
Freeze-Drying with Structured Sublimation Fronts—Visualization with
Neutron Imaging

Authors: 

Nicole Vorhauer-Huget, David Mannes, Mathias Hilmer, Sebastian Gruber, Markus Strobl, Evangelos Tsotsas, Petra Foerst

Date Submitted: 2021-03-01

Keywords: front structure, drying front, freeze-drying, image analysis, neutron tomography

Abstract: 

The particular structure of the sublimation front in vacuum freeze-drying of porous media is, in most situations, not accessible at the
pore scale. The classical measurement techniques access the process only globally. Knowledge about the structure of the front,
however, is necessary for prescriptive analysis of freeze-drying, as it dictates not only drying velocity, drying time, and overall energy
consumption, but also the material properties after drying. This is especially relevant in situations in which the freeze-drying process is
carried out close to the collapse temperature of the product. We, therefore, study the sublimation of ice with neutron tomography and
analyze the spatial formation of the dry space using the example of frozen cylindrical maltodextrin with drying parameters at the limit of
material collapse. We show that the sublimation front forms unique fractal structures that differ strongly from the usual form of a flat
front. Distinct dry fingers covering the sample, in addition to a fractal peripheral sublimation front, were observed. The findings are
important for the understanding of freeze-drying processes and will serve as a basis for the development of microscale models of
freeze-drying.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2021.0082
Citation (this specific file, latest version): LAPSE:2021.0082-1
Citation (this specific file, this version): LAPSE:2021.0082-1v1

DOI of Published Version:  https://doi.org/10.3390/pr8091091

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



processes

Article

Freeze-Drying with Structured Sublimation
Fronts—Visualization with Neutron Imaging

Nicole Vorhauer-Huget 1,*, David Mannes 2, Mathias Hilmer 3 , Sebastian Gruber 3,
Markus Strobl 2 , Evangelos Tsotsas 1 and Petra Foerst 3

1 Institute of Process Engineering, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany;
evangelos.tsotsas@ovgu.de

2 Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen, Switzerland;
david.mannes@psi.ch (D.M.); markus.strobl@psi.ch (M.S.)

3 Chair of Process Systems Engineering, Technical University of Munich, 80333 München, Germany;
mathias.hilmer@tum.de (M.H.); sebi.gruber@tum.de (S.G.); petra.foerst@tum.de (P.F.)

* Correspondence: nicole.vorhauer-huget@ovgu.de; Tel.: +49-391-675-1684

Received: 31 July 2020; Accepted: 30 August 2020; Published: 2 September 2020
����������
�������

Abstract: The particular structure of the sublimation front in vacuum freeze-drying of porous media
is, in most situations, not accessible at the pore scale. The classical measurement techniques access
the process only globally. Knowledge about the structure of the front, however, is necessary for
prescriptive analysis of freeze-drying, as it dictates not only drying velocity, drying time, and overall
energy consumption, but also the material properties after drying. This is especially relevant in
situations in which the freeze-drying process is carried out close to the collapse temperature of
the product. We, therefore, study the sublimation of ice with neutron tomography and analyze
the spatial formation of the dry space using the example of frozen cylindrical maltodextrin with
drying parameters at the limit of material collapse. We show that the sublimation front forms
unique fractal structures that differ strongly from the usual form of a flat front. Distinct dry fingers
covering the sample, in addition to a fractal peripheral sublimation front, were observed. The findings
are important for the understanding of freeze-drying processes and will serve as a basis for the
development of microscale models of freeze-drying.

Keywords: neutron tomography; image analysis; freeze-drying; drying front; front structure

1. Introduction

Vacuum freeze-drying is frequently applied for high-value products, such as pharmaceuticals,
biological products, and food [1–6]. It is carried out at temperatures and pressures below the triple
point of water in order to avoid undesirable capillary effects that would otherwise be associated with
the transport of liquid water, e.g., shrinking of the material. At the same time, the drying products are
conserved at low temperatures, avoiding biological deterioration or other effects such as color change,
loss of flavor, or decomposition of ingredients. Due to the application of low temperatures, freeze-drying
is indeed a very gentle method to remove moisture from products; however, at the same time, it is
very slow with comparably low throughput and high energy consumption. Understandably, it is one
of the major issues to minimize the duration of freeze-drying processes, but without compromising
product quality.

An increase in drying rate is naturally achieved via an increase in heat flux, which is supplied
for the sublimation of frozen water. However, the increase in temperature at higher heat flow rates is
very likely to cause product damage, if the glass transition temperature of the solid material or the
melting point of water is locally exceeded inside the frozen product [7–9]. Consequently, the aspired
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product quality achieved via the prevention of local material collapse represents the upper limit for
heat supply, temperature, and drying rate.

In more detail, the temperature distribution inside the frozen material, as well as the drying rates,
depends on the heat transfer kinetics through it. However, the kinetics can vary locally since the
product is essentially a mixture of frozen water, frozen solid, and dried empty pores. At the same time,
the material composition and, thus, the local heat and mass transfer properties change continuously
due to the progress of the sublimation front during drying. While frozen water has a relatively high
thermal conductivity (2.2 W·m−1

·K−1), the thermal conductivity of the dried regions can be orders of
magnitude smaller. This can have severe effects if the product contains a broad distribution of pore
sizes. Exemplarily, local overheating and a localized increase in temperature above the critical point
can occur if the larger pores dry faster than their smaller neighbors. Thus, shortly, the conflict here is to
increase drying rates within the given constraints of temperature control.

The tradeoff among product quality, throughput, and overall energy consumption is usually
found based on macroscopic measurements of temperature and pressure [10–13]. Since the process is
strongly influenced by the internal structure of the frozen product and local distribution of ice, solid,
and voids, information on the microscale would instead be required to optimize process control [14,15].
One possibility to obtain the required microscale information of the freeze-drying process is the use of
imaging and other techniques with a high spatial resolution, such as micro-computed tomography,
magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), lyo-microscopy, and scanning
electron microscopy (SEM) [16–20]. So far, only a few examples exist where spatial pore-scale
variations of the structure were investigated [7,20–22]. Nevertheless, a major constraint of imaging
techniques is generally the accessibility of the process during operation, i.e., the acquisition of in
operando data. The aim of current research, thus, is to explore possible alternative routes for the
characterization of freeze-drying processes using these techniques. Exemplarily, Siebert et al. [20]
showed via micro-computed tomography of a partially freeze-dried piece of a carrot that the vascular
tissue, with large lamellar pores penetrating the carrot piece from top to bottom, dries faster than the
surrounding tissue with significantly smaller pores. Siebert et al. [20] observed that drying occurred
from the center, with the formation of intermediate fractal dry fingers which were surrounded by an
ice ring. The authors concluded that the progress of freeze-dying must be different to literature theory,
where the ingress of sublimation occurs from the bottom toward the top or vice versa depending on the
process conditions [1,6,23]. The formation of a flat front, as a consequence of the co-current heat and
vapor fluxes, and with the result of the development of a growing homogeneous dry zone (Figure 1a),
was not observed in their case. Instead, a much more complex drying behavior was found due to the
heterogeneous structure of the tissue. Similarly, Nakagawa et al. [24] found that unique sublimation
zones can occur in frozen dextrin solution. The significance of the structure was explained based on
the sample preparation with and without annealing, the drying rate, and the glassy phase. It was
found that the fractal sublimation fronts were a result of fast freezing and omitted annealing prior to
drying. The thin and soft pore walls allowed for structure deformation when the water was removed.
The X-ray computed tomography images of Nakagawa et al. [24] revealed extremely large pores in the
non-annealed samples. This again affected the formation of the sublimation front, which was again not
flat but with distinct fractal characteristics.

These examples reveal not only the importance but also the potential of microscale studies of
freeze-drying, especially if the visualization can be carried out continuously during the process or at
least at intermittent time intervals.

In this paper, we present and discuss the application of neutron imaging for the continuous
visualization of sublimation on the microscale in a fully equipped environment. Neutron imaging is a
noninvasive, nondestructive measurement technology that allows in situ visualization. On the basis of
the high attenuation coefficient of hydrogen, neutron imaging is a very sensitive tool to detect water
during freeze-drying [25]. The attenuation coefficients of other materials, such as carbon or metals,
are much lower. Neutron imaging is, therefore, very suitable for measurements in fully equipped
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set-ups [26–28]. Although the resolution is rather low compared to X-ray micro tomography, water
detection is much more reliable due to the achieved contrast between the materials, particularly in a
complex sample environment which would be impermeable for X-rays. This enables the visualization
of distinct structures of the sublimation front in the fully equipped freeze-dryer.

Our research aims at a better understanding of the dominant effects that control drying kinetics
and product quality. The focus of this paper is, therefore, on the structure of the sublimation front
developed during primary freeze-drying of a cylindrical block of frozen maltodextrin, a polysaccharide
often used as a food stabilizer or pharmaceutical excipient. We present the experimental set-up with
which the study was realized and show and discuss the images obtained from neutron tomography
of the partially dried block. In particular, the complex transient structure of the sublimation front is
described in this paper. It is discussed in comparison to drying with a flat sublimation front (Figure 1),
as well as based on the impact of freezing and drying conditions.
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Figure 1. (a) Freeze-drying of liquid solutions with a flat sublimation front that travels from top to
bottom during drying. (b) Heterogeneous sublimation with the formation of distinct structures and
different sublimation zones.

2. Materials and Methods

2.1. Experimental Equipment and Parameters

The drying experiment was realized in a climate chamber of size 160 × 160 × 160 mm3 [27], which
was cooled by two Peltier elements. It was equipped with an individually designed depressurized
cylindrical aluminum drying chamber with an inner diameter of 25.5 mm, outer diameter of 28.75 mm,
and height of 30 mm, mounted on a rotating plate in the center of the climate chamber (Figure 2).
The design of the drying chamber was selected analogous to typical designs used in pharmaceutical
production processes, e.g., from GEA Germany, with inner diameters between 15 mm and 30 mm.
However, instead of glass, we used aluminum for the purpose of neutron imaging [25].

In this paper, we present and discuss only the morphological peculiarities of one experiment with
the focus on the structure of the sublimation front. The complete drying process was carried out in
the set-up shown in Figure 2. However, we present here only the tomography images after 11.5 h of
drying, i.e., the transient sublimation front during drying.

Evacuation of the drying chamber was realized with a rotary vane pump (Vacuubrand chemistry
hybrid pump RC6 with 6.9 m3

·h−1 suction capacity and 4 × 10−4 mbar final pressure). The pressure
was not controlled but measured with a Pirani gauge (Vacuubrand CVC300 with Vacuu View extended;
lower measuring limit 10−3 mbar) inside the exhaust pipe. The exhaust pipe was a plastic pipe with an
inner diameter of 40 mm. The Pirani sensor was located around 1.5 m away from the drying chamber.
A long distance was required in order to avoid interaction of the neutron radiation with the technical
equipment. The pressure measurement during drying revealed slightly decreasing pressure between
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0.63 mbar and 0.61 mbar. On the basis of the low volume flow rates and the low friction coefficient of
the pipe, it can be assumed that the pressure drop between the drying chamber and the Pirani sensor
was very small.

Platinum resistance thermometers (Pt-100) were installed inside the climate chamber and the
drying chamber to monitor temperatures. The chamber temperature was kept constant at −5 ◦C
during drying. The product temperature was not measured but estimated from the correlation of
Reference [29]. Assuming a negligible pressure drop between the drying chamber and the Pirani sensor,
the product temperature was −25 ◦C on the basis of this correlation. Ergo, with the given parameters,
the temperature difference between the drying front and the walls was approximately 20 K.
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Figure 2. (a) Picture of the drying chamber mounted on the sample holder inside the climate
chamber [27]. (b) Schematic sketch of the set-up. The front door is not shown; 1: drying chamber with
sample, 2: climate chamber, 3: rotating sample holder, 4: exhaust pipe to Pirani sensor and vacuum
pump, 5: ventilation, 6: Pt-100 thermometers, 7: bore holes for fixation of thermometers (during
measurement), 8: dry ice, 9: silica gel, 10: collimator [30].

The whole system was cooled at the end of the measurement (after 11.5 h) and the pressure
was elevated to 1 bar with the purpose of interrupting sublimation (at colder temperatures) for the
tomography scan presented below.

2.2. Sample Preparation

We used maltodextrin DE12 Glucidex from Roquette (France) (Table 1). Maltodextrin was solved
in deuterium oxide (heavy water, D2O), which has an attenuation coefficient about one order of
magnitude lower than H2O (neutron attenuation coefficient (at 4.1 Å) is 0.7 cm−1 for D2O and 5.4 cm−1

for H2O [31]) and allows for a better contrast between frozen water and the surrounding material in
image processing. The change in solvent was expected to have no other major impact on the physics of
the drying experiment.

Table 1. Sample preparation parameters.

Solid Content w/w Total Sample Weight (g) Freezing Temperature (◦C)

20 4.41 −78 ◦C

The sample was filled in the drying chamber in a liquid state and then frozen inside the drying
chamber. The total sample weight given in Table 1 refers to the mass of the liquid solution filled in the
drying chamber prior to freezing. We used dry ice for freezing and storing of the sample. The freezing
temperature was around −78 ◦C (temperature of the subliming dry ice). Freezing was realized outside
the imaging set-up; therefore, the freezing process could not be observed. For this purpose, the
liquid-filled drying chamber was moved into a box filled with dry ice. The dry ice was then gently
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placed around the drying chamber. Freezing, thus, occurred undirected from all sides of the sample.
However, according to the attachment of the sample to the lateral walls and the bottom, the major
freezing direction was radially from the perimeter toward the center and, at the same time, upward
from bottom to top. Due to the cylindrical geometry of the sample chamber, the sample was also
cylindrical with a diameter of 25.5 mm and height of approximately 8 mm after freezing. As discussed
below in Section 3.2 the freezing method had a significant impact on the pore structure.

2.3. Neutron Facility

The measurement was performed at the cold neutron imaging instrument ICON [30] at the SINQ
neutron source of the Paul Scherrer Institute in Villigen, Switzerland [32]. The detection was realized
with the Midi-Box [30] and with an Andor ikon-L camera featuring a 2048 × 2048 pixel chip. The field
of view was 68.79 × 68.79 mm2 and the pixel size was 33.6 µm. The scintillator was a 50-µm-thick 6LiF:
ZnS screen (from RCTRITEC, Teufen, Switzerland). At the measuring position, an L/D ratio of 343
was yielded [30]. Together with the distance l between sample and detector of approximately 40 mm,
a geometrical unsharpness of ug = l/L/D = 117 µm can be expected.

2.4. Tomography

The tomography scan was conducted after 11.5 h of drying in order to visualize the transient
sublimation front during drying. It consisted of 376 equidistant projections between 0◦ and 360◦.
With an exposure time of 15 s per projection and waiting time (for rotation, as well as shutter opening
and closing) of around 20 s, the whole scan took almost 4 h. The tomography was reconstructed using
the Software Octopus by XRE, and the visualization was done with VG Studio max. Subsequently,
Kiptool [33] was used on the reconstructed volume dataset for noise reduction.

3. Results and Discussion

3.1. Structure of the Sublimation Front

Figure 3 shows the in situ (inverse) tomography image of the freeze-dried maltodextrin cylinder
after 11.5 h of drying. The drying process was not finished when the tomography started, such that the
sample contained still a significant amount of water, which was not quantified. The image shows the
transient structure of the sublimation front with different regions, as explained below.
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Figure 3. Visualization of the reconstructed three-dimensional (3D) tomography image of the frozen and
partially dried maltodextrin sample with vertical cut through the center. The dark fingers penetrating
the sample in the center correspond to dry regions.

Firstly, it is clearly visible that the sample itself had a heterogeneous structure. The loose parts at
the upper periphery of the sample correspond to detached maltodextrin pieces which might have been
a result of sample shrinking during drying (e.g., Reference [9]). However, possible collapse phenomena
would have occurred on smaller length and time scales which were not resolved with the utilized
neutron imaging technique. Apart from that, it can also be seen that the surface of the sample was not
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flat. It had a concave structure, with greater heights at the periphery and in the center. It is obvious
that this shape was a result of the freezing process.

The internal surface is visualized by a vertical cut through the cylindrical cake in Figure 3.
It exhibits different gray values, which correspond to different material compositions. As heavy water
attenuated neutron radiation, water-saturated regions appear in light gray in the inverse tomography
image. Moreover, maltodextrin appears in light gray. In contrast to that, empty regions appear in black
(outside of the sample) or in dark gray (inside of the sample). It is, thus, possible to distinguish the dry
regions from the water-saturated regions. The different dark-gray regions found inside the sample
correspond to different structural peculiarities that are further studied below. The most prominent
characteristics are the dark-gray fingers that penetrate the sample in the center. Since these fingers
represent the dry zones, they are also named sublimation fingers. The dark-gray regions at the perimeter
of the sample in Figure 3 additionally indicate peripheral drying. The shrinkage and deformation of
the sample obviously enabled the detachment of the sample from the lateral walls, resulting in an
increase of the sublimation interface. As a major result of this, different sublimation zones developed
(Figure 4).
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direction of the dry zones. 1: accumulation of maltodextrin inside the peripheral maltodextrin belt; 2:
peripheral sublimation zone with fractal front; 3: ring of frozen water and maltodextrin; 4: sublimation
fingering zone.

In Figure 4, the most striking observation is clearly the lamellar dark-gray zone in the center of the
sample. The sublimation of water obviously resulted in the formation of a large dry region. The region
outside of the blue circle in Figure 4a is expected to have a high maltodextrin content and small (dry)
pores which are not resolved with the neutron imaging set-up (with a pixel resolution of 33.6 µm).
This region is named the peripheral maltodextrin belt. Based on the assumption of a radial temperature
gradient with high temperature at the wall and lower temperatures inside the sample, it can strongly
be expected that the maltodextrin belt was completely dry. The accumulation of maltodextrin in this
region might have been reinforced by material shrinkage and possible collapse phenomena.

Connected to the peripheral maltodextrin belt is the peripheral sublimation zone. It is the zone of
peripheral sublimation, characterized by a heterogeneous (fractal) sublimation front. The occurrence of
this zone was possible because of the detachment of the sample from the side walls and the possibility
of also removing water from the shell surface of the maltodextrin cylinder.

The third region is located between the peripheral sublimation front and the dry fingers in the
center of the sample. It is ring-shaped and consists mainly of frozen heavy water and maltodextrin.
This region is called the frozen ring. It must have contracted laterally with progression of the peripheral
sublimation front and the dry fingers corresponding to the sublimation fingering zone (zone 4) in the
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center of the sample. When the drying experiment was stopped after 11.5 h, the fingers covered a
greater fraction of the sample than the peripheral dry region. Continuation of the drying process
beyond 11.5 h would have probably resulted in the merging of the peripheral sublimation zone and the
sublimation fingering zone and, thus, the disappearance of the frozen ring.

Figure 5 contains several horizontal cross-sectional images of the sample at different heights. These
images were extracted from the 3D volume reconstruction on the basis of the neutron tomographic
measurement (Figure 3). Due to the irregular shape of the sample surface, the first two images in
Figure 5 mainly show the peripheral edge and the center peak. The sample partly detached from
the bottom shelf, most probably due to material shrinkage. This is clearly visible in the last image of
Figure 5 (position 0.2 mm). Figure 5 further indicates that the sample also dried from the bottom side,
where dark-gray regions are visible at position 0.2 mm.
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heights. The given positions are measured from the footprint of the sample.

In brief, Figure 5 also indicates a complex drying process in the vertical direction. The different
dry fractions, corresponding to the dark-gray regions, vary strongly in the vertical direction. As can be
identified, the fraction of dry fingers in the center of the sample is larger at the top side of the sample



Processes 2020, 8, 1091 8 of 12

(at higher position), whereas only a few fingers penetrate the sample to the bottom. Thus, Figure 5
reveals the formation of transient regions where the above definition of drying zones (in horizontal
direction) is expected to change with drying time.

The height-dependent saturation of the sample can be estimated from the horizontal image stack
shown in Figure 5. It is defined as the ratio of the sum of all white pixels of each image to the total
number of pixels of the regarded image. The result is shown in Figure 6. The saturation was calculated
from the tomography images after binarization with a global threshold of 0.4. Following discussions
referring to the shape of the sample and shrinkage during drying, some bottom and top layers were
excluded from this estimation (refer also to Figure 5). Precisely, the upper approximately 4.2 mm of the
sample is not analyzed in Figure 6; from the lower part, 0.72 mm (measured from the footprint of the
sample) was excluded. According to this, the curve in Figure 6 represents only the cylindrical part of
the sample between these positions. This is illustrated by the figure insets.
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Figure 6. Variation of the saturation with height of the sample after 11.5 h of drying. The image at
the bottom side refers to position 0.72 mm, and the image at the top side refers to position 5.47 mm
(measured from the sample footprint). In total, 138 images were considered (with distance 0.0344 mm
between them).

As can be seen, the saturation decreases almost linearly with height over most of the evaluated
part of the sample. A peak with maximum water content is found at position 1.4 mm. Left from
the peak, the saturation also decreases toward the bottom side. As shown by the inset, the bottom
side dried mainly peripherally. The different slopes of the two branches of the curve indicate that
drying mainly proceeded from the top side. The bottom side instead remained connected to the drying
chamber wall in the center of the sample, from where the heat for sublimation was supplied. As a
result, the top side had approximately the same saturation as the bottom side, although very different
drying behavior is revealed by the inset images in Figure 6.

3.2. Discussion

The development of sublimation zones was already described in Reference [34], where brick and
glass bead beds were studied. Here, the deviation from the flat front was explained by the increase in
temperature and the presence of a heterogenous pore structure in the packed beds, i.e., with regions of
primarily smaller or larger pores. This explanation becomes reasonable if the drying of the regions
with larger pores is assumed to be limited by heat transfer mechanisms. Thus, when the heat flux was
increased by higher temperature gradients, more water could most probably be sublimed and removed
from the larger pores. In the regions with smaller pores, mass transfer would have instead been limited,
resulting in some pore ice remaining. A similar explanation would hold for our observations if it is
assumed that the pore size distribution was heterogeneous with larger pores in the center and smaller
pores at the periphery of the sample.

Following References [21,24,35–38], the freezing process is responsible for the porous structure
of the frozen dry cake, as this is formed by the ice crystals of water and the freeze concentration of
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maltodextrin around the ice crystals. Understandably, smaller ice crystals can form smaller pores,
whereas larger pores are a result of large ice crystals. Consequently, the most important parameters for
the formation of the pore structure are related to the crystallization process during the freezing step
prior to drying. In addition to the solid concentration and temperature, the available number of nuclei,
the degree of supercooling, the mobility of the water molecules, and the freezing rate also affect this
process. As a rule of thumb, slow freezing occurs if the freezing rate is lower than 0.5 ◦C·min−1. In this
situation, a lower number of nuclei result in the formation of large water ice crystals, whereas freezing
rates higher than 5 ◦C·min−1 are characterized by a higher number of nuclei and smaller ice crystals [6].
We did not measure the freezing rate. However, with good accuracy, we can assume that the freezing
rate was initially much higher than 5 ◦C·min−1. We suppose that freezing of the sample occurred mainly
radially from the periphery in contact with the colder wall toward the center of the cylindrical sample,
as well as from the bottom side. According to Reference [35], high thermal gradients (as assumed at the
start of freezing in our experiment) can result in the formation of a solidification front. Furthermore,
we suppose that the freezing velocity decreased with increasing width of the propagating solid ring, as
the sample-sided heat transfer coefficient and thermal conductivity impaired the solidification of the
sample due to the freezing of water and maltodextrin. Such a freezing behavior can have an effect
on the pore structure, such that smaller pores are located at the periphery, where the initial freezing
rate is higher. Larger pores instead can be expected in the center [35,38–40] as a result of decelerating
freezing velocity. As shown in Figure 7, the pore structure in our sample strongly resembles the
described freezing behavior. In addition, according to Reference [24], the larger pores might have been
mechanically unstable since no annealing step was provided. It could, thus, be surmised that these
pores additionally widened during drying as they collapsed with each other.
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Figure 7. The photograph of the partially dried sample after 11.5 h (top view) reveals a star-like pore
structure with long lamellar pores in the center and a rosette with smaller pores at the periphery.

The multimodal pore size distribution and the spatial variation of pore sizes can explain the
observations in Figures 3 and 4. The tomographic images suggest that the center region (in dark gray)
dried faster than the other regions (in light gray). The fraction of the peripheral sublimation zone appears
much smaller than the fraction of the sublimation fingering zone in the sample center in these images.
This could be explained with the presence of large pores in the center of the sample. Such pores would
allow higher mass transfer rates and initially better heat transfer properties. The presence of large pores
might have resulted in a faster progress of the sublimation front inside the individual fingers, whereas
drying in the smaller pores stagnated. This is in agreement with the findings of Nakagawa et al. [24],
where the larger pores were associated with the more rapid removal of water.

In summary, this outcome indicates that the intermediate shape of the sublimation front was
dictated by the local drying kinetics and, thus, by the pore structure. Fractality of the sublimation
front structure, as a result of the progressive invasion of the gas fingers, might have additionally been
enhanced by the high heat transfer rates that were realized by the high thermal gradients. Our study
is, therefore, an example of a process with extreme freezing and drying conditions, which (i) allow the
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formation of large pores, and (ii) allow much faster progression of the sublimation front inside the
larger pores. As already recognized from the presented images, the demanding drying conditions can
lead to a very different drying behavior than usually described in the literature. Further studies shall,
therefore, consider the limits and potential of such invasion fronts.

4. Summary and Outlook

We showed and discussed that, with neutron imaging, structuring of the sublimation front during
freeze-drying can be visualized in a fully equipped environment. The experimental set-up allowed in
situ visualization of the process and revealed a complex structure of the sublimation front. We could
demonstrate that the conditions for the formation of a flat sublimation front were not fulfilled in our
case. Our results clearly support the findings of Nakagawa et al. [24]. Similar to Reference [24], where
freeze-drying of dextrin was studied, we found that the frozen maltodextrin solution exhibited very
heterogeneous drying with the result of the formation of different transient regions. This outcome
was explained by the dependence of drying on the pore structure, which was a result of the freezing
process prior to drying. As in Reference [24], the freezing rates were also high and annealing was
omitted in our case. Furthermore, drying was conducted at relatively high temperatures. As discussed
in References [24,34], such conditions are in favor for the formation of sublimation zones that deviate
significantly from the simple structure of a flat front. In summary, the freezing and drying conditions
resulted in penetrating dry fingers in our experiment. The dry fingers had a lamellar structure and
covered the sample from top to bottom. In addition, a radial drying front was initiated along the
perimeter of the sample. The tomographic images suggested that the fingers in the center of the sample
dried much faster than the radial front from the perimeter.

Although the drying of a single vial was studied here, it can be expected that similar structures
are likely to occur in batch processes where the freezing and drying conditions of the individual vials
are usually spatially distributed. The studied example can, therefore, be seen as a starting point for the
evaluation of the pore-scale processes at the limit between high drying rates and material integrity.

Similar conclusions as in this paper were drawn from neutron imaging of frozen particle beds,
where several open questions were addressed in References [41,42]. On the basis of these studies,
we will investigate more deeply the drying of frozen blocks and particle packings with different
experimental technologies and pore network modeling [43].
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