θ > 0 and ξ > 0, where ξ and θ are known and time-dependent variables, such that measurable
signals F(θ, ξ) and H(ξ) are represented by

y(t) = F(θ, ξ)− H(ξ). (2)

Indeed, the representation in the non-linear regression form will be

y(t) = φ(θ, ξ), (3)

where

φ(θ, ξ) := G(θ) + K(θ, ξ). (4)

Given this formulation, the following proposition can be stated.
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Proposition 1. Consider the function φ(θ, ξ), where F(θ, ξ) and H(ξ) are known and the variable
corresponding to the non-linear regression model satisfies that the partial derivative of φ(θ, ξ) with respect to θ

is greater than zero. Then, the gradient estimator is given by

˙̂θ = γ(y(t)− φ(θ̂, ξ)) (5)

with γ > 0 ensuring that

lim
t→∞

θ̂ = θ, (6)

for all initial condition θ̂0 such as
∂φ(θ̂0, ξ)

∂θ
> 0.

Proof. To show that the immersion and invariance estimator converges to the desired value, it is
necessary to use the monotonicity property of the function φ(θ, ξ) concerning θ. Then, as:

∂φ(θ, ξ)

∂θ
> 0, (7)

the function is strictly monotonically increasing and also fulfills

(θ̂ − θ)
[
φ(θ̂, ξ)− φ(θ, ξ)

]
> 0 ∀θ̂ 6= θ, (8)

taking the Lyapunov’s function candidate

V(θ̂) =
1

2γ
(θ̂ − θ)2, (9)

its time-derivative along the trajectories of (2)–(5) is given by

V̇ = −(θ̂ − θ)[φ(θ̂, ξ)− φ(θ, ξ)] < 0 ∀θ̂ 6= θ. (10)

Note that the negative definiteness of V̇ immediately follows from (8). Then, the proof is completed
by using Lyapunov’s Second Stability Theorem.

3. PEMFC Potential-Current Behavior

An accurate mathematical model to represent the PEMFC potential Vc has been reported in [30],
where Vc is a depending function of stack current, cathode pressure, reactant partial pressures,
PEMFC temperature, and membrane humidity using a combination of physical and empirical
relationships, and can be expressed in terms of the Nernst’s potential Eth and the three main types of
potential drops; activation Vact, ohmic Vohm, and concentration Vcon.

Vc(θ, ξ) = Eth(θ)−Vohm(ξ)−Vact(θ, ξ)−Vcon(θ, ξ), (11)

where θ denotes the oxygen pressure (atm), and ξ the electrical current density in the cell (A· cm−2).
Nernst’s potential Eth. The Nernst’s potential or open-circuit potential is the maximum power obtained
by one cell corresponding to exchange Gibbs free energy as a result of the difference between reactant
products and Gibbs’s free energy. It can be described by the following equation [30–32].

Eth(θ) = E0 + B1(T0 − T) + B2T ln

[
PH2 θ1/2

PH2O

]
, (12)

where T0 and T are the initial temperature and the cell temperature, respectively (K), PH2 is a positive
constant that represents the hydrogen pressure (atm), and E0 is the reference potential (V). B1 and B2
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are positive constants that depend on stack temperature and potential (V/K) [30]. Water pressure is
represented by PH2O (atm).

Ohmic potential drop Vohm. The ohmic potential drop arises from the resistance of the polymer
membrane to the transfer of protons and from the resistance of the electrode and the collector plate to
the transfer of electrons [30–32].

Vohm(ξ) =
ξ

A f c
Rohm, (13)

where Rohm > 0 is the internal electrical resistance (Ω) and A f c is the cell active area. Besides, the ohmic
resistance can be expressed as a function of the membrane conductivity (cm−1 ·Ω−1), σm.

Rohm =
tm

σm
, (14)

where tm is the thickness of the membrane (cm), and σm is a function of membrane water content λm

and the cell temperature T.

σm = b1 exp
[

b2

(
1

303
− 1

T

)]
, (15)

where b1 is a function of membrane water content and b2 is a constant [30].

b1 = b11λm − b12, (16)

where b2, b11, and b12 are usually determined empirically. In this work, the values for b2, b11, and b12

are taken from [33].
Activation potential drop Vact. The activation potential drop comes when the movement of

electrons needs to break and form chemical bonds in the anode and cathode (i.e., part of the available
energy is lost in driving the chemical reaction that transfers the electrons to and from the electrodes).
Although the activation overvoltage occurs at both PEMFC electrodes, the reaction of hydrogen
oxidation at the anode is faster than the reaction of oxygen [30–32].

Vact(θ) = Vo + Va(θ)(1− exp[−c1ξ]), (17)

where c1 is a constant. The functions Vo and Va are both dependent on oxygen pressure and temperature.
They have been calculated empirically by

Vo = V0
o + B1(T0 − T)− 1.07551B2T +

3B2T
2

ln
(

Pca − Psat

Patm

)
, (18)

where V0
o is the initial potential drop (V) at zero current density. Pca and Patm are the pressures of the

cathode and atmospheric, respectively (atm). The water saturation pressure Psat (mPa) is expressed as

log10 Psat =
−1.69
1010 T4 +

3.85
107 T3 − 3.39

104 T2 + 0.143T − 20.92. (19)

The function Va is given as:

Va(θ) = B3

(
θ

0.1173
+ Psat

)2
+ B4

(
θ

0.1173
+ Psat

)
+ B5, (20)

where the constants B3, B4, and B5 are dependent on the stack temperature and the voltage (V/K) and
usually are determined empirically [30].
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Concentration of potential drop Vcon. The concentration of potential drop corresponds to the
concentration gradients formed due to mass diffusions from the flow channels to the reaction sites
(catalyst area). The factors underlying this potential drop are high current densities, slow transportation
of reactants and products, and water film covering the catalyst surfaces to the anode and cathode [30–32].

Vcon(θ, ξ) = ξ

(
c2ξ

Imax

)c3

, (21)

where c3 ∈ R+ is a constant, Imax is the maximum electrical current density in the cell and c2 is an
oxygen pressure function [30].

c2 =


B6

(
θ

0.1173
+ Psat

)
+ B7 i f h(θ) < 0,

B8

(
θ

0.1173
+ Psat

)
+ B9 i f h(θ) ≥ 0,

(22)

where
h(θ) = θ + 0.1173Psat − 0.2346 atm,

and B6, B7, B8, and B9 are constant values that depend on the stack temperature and are usually
determined empirically.

Lemma 1. The discontinuous function c2 defined in (22) can be approximated by the continuous function C2

given below.

C2 = D1

(
θ

0.1173
+ Psat

)
+ D2, (23)

where

D1 =
1
2

B6 +
1
2

B8 +
1
2
(B6 − B8) tanh[h(θ)],

and

D2 =
1
2

B7 +
1
2

B9 +
1
2
(B7 − B9) tanh[h(θ)].

The parameters values of the PEMFC voltage model are taken from [30] (see Table 1).

Table 1. Parameters for the PEMFC voltage model [30].

Symbol Parameter Value

A f c Cell Active Area 100 cm2

E0 Reference Potential 1229×10−3 V
Imax Maximum Current Density 2.2 A·cm−2

Patm Atmospheric Pressure 1 atm
Pca Cathode Pressure 2 atm
PH2 Hydrogen Pressure 1 atm

PH2O Water Pressure 396× 10−3 atm
tm Membrane Thickness 125× 10−4 cm
T0 Initial Temperature 298.15 K
V0

o Initial Potential Drop 279× 10−3 V
b1 Membrane Humidity Function 686× 10−4 cm−1 ·Ω−1

b2 Constant 350 K
b11 Constant 513× 10−5 SO−3 · H2O−1· cm−1 ·Ω−1
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Table 1. Cont.

Symbol Parameter Value

b12 Constant 326× 10−5cm−1 ·Ω−1

c1 Constant 10 A−1

c3 Constant 2 (-)
B1 Temperature and Potential Function 85× 10−5 V·K−1

B2 Temperature and Potential Function 43085× 10−6 V· K−1

B3 Temperature and Potential Function −1618× 10−8 T V· K−1+ 1618× 10−5 V
B4 Temperature and Potential Function 18× 10−4T V·K−1 − 166× 10−3 V
B5 Temperature and Potential Function −58× 10−5 T V· K−1 + 5736× 10−4 V
B6 Temperature Function 358× 10−5 T K−1 − 622× 10−3

B7 Temperature Function −725× 10−6 T K−1 + 1.68
B8 Temperature Function 433× 10−6 T K−1 − 68× 10−3

B9 Temperature Function −8× 10−4 T K−1 + 54× 10−2

λm Membrane Humidity 14 H2O· (SO−3 )−1

4. Application of Oxygen Pressure Estimator to a PEMFC System

The oxygen pressure estimator presented in this section is derived from the results presented in
Sections 2 and 3. The measurable signal is defined by applying the Equations (2)–(11).

y(t) = Vc(θ, ξ) + Vohm(ξ), (24)

where

φ(θ, ξ) := Eth(θ)−Vact(θ, ξ)−Vcon(θ, ξ) . (25)

Now a proposition related to the PEMFC system is presented.

Proposition 2. Consider the function φ(θ, ξ), with C2 and θ are greater than zero, such that, inequality (26)
is satisfied

B2T(Pca − Psat − 3θ)− 2
(

∂Va

∂θ

)
θ(Pca − Psat) ≥ 0. (26)

Then, ξ can be expressed in terms of θ and T as follows:

ξ =

(
D
[

B2T
2

(
Pca − Psat − 3θ

θ(Pca − Psat)

)
− ∂Va

∂θ

]) 1
c3 + 1 , (27)

where

D =
Ic3
max

c3Cc3−1
2

(
∂C2

∂θ

)−1

and
∂φ(θ, ξ)

∂θ
> 0.

Proof. The proof starts with the partial derivative of φ with respect to θ, which is given by

∂φ(θ, ξ)

∂θ
=

B2T
2

(
Pca − Psat − 3θ

θ(Pca − Psat)

)
− ∂Va

∂θ
(1− exp[−c1ξ])− ∂C2

∂θ

(
c3Cc3−1

2 ξc3+1

Ic3
max

)
.
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Now, taking the set of values (θ, ξ), that satisfy inequality (28),

0 ≤ B2T
2

(
Pca − Psat − 3θ

θ(Pca − Psat)

)
− ∂Va

∂θ
(1− exp[−c1ξ])− ∂C2

∂θ

(
c3Cc3−1

2 ξc3+1

Ic3
max

)
. (28)

Since 0 < 1− exp[−c1ξ] < 1 for ξ and c1 > 0, then

0 ≤ B2T
2

(
Pca − Psat − 3θ

θ(Pca − Psat)

)
− ∂Va

∂θ
− ∂C2

∂θ

(
c3Cc3−1

2 ξc3+1

Ic3
max

)
<

∂φ(θ, ξ)

∂θ
.

So, the admissible limit values (θ, ξ) that satisfy inequality (28) can be found when this is equal
to zero.

0 =
B2T

2

(
Pca − Psat − 3θ

θ(Pca − Psat)

)
− ∂Va

∂θ
− ∂C2

∂θ

(
c3Cc3−1

2 ξc3+1

Ic3
max

)
,

setting

D =
Ic3
max

c3Cc3−1
2

(
∂C2

∂θ

)−1
,

thus,

ξ =

(
D
[

B2T
2

(
Pca − Psat − 3θ

θ(Pca − Psat)

)
− ∂Va

∂θ

]) 1
c3 + 1 .

As
∂C2

∂θ
> 0, then,

B2T
2

(
Pca − Psat − 3θ

θ(Pca − Psat)

)
− ∂Va

∂θ
≥ 0,

since θ > 0 and Pca − Psat > 0, then,

B2T(Pca − Psat − 3θ)− 2
(

∂Va

∂θ

)
θ(Pca − Psat) ≥ 0.

Now the following proposition is introduced as a result of the combination of Proposition 1 and
Proposition 2. This result shows the estimator and its stability using Lyapunov’s functions.

Proposition 3. Consider the function φ(θ, ξ), C2 and θ are greater than zero, such that, inequality (26) is
satisfied and with ξ expressed as:

ξ =

(
D
[

B2T
2

(
Pca − Psat − 3θ

θ(Pca − Psat)

)
− ∂Va

∂θ

]) 1
c3 + 1 .

Then, the gradient estimator of oxygen pressure is given by

˙̂θ = γ(y(t)− φ(θ̂, ξ)), (29)

with γ > 0, ensuring that

lim
t→∞

θ̂ = θ. (30)
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Proof. For the values of θ and ξ stated in the hypothesis of Proposition 2, it is obtained that the
partial derivative of φ(θ, ξ) with respect to θ is greater than zero. Then, by Proposition 1, the gradient
estimator of oxygen pressure is given by

˙̂θ = γ(y(t)− φ(θ̂, ξ)),

with γ > 0, ensuring that
lim
t→∞

θ̂ = θ.

5. Simulations and Results

The Runge–Kutta fourth-order algorithm, described in [34], and the values of the parameters given
in the Table 1 were used to perform the simulations. The first step was to determine the stability region
for the estimator under the established constrains of the Propositions 2 and 3. The estimator stability
region is given within the interval (0 atm, 0.45 atm) and the simulation results of such constraints are
shown in Figures 1 and 2. The behavior of the partial derivative of φ with respect to θ as a function of
θ and ξ for different temperatures is shown in Figure 1.

0.6
0.40

Pressure oxygen 

0.1

0.2

2

0.3

0.2

0.4

1.5

Current density 

1 0.5 00

T=293.15 K

T=313.15 K

T=333.15 K

T=353.15 K

Figure 1. Behavior of the partial derivative of φ concerning θ.

The behavior of θ and ξ considering the established constraints for different temperatures is
shown in Figure 2.

Within stability region, the oxygen pressure estimator and the PEMFC potential-current
simulations were performed using oxygen pressure equal to 0.3 atm and different values for θ0 and γ.
The oxygen pressure estimator shows an asymptotic convergence to the proposed value for oxygen
pressure. The estimator behavior can be appreciated for different values θ0 in Figure 3, and different
values of γ in Figure 4.

The electrical current density calculated based on the estimator proved an asymptotic convergence
to the electrical current density calculated for oxygen pressure equal to 0.3 atm, the simulation is shown
for different values of θ0 in Figure 5, and for different values of γ in Figure 6.

The cell potential calculated based on the estimator evidenced an asymptotic convergence to the
potential calculated for oxygen pressure equal to 0.3 atm, the simulation results for different values of
θ0 are shown in Figure 7 and for different values of γ in Figure 8.
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Figure 2. Behavior of the partial derivative of φ concerning θ.
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Figure 4. Estimator behavior with different values γ.
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Figure 5. Simulation of electrical current density stability with different values θ0.
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Figure 6. Simulation of electrical current density stability with different values γ.
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Figure 7. Simulation of potential stability with different values θ0.
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Figure 8. Simulation of potential stability with different values γ.

Finally, the power or potential-current performance curve based on the estimator demonstrated
an asymptotic convergence to the power for oxygen pressure equal to 0.3 atm, the simulation is shown
for different values of θ0 in Figure 9, and for different values of γ in Figure 10. This curve has proved
to be of vital importance for the PEMFC system fault diagnosis [35].
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Figure 9. Simulation of power stability with different values θ0.
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Figure 10. Simulation of power stability with different values γ.

6. Conclusions

To avoid oxygen sensors for PEMFCs, an oxygen pressure estimator has been developed based on
the immersion and invariance (gradient estimator) method, and its stability conditions are established
using Lyapunov’s Theorem. Additionally, in this work, the PEMFC electrical current density has been
characterized in terms of oxygen pressure and temperature under certain constraints.

The oxygen pressure estimator presents an absolute convergence within the stability region to the
measurable value of oxygen pressure. However, the corresponding working condition can be different
because it is directly related to laboratory environmental conditions. So, the next step is to evaluate
the performance of the proposed estimator under different PEMFC conditions to improve the oxygen
pressure estimator.
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