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Abstract: In response to the high demand of the operation reliability and predictive maintenance,
health monitoring and fault diagnosis and classification have been paramount for complex industrial
systems (e.g., wind turbine energy systems). In this study, data-driven fault diagnosis and
fault classification strategies are addressed for wind turbine energy systems under various faulty
scenarios. A novel algorithm is addressed by integrating fast Fourier transform and uncorrelated
multi-linear principal component analysis techniques in order to achieve effective three-dimensional
space visualization for fault diagnosis and classification under a variety of actuator and sensor
faulty scenarios in 4.8 MW wind turbine benchmark systems. Moreover, comparison studies are
implemented by using multi-linear principal component analysis with and without fast Fourier
transform, and uncorrelated multi-linear principal component analysis with and without fast Fourier
transformation data pre-processing, respectively. The effectiveness of the proposed algorithm is
demonstrated and validated via the wind turbine benchmark.

Keywords: fault diagnosis; fault classification; fast Fourier transform (FFT); multi-linear principal
component analysis (MPCA); uncorrelated multi-linear principal component analysis (UMPCA);
additive white Gaussian noises (AWGN); wind turbine systems

1. Introduction

With the development of advanced technologies to increase production, modern industrial
systems become more complex and expensive. The components of industrial systems are prone to
malfunction, which could bring unanticipated economic costs due to unscheduled shutdown and
repair/maintenance. Therefore, it is of particular interest to design effective fault diagnosis and fault
classification approaches to automatically monitor the behaviour of industrial systems and prevent
damage caused by unexpected faults. Motivated by environmental considerations and the shortage of
fossil fuels, wind turbines, as one of renewable energy sources, have contributed to a large portion of
the world’s power production [1,2]. As a clean energy, wind energy has been significantly exploited
via the onshore and offshore wind turbines. By the end of 2019, the overall installation capacity
of all wind turbines worldwide reached 651 GW, and European countries contributed to 205 GW.
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Moreover, wind power contributed 15% electricity generation in Europe and 20% electricity production
in the UK in 2019 [3].

Wind farms consisting of hundreds of wind turbine units are being established in many different
locations around the country, for instance, in offshore, arctic, and desert regions. In recent years,
some different topologies of generators, such as doubly fed induction generators (DFIGs) and permanent
magnet synchronous generators (PMSGs), are widely utilized in wind turbine systems. However,
like any other industrial systems, wind turbines are sophisticated and prone to faults. It is observed
that the operation and maintenance costs for onshore and offshore wind turbines make up 10~15%
and 20~35%, respectively, of the total life costs of wind energy conversion systems. Furthermore,
wind turbine systems are complex and expensive; therefore, there is a high demand for improving
the reliability and availability, and reducing unscheduled down time in wind turbine industries [4].
Motivated by the above, monitoring and fault diagnosis for wind turbine systems have received wide
attention in wind turbine industries [5–9].

Fault diagnosis approaches can be classified into model-based, signal-based, and knowledge-based
methods. The model-based fault diagnosis approach requires a well-established model of practical
processes developed by either physical principles or systems identification techniques. By checking the
residual between the model output and the real-time process output, the decision for fault diagnosis
can be made [10,11]. Signal-based fault diagnosis is relying on appropriate sensors, whose locations
are normally installed in plant components. The faults in the process are reflected in the measured
signals, and the time-domain, frequency-domain, or time-frequency-domain techniques are used to
extract features. By checking the consistency between the features of the real-time process and the
prior knowledge on the symptoms of the healthy system, a diagnostic decision can be made [12].
Knowledge-based approaches utilize a large volume of historic data available to train universal
estimations or approximations on behalf of implementing to recognize faulty conditions [13]. It is worthy
to point out that the knowledge-based approach more depends on the data processing and data-based
learning, including processing historical data and real-time data. Therefore, the knowledge-based fault
diagnosis approach is often called the data-driven approach [14,15].

Machine learning techniques play an important role for data-driven fault diagnosis. Generally
speaking, machine learning techniques can mainly be classified into three categories, which are
unsupervised, semi-supervised, and supervised learning algorithms, respectively [16]. Unsupervised
machine learning aims to learn structure in the data, such as sparse or low-dimensional feature
representation [17–20]. According to the tasks of the supervised machine learning, such as prediction
and classification, the aim is to learn a knowledge base, on the basis of the known or labelled examples
of the target pattern [21,22]. Semi-supervised machine learning represents a class of algorithms that
include both supervised and unsupervised tasks [23–25].

It is noted that the dataset generally has a great volume of data with existence in high-dimensional
space. Feature extractions thus play an important role in data-driven fault diagnosis [26–29] as well as
dimensionality reduction for the samples/datasets. The geometric distribution of the datasets in
high-dimensional space can be analyzed in order to effectively extract significant features. There are
several methods to solve this problem and one of the most popular techniques is the principal
component analysis (PCA) algorithm [30–34]. The PCA, as an unsupervised learning technique,
is a statistical procedure that utilizes an orthogonal transformation to convert a set of correlated
variables into linearly uncorrelated variables, namely principal components [35]. The number of
principal components should be generally less than the number of the original variables [36–38].
The transformation in the PCA is carried out in a way so that the first principal component has the
largest possible variance, and each succeeding component in turns has the highest variance possible
under the constraint that it is orthogonal to the preceding components [39]. As a result, the PCA has
become a popular tool for fault detection and fault classification on the basis of a large volume of
high-dimensional experimental samples/datasets [40–42].
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A wind turbine system is a complex industrial system, and the operation condition is harsh.
Therefore, the conventional PCA technique may become invalid for fault diagnosis and fault
classification in wind turbine systems subjected to multiple faults. As a result, there is a strong
motivation to develop advanced PCA-based fault diagnosis and classification techniques for wind
turbine systems. In this study, uncorrelated multi-linear principal component analysis (UMPCA) is
integrated with FFT data preprocessing to form an algorithm, which is applied to a 4.8 MW wind
turbine benchmark system for fault diagnosis and classification. Furthermore, comparison studies
are carried out to demonstrate the effectiveness of the proposed algorithm by comparing with the
known algorithms.

The rest of this paper is organized as follows: In Section 2, the fundamentals of the 4.8 MW
wind turbine benchmark model are introduced, and actuator and sensor faults of wind turbines are
explained. In Section 3, An algorithm integrated with FFT and UMPCA techniques is addressed for
dimensionality reduction and feature extraction. Experimentation designs are proposed in terms of
different topologies of the actuator and sensor faults of wind turbines in Section 4. Simulation studies
are illustrated in Section 5. In order to demonstrate the effectiveness of the addressed FFT plus UMPCA
method, the simulated studies of the fault diagnosis and classification for wind turbines respectively
by using MPCA, FFT plus MPCA, and UMPCA are also discussed. Finally, this paper is ended by
summarizing the conclusions in Section 6.

2. Wind Turbine Benchmark Systems

A wind turbine is a complex electro-mechanical system that converts wind energy to electrical energy.
Most wind turbines are horizontal three–bladed unites, which are composed of blades, low-speed and
high-speed shafts, gearbox, generator, yaw, tower, brake, and controller, and so forth. A typical structure
of the wind turbine is depicted by Figure 1. The wind flow in the nature drives the blades and rotor to
rotate, converting wind energy to mechanical energy. The rotor drives the generator via the high-speed
shaft so that the mechanical energy is converted into electric energy. The pitch angle is controlled to adapt
to the varying wind speed to achieve the desired output power. The functionality of the yaw system
contributes to align the turbine with the direction of the wind detected by the anemometer.
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A benchmark model of a 4.8 MW wind turbine system was developed in [43,44], which has
been widely used for the algorithm validation in control and fault diagnosis. The definitions of the
parameters of the benchmark model are shown in Table 1.

Table 1. Parameters of the 4.8 MW wind turbine benchmark system [43,44].

Symbol Definition Symbol Definition

βr Pitch angle Reference θ∆ Torsion Angle
τg,r Generator Torque Reference ζ Damping Ratio
β Pitch Angle Bdt Torsion Damping Coefficient
ωg Generator Rotating Speed Bg Generator External Damping
ωr Rotor Angular Speed Br Rotor External Damping
τg Generator Torque Cq Torque Coefficient
αgc Generator and Converter Parameter Jg Generator Moment of Inertia
ηdt Efficiency of Drive Train Jr Rotor Moment of Inertia
λ Tip-Speed-Ratio Kdt Torsion Stiffness
ωn Natural Frequency Ng Gear Ratio
ρ Air Density R Rotor Radius

The diagram of the 4.8 MW wind turbine benchmark system is shown by Figure 2, which is
composed of the blade and pitch subsystem, drive train subsystem, generator and convertor subsystem,
and controller, respectively.
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Figure 2. Block diagram of the 4.8 MW benchmark wind turbine model.

The wind turbine benchmark system has an external input (e.g., varying wind speed), two control
reference inputs composed of the reference pitch angle (βr) and generator torque reference (τg,r).

The wind speed is shown in Figure 3, from which one can see the wind speed ranges from 5 to
20 m/s, with the peak spike over 25 m/s, showing a good coverage of the operation conditions under
a healthy situation.
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Figure 3. Wind speed sequence used in the benchmark wind turbine under fault-free condition.

In this study, we focus on the actuator faults and sensor faults of the wind turbines. Suppose that
u(t) is the control input, fA(t) is the actuator fault, and uR(t) is the actuation signal applied to the
system; y(t) is the measured output, fS(t) is the sensor fault, and yR(t) is the output from the system.
It is clear that uR(t) = u(t) + fA(t), and y(t) = yR(t) + fS(t). As a result, the faults fA(t) and fS(t)
will divert the performance of the system states and outputs from the normal. The topologies of the
actuator faults and sensor faults are depicted by Figure 4.
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and (b). Sensor faults, respectively.

3. Methodology

3.1. Data Set Construction

The 4.8 MW wind turbine benchmark system has four measurement outputs, namely the pitch
angle β, the generator rotating speed ωg, the rotor angular speed ωr, and generator torque τg. By using



Processes 2020, 8, 1066 6 of 32

the measurement outputs above, the data set recorded from each measurement, denoted by βs, ωgs, ωrs,
and τgs, can be obtained as follows:

βs =


βs11 βs12 · · · βs1γ

βs21 βs22 · · · βs2γ
...

...
. . .

...
βsN1 βsN2 · · · βsNγ

 ∈ RN×γ, ωgs =


ωgs11 ωgs12 · · · ωgs1γ

ωgs21 ωgs22 · · · ωgs2γ
...

...
. . .

...
ωgsN1 ωgsN2 · · · ωgsNγ

 ∈ RN×γ

ωrs =


ωrs11 ωrs12 · · · ωrs1γ

ωrs21 ωrs22 · · · ωrs2γ
...

...
. . .

...
ωrsN1 ωrsN2 · · · ωrsNγ

 ∈ RN×γ, τgs =


τgs11 τgs12 · · · τgs1γ

τgs21 τgs22 · · · τgs2γ
...

...
. . .

...
τgsN1 τgsN2 · · · τgsNγ

 ∈ RN×γ

(1)

where N is the number of the measurement points recorded, and γ is the number of the measurement
scenarios. Specifically, for each measurement output, the dataset is recorded under γ operation
scenarios (including the fault-free condition, and various faulty conditions), and N measurement
points are documented at each scenario. As a result, the original data set can be described by:

X =


βs

ωgs

ωrs

τgs

 ∈ RN×γ, (2)

where N = 4N.

3.2. Data Set Pre-Processing

In order to enhance the feature extraction capability, the time-domain data is pre-proceeded to
generate frequency-domain data with a reshaping expression.

According to the original data-set model X defined in (2), we can rewrite it as:

X =
[

X1 X2 · · · Xγ
]
=


x11 x12 · · · x1γ

x21 x22 · · · x2γ
...

...
. . .

...
xN1 xN2 · · · xNγ

, (3)

where Xi =
[

x1i x2i · · · xNi

]T
, i = 1, 2, · · · , γ, and [·]T represents the transpose of the vector [·].

The Fourier transform of Xi can be calculated as follows:

Xi(k) =
N∑

t=1

xtie
− j2π

N
k(t−1), (4)

where k = 0, 1, 2, · · · , N − 1.
In terms of (4), the discrete-time Fourier transform can transform a sequence of N numbers

x1i x2i · · · xNi into a sequence of complex numbers Xi(0), Xi(1), · · · , Xi
(
N − 1

)
, which can also
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be denoted by the symbols f (1)i , f (2)i , · · · , f (N)
i . By arranging the sequence of the complex numbers as

a vector, we have: 
Xi(0)
Xi(1)

...
Xi

(
N − 1

)
 = Ω



x1i
x2i
x3i
...

xNi


:=


f (1)i
f (2)i

...

f (N)
i


, (5)

where:

Ω =



1 1 1 · · · 1

1 e
− j2π

N e
− j4π

N · · · e
− j2(N−1)π

N

...
...

...
. . .

...

1 e
− j2(N−1)π

N e
− j4(N−1)π

N · · · e
− j2(N−1)2π

N


, (6)

and Ω is called the Fourier transform base. It is clear that i = 1, 2, · · · , γ in (5).
The Fourier transform above can be calculated by using the fast Fourier transform algorithm [45,46].

The fast Fourier transform algorithm treats the columns of a matrix as vectors and returns the Fourier
transform vector for each column, leading to a Fourier transform matrix.

Taking magnitude and reshaping the vector in (5), one can obtain the matrix expression as follows:

Fi =



∣∣∣∣ f (1)i

∣∣∣∣ ∣∣∣∣ f (r+1)
i

∣∣∣∣ · · · ∣∣∣∣ f ((l−1)r+1)
i

∣∣∣∣∣∣∣∣ f (2)i

∣∣∣∣ ∣∣∣∣ f (r+2)
i

∣∣∣∣ · · · ∣∣∣∣ f ((l−1)r+2)
i

∣∣∣∣
...

...
. . .

...∣∣∣∣ f (r)i

∣∣∣∣ ∣∣∣∣ f (2r)
i

∣∣∣∣ · · ·

∣∣∣∣∣ f (N)
i

∣∣∣∣∣


∈ Rr×l, i = 1, 2, · · · , γ, (7)

where r indicates the number of rows, l stands for the number of columns,
∣∣∣(·)∣∣∣ represents the absolute

value or magnitude of the complex number (·), and N = lr. By determining two parameters r and l,
the frequency-domain data of the wind turbine can be described as follows:{

F | F=[F1, F2,. . . ,Fi,. . . , Fγ]
}
∈ Rr×l×γ. (8)

Therefore, the dataset has been reformatted as a tensor data expression. From (8), one can see the
dataset has γ samples, and the size of each sample is r× l.

The reshaping process of the obtained data set above can be described by the flowchart in Figure 5.

From this figure, one can see the data vector (e.g., Xi =
[

x1i x2i · · · xNi

]T
, i = 1, 2, · · · , γ)

is projected into a frequency-domain space relying on the Fourier transform base, and the tensor
representation is further generated in terms of (7) and (8).
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3.3. Dimensionality Reduction and Feature Extraction for Wind Turbines by Using the Uncorrelated
Multi-Linear Principal Component Analysis Method

The multi-linear principal component analysis (MPCA) technique [47], which belongs to one of
the unsupervised machine learning algorithms, is usually to cope with the tensor expression dataset.
However, some of the correlations of the principal components amongst the projected directions are
neglected to some extent, which means the final features obtained by MPCA would be redundant.
In contrast to other multilinear PCA techniques, such as MPCA, two-dimensional PCA, and so
forth, UMPCA seeks a tensor-to-vector projection, which can capture the maximum number of the
uncorrelated multilinear features [39,48]. In this paper, UMPCA is thus used to extract the significant
features of the 4.8 MW benchmark wind turbines.

The n-mode product of a tensor F by a matrix U is denoted by F ×n U [39,48].
Suppose the dataset

{
zi(p), i = 1, 2, . . . , γ

}
represents the pth principal components

(e.g., low-dimensional features), where zi(p) is the projection of the ith data sample Fi by the p-th

elementary multi-linear projection (EMP) Up =

{(
u(n)

p

)T
, n = 1, 2, . . . , Q

}
, where Q represents the

number of projection directions. As a result, the formula of zi(p) can be described as follows [39,48]:

zi(p) = Fi ×
Q
n=1

{(
u(n)

p

)T
, n = 1, 2, . . . , Q

}
, i = 1, 2, . . . , γ. (9)

The objective of the UMPCA methodology is to seek Up that projects Fi into a feature subspace to
determine a tensor-to-vector projection, whose functionality will guarantee the implementation for the
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maximum direction of the original data sets, and the significant features extracted are uncorrelated.
Based on the above, the variance can be calculated by [39,48]:

S
z
Tp

=

γ∑
i=1

[
zi(p) − zp

]2
, (10)

where zp =
γ∑

i=1

zi(p)
γ . Let hp denote the pth coordinate vector, describing the training sample in the pth

EMP space. The ith component of hp equals the p-th component of zi, that is, hp(i) = zi(p).

In order to determine a set of projection directions Up =

{(
u(n)

p

)T
, n = 1, 2, . . . , Q

}
to maximize

the variance and generate uncorrelated features, the cost function can be given as follows [39,48]:{(
u(n)

p

)T
, n = 1, 2, . . . , Q

}
= argmaxSz

Tp

s.t.
{
u(n)

p

}T
·u(n)

p = 1, and
(hp)

T
hq

||hp ||·||hq ||
= δpq, (p, q = 1, 2, . . . , P),

(11)

where P is the dimensionality of the projected space, and:

δpq =

{
1, i f p = q
0, otherwise.

(12)

In terms of the background of the benchmark wind turbine in Section 2 and the fundamental
principle of the UMPCA [39,48] mentioned above, the specific procedures of the significant feature
extraction for wind turbines can be illustrated as follows.

Step 1: Explore the first projection direction U1 =

{(
u(n)

1

)T
, n = 1, 2, . . . , Q

}
by maximizing Sz

T1
.

Step 2: Compute the second project direction u2 =

{(
u(n)

2

)T
, n = 1, 2, . . . , Q

}
by maximizing Sz

T2

subjected to hT
2 h1 = 0.

Step 3: Determine the third project direction u3 =

{(
u(n)

3

)T
, n = 1, 2, . . . , Q

}
by maximizing

S
z
T3

subjected to hT
3 h2 = 0.

Step 4: Calculate the p-th project direction up =

{(
u(n)

p

)T
, n = 1, 2, . . . , Q

}
, p = 4, · · · , P, by maximizing

S
z
Tp

subjected to hT
p hq = 0, when q = 1, 2, · · · , p− 1.

Step 5: Based on all the obtained project directions from the steps above, the final features can be
obtained by:

zi = Fi ×
Q
n=1

{(
u(n)

p

)T
, n = 1, 2, . . . , Q

}P

p=1
, i = 1, 2, . . . , γ. (13)
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3.4. FFT Plus UMPCA Algorithm

The specific procedures of the dimensionality reduction and feature extraction based on FFT plus
the UMPCA technique for wind turbines can be described as follows:

Algorithm 1

Input: Date set
{
F

∣∣∣∣ F =
[
F1, F2, . . . , Fi, . . . , Fγ

]}
.

Output: Significant features

zi = Fi ×
Q
n=1

{(
u(n)p

)T
, n = 1, 2, . . . , Q

}P

p=1
, i = 1, 2, . . . , γ.

(i) Step 1: Collect the original data set X by (2)
(ii) Step 2: Pre-process the data set by using Fourier transform base to construct the tensor dataset by (7)

and (8).
(iii) Step 3: Calculate the projection directions U1, U2, · · · , UP;
(iv) Step 4: Project the FFT data space into a vector subspace by using

zi = Fi ×
Q
n=1

{(
u(n)p

)T
, n = 1, 2, . . . , Q

}P

p=1
, i = 1, 2, . . . , γ. As a result, for the tensor dataset F ,

the resultant UMPCA feature vector z can be given as z = F ×Q
n=1

{(
u(n)p

)T
, n = 1, 2, . . . , Q

}P

p=1
.

4. Experimentation Designs

4.1. Brief Description and Definition

In this section, in order to validate the applicability of the proposed methodology for fault
diagnosis and fault classification in wind turbine systems, five different topologies of experimentation
are addressed subsequently. Furthermore, actuator and sensor faults are simultaneously considered in
each group of experiment. The size of each data set is 1000 × 440,001.

For the simplicity of the description for the subsequent experimentations, we define some
abbreviations for different types of faulty conditions in two actuators and four sensors. ‘A1′ represents
the first actuator relevant to the pitch angle reference (βr); ‘A2′ stands for the second actuator relevant to
the generator torque reference (τg,r); ‘S1′ is the first sensor to measure the pitch angle (β), ‘S2’ indicates
the second sensor to measure the generator rotating speed (ωg), ‘S3′ stands for the third sensor to
measure the rotor angular speed (ωr), and ‘S4’ defines as the fourth sensor to measure the generator
torque (τg). The detailed information is shown in Table 2.

Table 2. Symbols and acronyms of the actuator and sensor for 4.8 MW wind turbines.

Actuator Sensor

Symbol βr τg,r β ωg ωr τg
Acronym A1 A2 S1 S2 S3 S4

In addition, ‘FF’ indicates fault free. ‘EL’, ‘SWD’, and ‘RN’ represent effectiveness losses, sinusoidal
wave disturbances, and random numbers, respectively. Their combination, including ‘EL + SWD’,
‘EL + RN’, ‘SWD + RN’, and ‘EL + SWD + RN’, are also taken into consideration.

The other abbreviations of the parameters for faulty signals are defined as follows,
whose specifications are explained in Table 3:

(1) ‘EL’: Percentage (P);
(2) ‘SWD’: Amplitude (A) and Bias (B), namely A/B
(3) ‘RN’: Mean (M), and Variance (V), namely M/V;



Processes 2020, 8, 1066 11 of 32

(4) ‘EL + SWD’: Percentage (P), Amplitude (A), and Bias (B), namely P/A/B;
(5) ‘EL + RN’: Percentage (P), Mean (M), and Variance (V), namely P/M/V;
(6) ‘SWD + RN’: Amplitude (A), Bias (B), Mean (M), and Variance (V), namely A/B/M/V;
(7) ‘EL + SWD + RN’: Percentage (P), Amplitude (A), Bias (B), Mean (M), and Variance (V),

namely P/A/B/M/V.

Table 3. Operation Conditions, Parameters, and Acronyms for 4.8 MW Wind Turbine Systems.

Operation Conditions Abbreviations Parameters Acronyms

Fault Free FF - -

Effectiveness Losses EL Percentage P

Sinusoidal Wave
Disturbances SWD Amplitude & Bias A/B

Random Numbers RN Mean & Variance M/V

Effectiveness Losses +
Sinusoidal Wave

Disturbances
EL + SWD Percentage +

Amplitude + Bias P/A/B

Effectiveness Losses +
Random Numbers EL + RN Percentage + Mean +

Variance P/M/V

Sinusoidal Wave
Disturbances + Random

Numbers
SWD + RN Amplitude + Bias +

Mean + Variance A/B/M/V

Effectiveness Losses +
Sinusoidal Wave

Disturbances + Random
Numbers

EL + SWD + RN Amplitude + Bias +
Mean + Variance P/A/B/M/V

4.2. Experimental Statement

In the experiment, the fault signals are shown in Table 4. For instance, the effective loss (EL)
of every single actuator or sensor is selected as 1%, 2%, 3%, . . . , 19% and 20% of the normal value,
respectively, which means there are 20 faulty cases for the typical fault EL. More detailed information
on other faults can refer to Table 4.

Table 4. Actuator and sensor fault signals: Experimentation design.

Faulty
Conditions

Name of
Parameters

Actuator and Sensor Faults

Actuator Sensor

βr τg,r β ωg ωr τg

EL P 1.00–20.00%

SWD
A 0.01–0.20 5.20–9.00 0.01–0.20 5.20–9.00 0.01–0.20 5.20–9.00
B 0.10–2.00 501–520 0.10–2.00 50.10–52.00 0.01–0.20 501–520

RN
M 0.10–2.00 1.00–20.00 0.10–2.00 1.00–20.00 0.01–0.20 1.00–20.00
V 0.20–2.10 91.00–110.00 0.20–2.10 1.10–2.05 0.01–0.20 91.00–110.00

EL + SWD P/A/B

βr: P/A/B—From 1.00%/0.01/0.10 to 20.00%/0.20/2.00;
τg,r: P/A/B—From 1.00%/5.20/501 to 20.00%/9.00/520;
β: P/A/B—From 1.00%/0.01/0.10 to 20.00%/0.20/2.00;
ωg: P/A/B—From 1.00%/5.20/50.10 to 20.00%/9.00/52.00;
ωr: P/A/B—From 1.00%/0.01/0.01 to 20.00%/0.20/0.20;
τg: P/A/B—From 1.00%/5.20/501 to 20.00%/9.00/520.

EL + RN P/M/V

βr: P/M/V—From 1.00%/0.10/0.20 to 20.00%/2.00/2.10;
τg,r: P/M/V—From 1.00%/1.00/91 to 20.00%/20.00/110;
β: P/M/V—From 1.00%/0.10/0.20 to 20.00%/2.00/2.10;
ωg: P/M/V—From 1.00%/1.00/1.10 to 20.00%/20.00/2.05;
ωr: P/M/V—From 1.00%/0.01/0.01 to 20.00%/0.20/0.20;
τg: P/M/V—From 1.00%/1.00/91 to 20.00%/20.00/110.
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Table 4. Cont.

Faulty
Conditions

Name of
Parameters

Actuator and Sensor Faults

Actuator Sensor

βr τg,r β ωg ωr τg

SWD + RN A/B/M/V

βr: A/B/M/V—From 0.01/0.10/0.10/0.20 to 0.20/2.00/2.00/2.10;
τg,r: A/B/M/V—From 5.20/501/1.00/91 to 9.00/520/20.00/110;
β: A/B/M/V—From 0.01/0.10/0.10/0.20 to 0.20/2.00/2.00/2.10;
ωg: A/B/M/V—From 5.20/50.10/1.00/1.10 to 9.00/52.00/20.00/2.05;
ωr: A/B/M/V—From 0.01/0.01/0.01/0.01 to 0.20/0.20/0.20/0.20;
τg: A/B/M/V—From 5.20/501/1.00/91 to 9.00/520/20.00/110.

EL + SWD
+ RN

P/A/B/M/V

βr: P/A/B/M/V—From 1.00%/0.01/0.10/0.10/0.20
to 20.00%/0.20/2.00/2.00/2.10;

τg,r: P/A/B/M/V—From 1.00%/5.20/501/1.00/91
to 20.00%/9.00/520/20.00/110;

β: P/A/B/M/V—From 1.00%/0.01/0.10/0.10/0.20
to 20.00%/0.20/2.00/2.00/2.10;

ωg: P/A/B/M/V—From 1.00%/5.20/501/1.00/1.10
to 20.00%/9.00/52.00/20.00/2.05;

ωr: P/A/B/M/V—From 1.00%/0.01/0.01/0.01/0.01
to 20.00%/0.20/0.20/0.20/0.20;

τg: P/A/B/M/V—From 1.00%/5.20/501/1.00/91
to 20.00%/9.00/520/20.00/110.

Supplementary Explanations: (i). AWGN signals are introduced to each faulty condition, and the number of
AWGN signals is equal to 50; (ii). For βr, the EL is increased from 1.00 to 20.00% with an increase of 1.00%, and the
Amplitude of the SWD increases from 0.01 to 0.20 with an increase by 0.01, and the Bias varies between 0.10 and
2.00 with the interval of 0.10, gradually, as well as the Mean of RN increases from 0.01 to 0.20 with an increase by
0.01, and the Variance increases between 0.20 and 2.10 with the interval of 0.10.

In this section, five groups of experiments of multiple actuator and sensor faults are discussed:

(i) Scenario I: single actuator and three sensor faults, ‘1AF + 3SFs’; Types of fault: C1
2 ·C

3
4 = 8;

(ii) Scenario II: single actuator and four sensor faults, ‘1AF + 4SFs’; Types of fault: C1
2 ·C

4
4 = 2;

(iii) Scenario III: two actuators and two sensor faults, ‘2AFs + 2SFs’; Types of fault: C2
2 ·C

2
4 = 6;

(iv) Scenario IV: two actuators and three sensor faults, ‘2AFs + 3SFs’; Types of fault: C2
2 ·C

3
4 = 4;

(v) Scenario V: two actuators and four sensor faults, ‘2AFs + 4SFs’; Types of fault: C2
2 ·C

4
4 = 1.

These scenarios are further illustrated by Figures 6–8. From Figure 6, one can see there are eight
combinations of actuator and sensor faults under Scenario I, and two combinations in Scenario II.
Figure 7 describes Scenario III and Figure 8 explains Scenarios IV and V, respectively.
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In order to evaluate the feasibility and capability of the proposed FFT + UMPCA algorithm,
the MPCA, UMPCA, and FFT + MPCA techniques are also discussed and analyzed. The datasets of
the experiments using the algorithms MPCA, UMPCA, FFT + MPCA, and FFT + UMPCA, respectively,
are shown in Tables 5 and 6. In Table 5, XMPCA

I , XMPCA
II , XMPCA

III , XMPCA
IV , and XMPCA

V are the tensor
datasets for the MPCA algorithm under scenarios I, II, III, IV and V, respectively. XUMPCA

I , XUMPCA
II ,

XUMPCA
III , XUMPCA

IV , XUMPCA
V denote the tensor datasets for the UMPCA algorithm under scenarios I, II, III,

IV, and V, respectively. In Table 6, XFFT+MPCA
I , XFFT+MPCA

II , XFFT+MPCA
III , XFFT+MPCA

IV , and XFFT+MPCA
V

represent the tensor datasets for the FFT + MPCA algorithm under scenarios I, II, III, IV, and V,
respectively. XFFT+UMPCA

I , XFFT+UMPCA
II , XFFT+UMPCA

III , XFFT+UMPCA
IV , and XFFT+UMPCA

V are the tensor
datasets for the FFT + UMPCA algorithm under scenarios I, II, III, IV, and V, respectively.
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Table 5. Datasets of experimentations with AWGN noises based on different topologies of the
data-driven methodologies: MPCA and UMPCA.

Name of
Experimentation Types

Data Sets with AWGN Noises Based on Different Topologies of
Data-Driven Methodologies

MPCA UMPCA

FF + 1AF + 3SFs 9 XMPCA
I ∈ R{440,000×4×9000} XUMPCA

I ∈ R{22,000×80×9000}

FF + 1AF + 4SFs 3 XMPCA
II ∈ R{440,000×4×3000} XUMPCA

II ∈ R{22,000×80×3000}

FF + 2AFs + 2SFs 7 XMPCA
III ∈ R{440,000×4×7000} XUMPCA

III ∈ R{22,000×80×7000}

FF + 2AFs + 3SFs 5 XMPCA
IV ∈ R{440,000×4×5000} XUMPCA

IV ∈ R{22,000×80×5000}

FF + 2AFs + 4SFs 2 XMPCA
V ∈ R{440,000×4×2000} XUMPCA

V ∈ R{22,000×80×2000}

Table 6. Datasets of experimentations with AWGN noises based on different topologies of the
data-driven methodologies: FFT + MPCA and FFT + UMPCA.

Name of
Experimentation Types

Data Sets with AWGN Noises Based on Different Topologies of
Data-Driven Methodologies

FFT + MPCA FFT + UMPCA

FF + 1AF + 3SFs 9 XFFT+MPCA
I ∈ R{550×800×4×9000} XFFT+UMPCA

I ∈ R{100×220×80×9000}

FF + 1AF + 4SFs 3 XFFT+MPCA
II ∈ R{550×800×4×3000} XFFT+UMPCA

II ∈ R{100×220×80×3000}

FF + 2AFs + 2SFs 7 XFFT+MPCA
III ∈ R{550×800×4×7000} XFFT+UMPCA

III ∈ R{100×220×80×7000}

FF + 2AFs + 3SFs 5 XFFT+MPCA
IV ∈ R{550×800×4×5000} XFFT+UMPCA

IV ∈ R{100×220×80×5000}

FF + 2AFs + 4SFs 2 XFFT+MPCA
V ∈ R{550×800×4×2000} XFFT+UMPCA

V ∈ R{100×220×80×2000}

Simulations were operated under the environment of Windows Server 2016 Technical Preview
5 OS and software MathWorks MATLAB R2018a, and run on a server with DELL PowerEdge C6100
4 Nodes Server Dual Intel Xeon 5670, Hex-Core, 2.93 GHz CPU, 384 GB memory, and 3 TB storage
(Overall: 48-Core CPU, 1.50 TB Memory, and 36 TB Storage).

5. Simulation Results

5.1. Time-Domain Space Characteristics of Wind Turbine Benchmark Systems

The curves displayed in Figure 9a–d show the time-domain responses of the four measurement
outputs β,ωg,ωr, and τg under fault-free, and various faulty conditions of the actuator and sensor faults,
including ‘EL’, ‘SWD’, ‘RN’, ‘EL + SWD’, ‘EL + RN’, ‘SWD + RN’, and ‘EL + SWD + RN’, respectively.

From Figure 9a–c, one can see that the curves are difficult to distinguish between fault-free
and faulty situations. In Figure 9d, from 0–2300 s, it is impossible to find differences among the
fault-free and faulty cases. From 2300–4400 s, one can see the fault-free curve is distinguishable from
the faulty curves; however, it is hard to see the differences between the faulty curves. As a result,
fault classification and diagnosis techniques are needed. It is noted that the overall simulated time
of the 4.8 MW wind turbine benchmark system is 4400 s with the interval of 0.01 s. Consequently,
the dimension of each experimental sample is 440,001.
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Figure 9. Output responses of four sensor outputs β, ωg, ωr, and τg, respectively, under healthy and
multiple faults operation conditions occurring between 0 and 4400 s: (a–d).

5.2. Feature Extractions and Fault Classifications for Scenario I

Data Set for Scenario I: In this data set, it includes ‘FF’ samples and eight types of ‘1AF + 3SFs’
samples. The detailed information is shown in Figure 6—Scenario I. In order to validate the
effectiveness of the proposed algorithm by comparison, four types of tensor datasets are established,
which are XMPCA

I ∈ R{440,000×4×9000}, XUMPCA
I ∈ R{22,000×80×9000}, XFFT+MPCA

I ∈ R{550×800×4×9000},
and XFFT+UMPCA

I ∈ R{100×220×80×9000}, respectively. The detailed information can be found in Tables 5 and 6.
For XMPCA

I ∈ R{440,000×4×9000}: ‘440,000’ represents the dimensionality of the feature subspace,
‘4’ stands for the dimensionality of the parameter subspace, and ‘9000’ illustrates the dimensionality
of the sample subspace; for XUMPCA

I ∈ R{22,000×80×9000}: ‘22,000’ represents the dimensionality of the
feature subspace, ‘80’ stands for the dimensionality of the parameter subspace, and ‘9000’ illustrates
the dimensionality of the sample subspace.

For XFFT+MPCA
I ∈ R{550×800×4×9000}: The original data set XI ∈ R{440,000×36,000} is projected

into a frequency-domain subspace and reshaped into a tensor data representation XFFT+MPCA
I ∈

R{550×800×4×9000} for the FFT + MPCA algorithm, where ‘4’ stands for the dimensionality of the
parameter subspace, ‘9000’ illustrates the dimensionality of the sample subspace, and ‘500 × 800’ is
the size of the reshaped feature matrix. For XFFT+UMPCA

I ∈ R{100×220×80×9000}: The original data set
XI ∈ R{440,000×36,000} is projected into a frequency-domain subspace and reshaped into a tensor dataset
XFFT+UMPCA

I ∈ R{100×220×80×9000} for the FFT + UMPCA algorithm.
Fault classification under scenario I is shown by Figures 10 and 11. Comparing Figure 10 with

Figure 11, one can see that the three-dimensional space visualization results in Figure 11 are better
than those in Figure 10. One can see, in Figure 11, that only two types of faulty condition cannot be
distinguished, which are ‘{A1 & (S2 + S3 + S4)}’ and ‘{A2 & (S2 + S3 + S4)}’, respectively.



Processes 2020, 8, 1066 17 of 32Processes 2020, 8, x FOR PEER REVIEW 16 of 31 

 

 
(a) Classification using MPCA  

 
(b) Classification using UMPCA  

Figure 10. Three-dimensional space visualization performance for fault classification for wind 
turbines subjected to single actuator fault and three sensor faults under AWGN noises, using (a) 
MPCA and (b) UMPCA, respectively. 

Figure 10. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to single actuator fault and three sensor faults under AWGN noises, using (a) MPCA and (b)
UMPCA, respectively.



Processes 2020, 8, 1066 18 of 32Processes 2020, 8, x FOR PEER REVIEW 17 of 31 

 

 
(a) Classification using FFT + MPCA 

 
(b) Classification using FFT + UMPCA 

Figure 11. Three-dimensional space visualization performance for fault classification for wind 
turbines subjected to single actuator fault and three sensor faults under AWGN noises, using (a) FFT 
+ MPCA and (b) FFT + UMPCA, respectively. 

From Figure 11a,b, one can see that both methods, that is, FFT + MPCA and FFT + UMPCA, can 
successfully classify seven classes of faulty/heathy conditions. It is noticed that the spatial distance 

Figure 11. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to single actuator fault and three sensor faults under AWGN noises, using (a) FFT + MPCA
and (b) FFT + UMPCA, respectively.



Processes 2020, 8, 1066 19 of 32

Specifically, from Figure 10a, the data generally cluster in three large groups, by using the MPCA
algorithm, indicating a poor classification performance. To see the details, one can see one of the
overlapping occurs between ‘Fault Free’ and ‘{A1 & (S1 + S3 + S4)}’, and the other exists between
‘{A1 & (S2 + S3 + S4)}’ and ‘{A2 & (S2 + S3 + S4)}’. Moreover, the rest of the five classes of faulty
situations indistinguishably cluster together. From Figure 10b based on the UMPCA, the visualized
results cluster around more groups, but are still unsatisfactory for classification.

From Figure 11a,b, one can see that both methods, that is, FFT + MPCA and FFT + UMPCA,
can successfully classify seven classes of faulty/heathy conditions. It is noticed that the spatial
distance amongst these generated features in Figure 11a is closer than that in Figure 11b in the
corresponding three-dimensional space. In other words, there are larger distances between different
faulty data in Figure 11b comparing with Figure 11a, indicating a better classification performance of
the FFT + UMPCA algorithm. As a result, it is evident that the proposed FFT + UMPCA algorithm
outperforms the MPCA, UMPCA, and FFT + MPCA for fault classification under scenario I.

5.3. Feature Extractions and Fault Classifications Based under Scenario II

Data Set for Scenario II: In this data set, it is composed of ‘FF’ samples and two types of ‘1AF + 4SFs’
samples. The detailed information is shown in Figure 6—Scenario II. In order to evaluate the
effectiveness of the proposed algorithm by comparison, four types of datasets are constructed,
which is XMPCA

II ∈ R{440,000×4×3000}, XUMPCA
II ∈ R{22,000×80×3000}, XFFT+MPCA

II ∈ R{550×800×4×3000},
and XFFT+UMPCA

II ∈ R{100×220×80×3000}, respectively. All the detailed information can be found in
Tables 5 and 6.

For XMPCA
II ∈ R{440,000×4×3000}: ‘440,000’ represents the dimensionality of the feature subspace,

‘4’ stands for the dimensionality of parameter subspace, and ‘3000’ illustrates the dimensionality of
the sample subspace. For XUMPCA

II ∈ R{22,000×80×3000}: ‘22,000’ represents the dimensionality of the
feature subspace, ‘80’ stands for the dimensionality of the parameter subspace, and ‘3000’ illustrates
the dimensionality of the sample subspace.

For XFFT+MPCA
II ∈ R{550×800×4×3000}: The original data set XII ∈ R{440,000×12,000} is projected into

a frequency-domain subspace and reshaped into a tensor dataset XFFT+MPCA
II ∈ R{550×800×4×3000} for the

FFT + MPCA algorithm. For XFFT+UMPCA
II ∈ R{100×220×80×3000}: The original data set XII ∈ R{440,000×12,000}

is projected into a frequency-domain subspace and reshaped into a tensor dataset XFFT+UMPCA
II ∈

R{100×220×80×3000} for the FFT + UMPCA algorithm..
In this section, Figures 12 and 13 illustrate the three-dimensional space visualization performance

for fault classification for wind turbine systems subjected to an actuator fault and four sensors
faults simultaneously under AWGN noises, respectively using MPCA, UMPCA, FFT + MPCA,
and FFT + UMPCA. From the simulated result observation, all types of faulty condition can only
be successfully classified by using the FFT + MPCA and FFT + UMPCA methodologies. Therefore,
FFT has a positive impact on the improvement of the performance of the dimensionality reduction and
feature extraction.

Specifically, from Figure 12a,b, the data sets cluster in a distributive way, although the UMPCA
performs a bit better in classification. Encouragingly, from Figure 13a,b, the data sets cluster in
three clear groups, indicating a clear fault classification and diagnosis for the three faulty/healthy
conditions concerned. From Figure 13b, it is interesting to observe the data in the same group shape
distinguishably. It is noted that faulty data in this study includes seven types of faults, such as
effectiveness loss, sinusoidal faults, and random number disturbances and so forth, and the fault-free
data are subjected to stochastic noises. Therefore, the classification by using the FFT + MPCA can
recognize the difference between the data in the same large group. In other words, Figure 13b can also
reflect the intrinsic properties of the original samples of the 4.8 MW wind turbine benchmark system.
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5.4. Feature Extractions and Fault Classifications under Scenario III

Data Set for Scenario III: In this data set, it includes ‘FF’ samples and six types of ‘2AFs + 2SFs’
samples. The detailed information is shown in Figure 7—Scenario III. In order to validate the
effectiveness of the proposed algorithm by comparison, four types of datasets are addressed,
which is XMPCA

III ∈ R{440,000×4×7000}, XUMPCA
III ∈ R{22,000×80×7000}, XFFT+MPCA

III ∈ R{550×800×4×7000},
and XFFT+UMPCA

III ∈ R{100×220×80×7000}, respectively. All the detailed information can be found in
Tables 5 and 6.

For XMPCA
III ∈ R{440,000×4×7000}: ‘440,000’ represents the dimensionality of the feature subspace,

‘4’ stands for the dimensionality of the parameter subspace, and ‘7000’ illustrates the dimensionality
of the sample subspace. For XUMPCA

III ∈ R{22,000×80×7000}: ‘22,000’ represents the dimensionality of the
feature subspace, ‘80’ stands for the dimensionality of parameter subspace, and ‘7000’ illustrates the
dimensionality of the sample subspace.

For XFFT+MPCA
III ∈ R{550×800×4×7000}: The original data set XIII ∈ R{440,000×28,000} is projected into

a frequency-domain subspace and reshaped into a tensor dataset XFFT+MPCA
III ∈ R{550×800×4×7000}

for using the FFT + MPCA algorithm. For XFFT+UMPCA
III ∈ R{100×220×80×7000}: The original data set

XIII ∈ R{440,000×28,000} is projected into a frequency-domain subspace and reshaped into a tensor dataset
XFFT+UMPCA

III ∈ R{100×220×80×7000} for the FFT + UMPCA algorithm.
In this section, Figures 14 and 15 exhibit the three-dimensional space visualization performance

for fault classification for wind turbine systems subjected to two actuator faults and two sensor faults
simultaneously under AWGN noise corruption, respectively by using MPCA, UMPCA, FFT + MPCA,
and FFT + UMPCA.
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Figure 14. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to two actuator and two sensor faults under AWGN noises, using (a) MPCA and (b)
UMPCA, respectively.
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Figure 15. Three-dimensional space visualization performance for fault classification for wind 
turbines subjected to two actuator and two sensor faults under AWGN noises, using (a) FFT + MPCA 
and (b) FFT + UMPCA, respectively. 
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Figure 15. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to two actuator and two sensor faults under AWGN noises, using (a) FFT + MPCA and (b)
FFT + UMPCA, respectively.

From Figure 14a, it is shown that two large groups are formed in the corresponding
three-dimensional space based on the MPCA method. It is observed that the overlapping occurs
between ‘{(A1 + A2) & (S1 + S3)}’ and ‘{(A1 + A2) & (S3 + S4)}’, and another overlapping happens
among ‘Fault Free’, ‘{(A1 + A2) & (S1 + S2)}’, ‘{(A1 + A2) & (S1 + S4)}’, ‘{(A1 + A2) & (S2 + S3)}’,
and ‘{(A1 + A2) & (S2 + S4)}’. From Figure 14b based on the UMPCA technique, the visualization
performance, with more formed data groups, is slightly better than that using the MPCA but is far
from acceptable for classification.

Seven classes of faulty/healthy situations were successfully classified respectively by using the
FFT + MPCA shown in Figure 15a and FFT + UMPCA exhibited by Figure 15b. More interesting,
Figure 15b can clearly reflect the intrinsic properties of the original samples of the wind turbines,
which indicates the FFT + UMPCA approach can also sense different types of faults in every single
faulty situation.

5.5. Feature Extractions and Fault Classifications Based under Scenario IV

Data Set for Scenario IV: In this data set, it consists in ‘FF’ samples and four types of
‘2AFs + 3SFs’ samples. The detailed information is shown in Figure 8—Scenario IV. In order to
evaluate the effectiveness of the proposed algorithm by comparison, four types of datasets are
determined: XMPCA

IV ∈ R{440,000×4×5000}, XUMPCA
IV ∈ R{22,000×80×5000}, XFFT+MPCA

IV ∈ R{550×800×4×5000},
and XFFT+UMPCA

IV ∈ R{100×220×80×5000}, respectively. All the detailed information can be found in
Tables 5 and 6.

For XMPCA
IV ∈ R{440,000×4×5000}: ‘440,000’ represents the dimensionality of the feature subspace,

‘4’ stands for the dimensionality of the parameter subspace, and ‘5000’ illustrates the dimensionality
of the sample subspace. For XUMPCA

IV ∈ R{22,000×80×5000}: ‘22,000’ represents the dimensionality of the
feature subspace, ‘80’ stands for the dimensionality of the parameter subspace, and ‘5000’ illustrates
the dimensionality of the sample subspace.
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For XFFT+MPCA
IV ∈ R{550×800×4×5000}: The original data set XIV ∈ R{440,000×20,000} is projected into

a frequency-domain subspace and reshaped into a tensor representation XFFT+MPCA
IV ∈ R{550×800×4×5000}

for the use of the FFT + MPCA algorithm. For XFFT+UMPCA
IV ∈ R{100×220×80×5000}: The original data

set XIV ∈ R{440,000×20,000} is projected into a frequency-domain subspace and reshaped into a tensor
representation XFFT+UMPCA

IV ∈ R{100×220×80×5000} for the implementation of the FFT + UMPCA technique.
In this subsection, Figures 16 and 17 exhibit the three-dimensional space visualization performance

for fault classification for wind turbine systems subjected to two simultaneous actuator faults and three
simultaneous sensors under AWGN noise corruptions, by using the MPCA, UMPCA, FFT + MPCA,
and FFT + UMPCA algorithms, respectively.
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From Figure 16a based on the MPCA, the data are clustering around three large sets, while in
Figure 16b using the UMPCA, the data are clustering in a more distributed way. Both of the visualized
results in Figure 16a,b fail to classify and diagnose the faults.
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From Figure 17a,b, faulty conditions can be successfully classified by both FFT + MPCA
and FFT + UMPCA algorithms. Specifically, it is worthy to point out that the corresponding
three-dimensional space visualization behaviours in Figure 17a,b shape differently in comparison with
Figure 16a,b, respectively. From what is exhibited in Figure 17a, one can see that the FFT + MPCA
methods outperform the MPCA. The reason behind this is that the intrinsic structures of the
obtained experimental data sets were reconstructed by using Fourier transform bases. Additionally,
these samples are mapped into the multi-dimensional frequency-domain subspace, which means the
visualized performance/behaviour are different from the MPCA-based circumstances. Furthermore,
the performance of the FFT + UMPCA in Figure 17b is much better than that based on the UMPCA in
Figure 16b. Consequently, the FFT has a positive impact on the improvement of the performance of the
fault classification and diagnosis. From Figure 17b, one can see that the FFT + UMPCA approach can
also recognize the differences of data in the same group.

5.6. Feature Extractions and Fault Classifications Based under Scenario V

Data Set for Scenario V: In this data set, it is combined by ‘FF’ and ‘2AFs + 4SFs’ samples. The detailed
information is shown in Figure 8—Scenario V. In order to validate the effectiveness of the proposed
algorithm by comparison, four types of datasets are built: XMPCA

V ∈ R{440,000×4×2000}, XUMPCA
V ∈

R{22,000×80×2000}, XFFT+MPCA
V ∈ R{550×800×4×2000}, and XFFT+UMPCA

V ∈ R{100×220×80×2000}, respectively.
All the detailed information can be found in Tables 5 and 6.

For XMPCA
V ∈ R{440,000×4×2000}: ‘440,000’ represents the dimensionality of the feature subspace,

‘4’ stands for the dimensionality of the parameter subspace, and ‘2000’ indicates the dimensionality
of the sample subspace. For XUMPCA

V ∈ R{22,000×80×2000}: ‘22,000’ represents the dimensionality of the
feature subspace, ‘80’ stands for the dimensionality of the parameter subspace, and ‘2000’ represents
the dimensionality of the sample subspace.

For XFFT+MPCA
V ∈ R{550×800×4×2000}: The original data set XV ∈ R{440,000×8000} is projected into

a frequency-domain subspace and reshaped into a tensor dataset XFFT+MPCA
V ∈ R{550×800×4×2000}

for the use of the FFT + MPCA algorithm. The original data set XV ∈ R{440,000×8000} is projected
into a frequency-domain subspace and reshaped into a tensor representation XFFT+UMPCA

V ∈

R{100×220×80×2000} for the FFT + UMPCA technique.
Figures 18 and 19 show the three-dimensional space visualization performance for fault

classification for wind turbine systems subjected to two simultaneous actuators faults and four
simultaneous sensors faults corrupted by AWGN noisy signals, respectively using different algorithms,
such as MPCA, UMPCA, FFT + MPCA, and FFT + UMPCA.

From Figure 18a based on the MPCA, the faulty-data cluster in 10 groups, and one of them is
overlapped with the fault-free data, indicating unsuccessful fault classification. From Figure 18b
based on the UMPCA technique, the visualization performance is relatively better than that using
the MPCA, as there is no overlapping between the faulty-data and fault-free data. However,
the performance in Figure 18b is still not satisfactory, since the distances between the faulty-data are
too large and the distances between the fault-free data and some of the faulty-data are quite close.

From Figure 19a, one can see that FFT + MPCA method has a much better classification performance
than the MPCA, shown in Figure 18a, as the faulty data and fault-free data are clearly classified into
two separated groups by using FFT + MPCA. Comparing Figure 19b by using FFT + UMPCA to
Figure 18b via the UMPCA, the faulty data and fault-free data are separated into two large groups
in Figure 19b, showing a clear classification between the faulty data and fault free data. As a result,
it is evident that the FFT has a positive impact on the improvement of the performance of the fault
classification and diagnosis. In addition, from Figure 19b, the data in the same group are not clustered
so close compared with Figure 19a. As the faulty data is a combination of the data subjected to different
types, such as effectiveness loss, sinusoidal fault signal, random number disturbances, and so forth,
this means the FFT + UMPCA can sense the difference between these data.
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It is noted that the MPCA approach determines a tensor-to-tensor projection that captures most of
the signal variation present in the original tensor representation, whereas, the UMPCA method uses
the tensor-to-vector projection. For the MPCA technique, some of the correlations of the principal
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components among the projected directions are neglected to some extent. Compared with MPCA,
UMPCA can exclude the possibilities of getting significant features with similar geometric structures,
depending on the methodology of tensor-to-vector projection. The reason behind is that the UMPCA
algorithm concentrates on extracting and determining the uncorrelated principal components rather
than the conventional principal components in the MPCA technique. Moreover, the FFT preprocessing
technique can enhance the data classification capability of the UMPCA. As a result, this is why the
proposed FFT + UMPCA can effectively classify the fault under all five scenarios above.

6. Conclusions

In this paper, fast Fourier transform (FFT) and uncorrelated multi-linear principal component
analysis (UMPCA) techniques were integrated for fault classification of the 4.8 MW benchmark wind
turbine systems subjected to multiple actuator and sensor faults under five scenarios of actuator and
sensor faults. The detailed comparison studies were carried out, and the effectiveness of the proposed
algorithm was well demonstrated. It is worthy to point out, among all the used algorithms, the FFT
has a positive impact on the improvement of the performance of the fault diagnosis and classification.
The proposed FFT plus UMPCA algorithm can not only classify the various classes of faulty conditions
but can also recognize the differences between the data within the same class.

In the future, it is of interest to investigate data-driven fault prognosis and remaining useful life
prediction for wind turbine systems. It is also promising to enhance fault diagnosis and prognosis
performance by using hybrid methods (by integrating various data-driven fault diagnosis/prognosis
methods or even by combining model-based approaches and data-driven based methods).
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