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Abstract: Large volume production of vaccine virus is essential for prevention and control of
viral diseases. The objectives of this study were to propagate Fowl adenovirus (FAdV) isolate
(UPM08136) in chicken embryo liver (CEL) cells adapted to Cytodex™ 1 microcarriers using stirred
tank bioreactor (STB) and molecularly characterize the virus. CEL cells were prepared and seeded
onto prepared Cytodex™ 1 microcarriers and incubated first in stationary phase for 3 h and in
STB at 37 ◦C, 5% CO2, and 20 rpm for 24 h. The CEL cells were infected with FAdV isolate
(UPM08136) passage 5 (UPM08136CELP5) or passage 20 (UPM08136CELP20) and monitored until
cell detachment. Immunofluorescence, TCID50, sequencing, alignment of hexon and fiber genes, and
phylogenetic analysis were carried out. CEL cells were adapted well to Cytodex™ 1 microcarriers and
successfully propagated the FAdV isolates in STB with virus titer of 107.5 (UPM08136CELP5B1) and
106.5 (UPM08136CELP20B1) TCID50/mL. These isolates clustered with the reference FAdV serotype 8b
in the same evolutionary clade. The molecular characteristics remained unchanged, except for a point
substitution at position 4 of the hexon gene of UPM08136CELP20B1, suggesting that propagation of
the FAdV isolate in STB is stable and suitable for large volume production and could be a breakthrough
in the scale-up process.

Keywords: chicken liver cell; Cytodex 1™microcarrier; fowl adenovirus 8b; bioreactor; PCR

1. Introduction

Fowl adenovirus (FAdV) is associated with inclusion body hepatitis (IBH) in chickens which
is responsible for heavy losses in poultry industries worldwide [1–3]. Vaccination has proven to be
the most effective tool in the control and prevention of viral diseases in animals and humans [4,5].
Despite the successes of vaccines against a wide range of animal diseases, developing a vaccine is a
very challenging process, and one of the major drawbacks to the availability of vaccines over the years
has been technical manufacturing scale-up obstacles [6]. Availability of vaccines in large volumes
to meet the ever-growing production animal population could be easier through cell culture-based
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production than the traditional embryonated egg culture [7]. Cell culture also offers advantages
like reduced contamination, product purity, ability to use wild type viruses efficiently, reduced
immunogenic changes, large volume production, and quick response during pandemic such as
influenza outbreaks or the recent COVID-19 pandemic [8,9]. Cell culture involves harvesting cells
from the organs of animals, insects, or from plants, growing them in vitro [10] and then maintaining
them in medium for use to express enzymes, antibodies, therapeutics, and to grow viruses for
vaccine development [11,12]. Anchorage-dependent cells like liver cells require surfaces to attach
for stabilization to enable proliferation. The early protocol for cell culture made use of glass slides,
petri dishes, and other glass-based surfaces for attachment of cells for growth, but due to difficulty
encountered in primary cells not being able to attach to glass surfaces, George Gey in 1956 used rat tail
collagen to coat glass surfaces which pioneered the development of plastic flasks, dishes, and 96-well
plates, which were all commercially available by 1960 [13]. Tissue culture flasks have offered a lot of
advantages and are still widely used in cell biology and vaccine development to date [13]. Although
the use of tissue culture flasks provided a solution to the issue of cell culture contaminations and
improved cell proliferation, its limitation with regards to large volume production of vaccines has been
inability to provide enough space [14]. Several platforms for large volume proliferation of cells has
been experimented with at different stages, but one of the breakthroughs for the industrial application
of mammalian cells has been the invention of microcarriers for vaccine production to support growth
of adherent or anchorage-dependent cells (ADC) [15]. A variety of microcarriers are available for
vaccine development, but spherical bead type microcarriers such as Cytodex™ 1 are suitable especially
for stirred tank bioreactors [16]. It is a multipurpose microcarrier which can be used to grow a variety
of cells. While culturing influenza virus vaccine in stirred tank bioreactor on Vero cells, Cytodex™ 1
was used and optimized to the production capacity of 6000 L [16].

For a successful suspension culture of adherent cells with microcarriers as attachment surface,
in vivo conditions which promote growth and differentiation of target cell types should be replicated as
closely as possible in vitro. A wide variety of bioreactors has been developed by researchers to provide
an in vitro environment that recapitulates the in vivo environment as accurately as possible [17]. These
include continuous stirred tank bioreactors, which are used in 70% of all fermentation and bioprocess
operations [18]. Bioreactors are complex and expensive devices and are not optimized to provide an
ideal environment for all mammalian cell growth due to high local fluid shear and bubble aeration.
Each bioprocess operation requires optimization with respect to a specific set of parameters, such as
cell growth, cell yield, and specific productivity, because there is no universal approach to optimize
conditions for all animal cell culture systems [19]. A stirred tank bioreactor was used to propagate
Infectious bursal disease (IBD) virus in BGM70 cell line [20], Modified vaccinia Ankara (MVA) virus
in avian AGE1.CR.pIX cell line [21], and bacteriophages in E. coli [22]. It was expected that primary
chicken embryo liver (CEL) cells could be adapted to Cytodex™ 1 microcarrier culture and used to
propagate FAdV isolate in a stirred tank bioreactor. The objectives of this study were therefore to
adapt primary CEL cells to Cytodex™ 1 Microcarrier and propagate FAdV isolates in the microcarrier
adapted CEL cells in a bioreactor and determine the molecular characteristics of the virus.

2. Materials and Methods

2.1. Ethics Statement

The design of this experiment including the embryonated chicken egg utilization protocol was
done following the guidelines and ethics of the UPM institutional animal care and use committee
(IACUC) and was approved with ref number; UPM/IACUC/AUP-R086/2018.
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2.2. Virus Isolates

Fowl adenovirus serotype 8b isolate, which was passaged in CEL cells for 5× (UPM08136CELP5)
with Genebank accession number MT561443 and passaged in CEL cells 20× (UPM08136CELP20) with
Genebank accession number MT561445, was used in this study. Each of the isolates was freeze-thawed
three times and centrifuged at 1500 rpm for 5 min and the supernatant filtered through 0.45 µm syringe
filter. Filtered isolates were used as inocula for this study.

2.3. Siliconization of Glassware

All glassware used in this study was first siliconized by applying dichlorodimethylsilane
(Sigma-Aldrich, Shanghai, China) with ≥99.5% concentration on all surfaces that came in contact with
microcarrier beads [23]. After siliconization, the glasswares were then sterilized by autoclaving.

2.4. Setting up the BIOSTAT® B Bioreactor

A B Braun Biostat® B Fermentation Cell Culture Bioreactor (Type 8840334) (Sartorius, Goettingen,
Germany), which is a continuous stirred tank bioreactor (STB), was used in this study. The BIOSTAT®

B bioreactor vessel (chamber) was disconnected from the control unit, washed thoroughly, and dried.
The inner chamber was then siliconized and dried. The bioreactor was then assembled according
to manufacturer’s recommendation and reconnected to the control unit. The pH and temperature
regulators were then calibrated. After calibration, the unit was disconnected from the control unit and
all the openings in the chamber and all the flow tubes were closed with aluminium foil. The prepared
chamber was then sterilized by autoclaving at 121 ◦C 103.42 kpa for 15 min. After sterilization, the
chamber was then reconnected to the control unit ready for use.

2.5. Preparation of Cytodex™ 1 Microcarrier Beads

Cytodex™ 1 was prepared according to manufacturer’s recommendation to obtain a concentration
of 3 g/L. Three grams of Cytodex™ 1 was measured into a siliconized conical flask and suspended
in 150 mL of CaCl2 and MgCl2 free PBS (Nacalai tesque, Kyoto, Japan) and hydrated for 3 h at room
temperature after which PBS is decanted. The microcarriers were washed in fresh 150 mL of PBS for
30 min and PBS decanted. The washing process was repeated, after which fresh 200 mL of PBS was
added and the microcarriers in PBS were sterilized by autoclaving. After sterilization, the PBS was
decanted and 150 mL of DMEM media was added to dislodge retained PBS. The media was decanted
before cells were seeded onto the microcarrier beads. The surface provided by the microcarrier is
shown in Table 1.

Table 1. Microcarrier concentration, virus titer, and CEL cells volume used for the
bioreactor propagation.

No. Isolate Microcarrier
Concentration (/mL)

Surface
Area

Virus Innoculum
Titre (/mL)

Inoculation
Volume (mL)

CEL Cells
Inoculated (/mL)

1 UPM08136
P5 8.6 × 106 17.6 m2 107.67 10 3.1 × 107

2 UPM08136
P20 8.6 × 106 17.6 m2 105.5 10 3.1 × 107
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2.6. Preparation of Chicken Embryo Liver Cells

The chicken embryo liver (CEL) cells were prepared using 15-day-old specific pathogen-free
(SPF) chicken embryonated eggs (CEE) [24]. The liver from the embryo was aseptically harvested and
macerated in sterile petri dish with sterile forceps. Macerated liver was transferred into sterile conical
flask and cells dissociated with sodium bicarbonate-free Trypsin-EDTA (0.25% Trypsin and 2.25 mM
EDTA) (Corning, Manassas, VA, USA) in a two-step dissociation. Liver from 2 SPF CEE was dissociated
initially with 12 mL of Trypsin-EDTA and pipetted into centrifuge 50 mL tube, and dissociation was
repeated subsequently with 8 mL Trypsin-EDTA. Dissociated liver cells were centrifuged (Hettich
Zentrifugen, Tuttlingen, Germany) at 1500 rpm for 5 min, after which Trypsin-EDTA was discarded
and the CEL cells were suspended in fresh DMEM media supplemented with 10% FBS and 2% (v/v)
antibiotics (penicillin–streptomycin) [25]. The CEL cells were seeded onto already prepared Cytodex™
1 microcarriers.

2.7. Adaptation of CEL Cells to Cytodex™ 1 Microcarrier Culture

Freshly prepared CEL cells were seeded onto the prepared Cytodex™ 1 microcarriers and
incubated in CO2 incubator (ThermoForma, Champaign, IL, USA) at 37 ◦C and 5% CO2 for 1 h.
The culture was made up to 1/3 of the final volume and incubated for additional 2 h. The sample was
drawn into tissue culture flask and observed under the inverted light microscope (Leica Microsystems,
Wetzlar, Germany) for cell attachment and confluency and images for each passage were captured
using an inverse microscope (Nikon Eclipse TS100, Tokyo, Japan) with the aid of NIS Elements imaging
system (Nikon Digital sight DS-U2, Tokyo, Japan) powered by PowerLogic computer with 17” monitor
(PowerLogic, Brownsville, TX, USA). The culture was then transferred into the bioreactor [20]. The cell
volume is shown in Table 1.

2.8. Propagation of FAdV in Cytodex™ 1 Microcarrier Adapted CEL Cells in STB

The microcarriers with CEL cells attached were transferred into the bioreactor chamber using
peristaltic pump drive (Longer Pump, Baoding, China). The bioreactor was preset at 37 ◦C, pH 7.4,
dissolved oxygen (DO) 40% air saturation [20]. The rotor spinning was set at 10 rpm and increased to
20 rpm after 3 h and the culture made up to final volume with DMEM media supplemented with 10%
FBS and 2% penicillin–streptomycin [26]. After 24 h of incubation in STB, cells were inoculated with
10 mL of FAdV inoculum (Table 1) and the rotor was increased to 30 rpm and observed closely for
pH changes. Sterile NaOH and HCl were used for pH controls. Samples were drawn at 24 and 48 h
post-inoculation and observed for cytopathic effects (CPE). At 48 h post-inoculation, the culture was
harvested. Harvesting of virus culture was achieved by increasing the stirring to 500 rpm for 2 min
to enable complete detachment of cells after which the microcarrier beads were allowed to sediment.
Harvested cells with virus was removed from bioreactor by reverse flow using the peristaltic pump
drive (Longer Pump, Baoding, China) into a siliconized, sterile bottle while the sedimented microcarrier
beads were collected separately, washed and kept for reuse. The culture was freeze-thawed 3 times at
−20 ◦C after which aliquots were centrifuged in 50 mL tubes at 1500 rpm for 5 min. The supernatant
was extracted, filtered through 0.45 µm syringe filter and stored at −80 ◦C. The titer of each FAdV
inoculum is shown in Table 1.

2.9. Determination of the Infective Dose (TCID50) of the Passage Isolates

Ten-fold serial dilution of each isolate was carried out [27]. One 96-well tissue culture plate for
each isolate to be tested was placed under UV light overnight and 0.2 mL of CEL cells, prepared as
earlier described (2.5), was seeded into each well and incubated in CO2 incubator (ThermoForma,
Champaign, IL, USA) at 37 ◦C and 5% CO2. The plates were observed daily until the cell became 100%
confluent. At confluency, the plates were washed twice with PBS and infected with 0.1 mL of serially
diluted isolate. Each dilution was used for 8 wells in a column (Columns 1–10). Columns 11 and
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12 were infected with sterile distilled water as control. Infected plates were incubated for 1 h and
0.2 mL of DMEM media supplemented with 2% FBS was added to each well, re-incubated in CO2

incubator (ThermoForma, Champaign, IL, USA) at 37 ◦C and 5% CO2 and observed for CPE for 7 days.
The number of wells in each column with more than 50% CPE was recorded and TCID50 calculated as
described by Reeds and Muench [28].

2.10. Indirect Immunofluorescence Assay

CEL cells were prepared as previously described and seeded onto sterile cover slips inside 6-well
tissue culture plates and incubated until confluency. The medium was discarded and washed 2×
with PBS after which each well was infected with 0.2 mL of respective bioreactor passage isolates
(UPM08136CELP5B1 or UPM08136CELP20B1) and incubated at 37 ◦C and 5% CO2 for 1 h for adsorption.
Then, 1.8 mL of DMEM maintenance media was added while the uninfected control was maintained
with only media and all incubated at 37 ◦C and 5% CO2 and observed for CPE for 48 h. On CPE,
the wells were fixed and inactivated with 4% formalin for 30 min at room temperature, after which
they were washed 2× with ice cold PBS containing 0.5% Tween 20 for 5 min and plates incubated
in 0.5% Triton x-100 in PBST for 15 min to permeabilize the cells followed by rinsing with PBST
3× for 5 min. Unspecific bindings were blocked with blocking buffer (5% BSA in PBST) for 1 h at
room temperature and rinsed 3×with PBST for 5 min. Forty microlitres of monoclonal FAdV hexon
protein primary antibody (Santa Cruz, Dallas, TX, USA) was added into the cells, allowed to stand,
and incubated at 4 ◦C in humidity chamber overnight after which the wells are rinsed 2×with PBST
for 5 min. Cells were suspended in 40 µL of mice anti-chicken IgY-FC-FITC-conjugated secondary
antibody (Santa Cruz, Dallas, TX, USA) 1:1000 dilution was added and incubated at room temperature
(RT) for 1 h in a dark room. The plates were rinsed with PBST and 20 µL of diamidino-2-phenylindole
dihydrochloride (DAPI) added for 10 min at room temperature. The cover slip was rinsed, dried,
mounted on clean glass slides with dibutylphthalate polystyrene Xylene (DPX), and observed with
fluorescence microscope [20].

2.11. DNA Extraction and PCR Amplification of Hexon and Fiber Genes

DNA from UPM08136CELP5B1 and UPM08136CELP20B1 was extracted using an innuPREP
Virus DNA Kit (analytikjena, Jena, Germany) and the concentration measured at 70 dilution factor,
using ultraviolet–visible spectrophotometer (UV-1601, PC, Shimadzu Europa, Duisburg, Germany).
HexA1/HexB1 primers [29] were used to amplify hexon gene while fbrF/fbrR primers Fbr F-5′

ACCGATTACGGCCGACGAAC -3′ and Fbr R-5′ -GAGCGTTGGCTGTGCTTAGG -3′ designed from
KU517714.1 reference strain for this study were used for fiber gene amplification with sensoquest
labcycler gradient (Biomedizinische Elektronik, Goettingen, Germany) in a 25 µL reaction using MyTaq
Red Mix (Bioline, London, UK). The amplification conditions were 95 ◦C for 2 min 1×, 95 ◦C for 1 min
35×, 55 ◦C for 1 min 35×, 72 ◦C for 2 min 35× and 72 ◦C 1 min 1× for hexon gene and 95 ◦C for
2 min 1×, 95 ◦C for 1 min 35×, 50 ◦C for 1 min 35×, 72 ◦C for 3 min 35×, and 72 ◦C for 2 min 1× for
fiber genes. The PCR products were separated by electrophoresis using EPS-300 X (C.B.S. Scientific,
San Diego, CA, USA) in 1% agarose gel (GeneDireX, Taoyuan, Taiwan) at 70 V and 400 mA for 50 min,
stained with redsafe stain (iNtRON Biotechnology, Burlington, MA, USA) and visualised through UV
transillumination (Syngene, Cambridge, UK).
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2.12. Sequencing, Blast, Alignment, and Phylogentic Analysis

The PCR products were purified using MEGAquick-spin™ Total fragment DNA purification kit
(iNtRON Biotechnology, Burlington, MA, USA) and sequenced (Apical Scientific, Serdang, Malaysia).
Consensus sequences were assembled using contig assembly application and multiple sequence
alignment to determine changes in the genes were carried out using BioEdit software v 7.2.5 [30,31]
and sequences were subjected to NCBI Blast. Amino acids were deduced by using ExPasy software
(www.expasy.ch/tools/dna.html) [32]. With the sequences and 37 published strains for hexon (Table 2)
with NCBI Genebank links to the sequences in Table S1 and 27 published strains for fiber (Table 3)
with NCBI Genebank links to the sequences in Table S2, phylogenetic trees were constructed by
neighbor-joining method [33] using MEGA X software v 10.0.5 [32].

Table 2. The aviadenovirus reference strains obtained from Genebank used in the construction of
phylogenetic tree for hexon gene analysis.

No Isolate Name Serotype Origin Accession Number Uploaded By

1 UPM04217 8b Malaysia ANA50319.1 Juliana et al., 2016
2 UPM08158 8b Malaysia AEL21619.1 Juliana et al., 2011
3 UPM1137CEL20 8b Malaysia AQZ26936.1 Norfitriah et al., 2017
4 UPM08158 8b Malaysia AEL21619.1 Juliana et al., 2011
5 Celo 1 Australia EU979367.1 Steer et al., 2009
6 SR48 2 Australia EU979368.1 Steer et al., 2009
7 SR49 3 Australia EU070369.1 Steer et al., 2009
8 KR5 4 Australia EU979370.1 Steer et al., 2009
9 340 5 Australia YP 007985654.1 Marek et al., 2013
10 CR119 6 Australia YP 009505663.1 Steer et al., 2009
11 YR36 7 Australia ACL68141.1 Steer et al., 2009
12 AO2 9 Australia EU979376.1 Steer et al., 2009
13 C2B 10 Australia EU979377.1 Steer et al., 2009
14 Wroclaw 2015 1 Poland KR259656.1 Wieliczko et al., 2015
15 USP-EC-01 6 Ecuador ASU91620.1 De la Torre et al., 2017
16 TR59 8b Australia ACL68142.1 Steer et al., 2008
17 40440-M/2015 5 Hungary QCC26479.1 Kajan et al., 2018
18 LYP 5 China QJP03679.1 Chen, 2019
19 CH/CQBS/1601 4 China MF055642 Xia et al., 2017
20 CH/CBQS/1512 8b China AUD09312.1 Xia et al., 2017
21 05-51425 8b Canada ABS81057.1 Ojkic et al., 2007
22 Indian 4 India AJ459805 Barua et al., 2002
23 10-3678 8b Poland CUT98160 Schachner et al., 2016
24 HG 8b Canada YP 004191821.1 Grgic et al., 2011
25 14-259 8b France QGQ62947.1 Schachner et al., 2019
26 HUNGG 8b Hungary QGQ62522.1 Schachner et al., 2019
27 HLJ/151129 8b China AOS87877.1 Wang et al., 2016
28 FAdV-HNQX-101017-B 8b China ANG57906.1 Li et al., 2016
29 TR/8VKE/R/B-8 8b Turkey QGP73412.1 Sahindokuyucu et al., 2019
30 04-53357-105 8B Canada ABS81134.1 Ojkic et al., 2007
31 SA38D-08 8b South Africa ADV90772.1 Joubert et al., 2010
32 SA38C-08 8b South Africa ADV90771.1 Joubert et al., 2010
33 USP-BR-420.12 8b Brazil AQX17387.1 De la Torre et al., 2016
34 764 8b United Kingdom ANJ02566.1 Marek et al., 2016
35 764 8b Canada AER40292.1 Dar et al., 2012
36 ID-HCI-037 8b Peru AWF93664.1 Caballero-Garcia et al., 2018
37 Turkey Adv 3 United Kingdom AC_000016 Davison et al., 2003
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Table 3. The aviadenovirus reference strains obtained from Genebank used in the construction of
phylogenetic tree for fibre gene analysis.

No Isolate Name Serotype Origin Accession Number Uploaded By

1 UPM04217 8b Malaysia KU517714.1 Juliana et al., 2015
2 UPM1137E2 8b Malaysia KY305950.1 Norfitriah et al., 2017
3 PL-060-08 1 Poland GU952109.1 Domanska-Blicharz et al., 2011
4 YR36 7 Austria KT862809.1 Marek et al., 2015
5 CR119 6 USA NC_038332.1 Schachner et al., 2018
6 NARC-3317 4 Pakistan KT733569.1 Jabeen et al., 2015
7 SX17 4 China MF595799.1 Feng et al., 2017
8 Punjab1 1 India DQ864435.1 Bhan et al., 2006
9 06-25854-1 11 Canada JQ034219.1 Grgic et al., 2014

10 WA-1/100966-2 11 Australia KT037713.1 Steer et al., 2015
11 340 5 Austria FR872928.1 Marek et al., 2015
12 HLJ151129 8b China AOS87884.1 Wang et al., 2016
13 764 8b United Kingdom ANJ02574.1 Marek et al., 2015
14 06-41265-07 8b Canada AFD32283.1 Grgic et al., 2014
15 QD2016 8b China AWT08538.1 Hu et al.,2017
16 NZ-1/101151-1 8b New Zealand ANQ43486.1 Steer et al., 2015
17 Vac-2005 8b Australia ANQ43481.1 Steer et al., 2015
18 VIC-2/430-6 8b Australia ANQ43482.1 Steer et al., 2015
19 NSW-3/100931 8b Australia ANQ43483.1 Steer et al., 2015
20 FJ-1/100842-C 8b Fiji ANQ43487.1 Steer et al., 2015
21 VIC-8/100719 8b Australia ANQ43484.1 Steer et al., 2015
22 NSW-5/100931 8b Australia ANQ43485.1 Steer et al., 2015
23 Strain 13-19395 - Germany MK572863.1 Schachner et al., 2019
24 LYG 5 China QJP03687.1 Chen, 2019
25 340 5 Northern Ireland YP 007985662.1 Marek et al.,2013
26 127 DAdV 1 Russia Z86065.1 Akopian et al., 1997
27 D11-JW-010 DAdV 1 South Korea JX227930 Cha et al., 2012

3. Results

3.1. Adaptation of CEL Cells on Cytodex™ 1 Microcarriers

The CEL cells attached and adapted to the Cytodex™ 1 microcarriers within 3 h of incubation
(Figure 1a,b) and grew confluent on the microcarriers beads after 24 h incubation in the bioreactor
(Figure 1c,d).

3.2. Propagation of FAdV in CEL Cells Adapted on Cytodex™ 1 Microcarrier

The FAdV UPM08136CELP5 (Figure 2a) and UPM08136CELP20 (Figure 2c) isolates caused CPE
and detachment of cells from microcarriers from 24 h post-inoculation. At 48 h, most of the cells had
detached from the microcarrier beads (Figure 2b,d) indicating suitability of the Cytodex™ 1 and STB
for propagation of FAdV serotype 8b.
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Figure 2. Inverted microscopic image of Cytodex™ 1 microcarrier beads with attached CEL cells
infected with FAdV showing detachment of cells from the microcarrier beads. (a) Infected with
UPM08136CELP5 at 24 h post-inoculation (pi). (b) Infected with UPM08136CELP5 48 h pi. (c) Infected
with UPM08136CELP20 at 24 h pi. (d) Infected with UPM08136CELP20 at 48 h pi.
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3.3. Infective Dose (TCID50) of UPM08136P5B1 and UPM08136P20B1 Isolates

The UPM08136CELP5B1 showed higher virus titer of 1 × 107.5 TCID50/mL in a final volume of
500 mL when compared to UPM08136CELP20B1 with virus titer of 1 × 106.5 TCID50/mL in a final
volume of 600 mL. These could be due to final culture volume or infectivity of the isolate (Table 4).

Table 4. Final volume and virus titer (TCID50) of FAdV propagated in CEL cells adapted on Cytodex™
1 Microcarriers in a Stirred Tank Bioreactor.

No FAdV Isolate Initial Titre (/mL) Final Titre (/mL) Final Volume (/mL)

1 UPM08136CELP5B1 105.5 107.5 500
2 UPM08136CELP20B1 107.67 106.5 600

3.4. Indirect Immunofluorescence Assay of FAdV Isolates Propagated in CEL Cells Adapted Cytodex™ 1
Microcarrier in a Stirred Tank Bioreactor

There were green particles indicating presence of FAdV antigens (Figure 3a,b). In contrast, in the
control, there were only blue particles, denoting a negative result (Figure 3c). The isolates also showed
affinity for the CEL cells and caused cell depletion after 48 h post-infection (Figure 3a,b), while the
uninfected control shows intact monolayer (Figure 3c).Processes 2020, 8, x FOR PEER REVIEW 9 of 18 
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Figure 3. Indirect immunofluorescence images of CEL cells adapted Cytodex™ 1 microcarrier
infected with FAdV isolates and propagated in a stirred tank bioreactor after 48 h incubation.
(a) UPM08136CELP5B1 ×40; (b) UPM08136CELP20B1 ×40; (c) uninfected Control ×40. Red arrow
indicates CEL cell nucleus; green arrow indicates FAdV in the cytoplasm of CEL cells.
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3.5. Polymerase Chain Reaction Amplification of Hexon and Fiber Genes of the Propagated FAdV Isolates in
CEL Cells Adapted on Cytodex™ 1 Microcarrier

The UPM08136CELP5B1 and UPM08136CELP20B1 yielded 900 bp (Figure 4a) and 940 bp
(Figure 4b), which corresponds to the hexon and fiber genes of FAdV, respectively.
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Figure 4. Transillumination image of PCR fragments showing agarose gel electrophoresis bands of
(a) hexon and (b) fiber genes. Lane 1, FAdV Hexon positive control; Lane 2, UPM08136CELP5B1; lane 3,
UPM08136PCELP20B1; Lane 4 negative control; M, molecular weight DNA marker (1kb DNA ladder,
Promega). Red labels show the band sizes.

3.6. Multisequence Alignment and Phylogenetic Analysis of UPM08136CELP5B1 and UPM08136CELP20B1
with Reference Strains

The translation of the nucleotides of hexon gene yielded 244–245 amino acid residues while
the translation of the nucleotides of fiber gene yielded 148–149 amino acid residues. The nucleotide
sequences and their corresponding amino acids were uploaded to Genebank and were assigned
accession numbers, UPM08136CELP5B1 (MT561443 and MT561447) and UPM08136CELP20B1
(MT561445 and MT561449) for the sequences of hexon gene and fiber genes, respectively. There was no
change in the hexon gene of UPM08136CELP5B1 compared to UPM08136CELP5. There was a G�4T
substitution (Figure 5) in the hexon gene of UPM08136CELP20B1 compared to UPM08136CELP20,
which was the only change found in their hexon gene. This translated to an amino acid change from
cysteine to glycine at position 2 (Figure 6) in the red box, which alone may not have effect on the
stability of the virus. There was no change observed in the nucleotide sequences (Figure 7) and amino
acid residues (Figure 8) of fiber gene of the bioreactor isolates compared to the flask isolates, suggesting
suitability in FAdV serotype 8b propagation.

The hexon and fiber genes of UPM08136CELP5B1 and UPM08136CELP20B1 were 99–100%
identical to UPM04217 and other FAdV serotype 8b isolates in Genebank, which confirms their
non-variability with the flask isolates. The phylogenetic tree results based on the amino acid residues
of hexon gene showed that all the test isolates clustered together in the same evolutionary clade with
other Universiti Putra Malaysia (UPM) strains, the Australian vaccine strain, and other FAdV serotype
8b strains. Isolates in the FAdV genus branched out from the root away from the Duck and Turkey
adenovirus strains (Figure 9a). The fiber amino acid phylogenetic tree results also showed that all the
test isolates clustered together in the same evolutionary clade with other UPM strains and other FAdV
serotype 8b strains. All the isolates in the FAdV genus branched out from the root away from the Duck
adenovirus 1 strains (Figure 9b).
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flask and bioreactor propagated isolates of UPM08136 and UPM04217 reference isolate from Genebank.
There was a C to G substitution at position 2 (Red box) which is the only change observed between the
bioreactor and flask isolates tested. Other changes (green box) remained the same between the flask
and bioreactor isolates.
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bioreactor propagated isolates of UPM08136 and UPM04217 reference isolate from Genebank. There
were no changes between the flask and bioreactor isolates observed in the fiber gene of the test FAdV
strains. The changes in the CEL passages (green boxes) remained the same.
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bioreactor propagated FAdV isolates and reference strains from GeneBank. The analysis involved
42 and 32 amino acid residues of hexon and fiber genes, respectively. The evolutionary history was
inferred using the neighbor-joining method. Evolutionary analyses were conducted in MEGA X. Each
serotype is indicated by name while the FAdV serotype 8b is labeled in red. FAdV isolates branched off

in the same clade while all study isolates clustered together with other serotype 8b isolates.

4. Discussion

The CEL cells attached to the surface of the microcarrier beads within 3 h of incubation which
indication adaptation of the cells to microcarrier culture. Most animal cells are anchorage dependent
and can usually survive and are most productive when attached to a surface. Even suspension-type
cell, like hybridomas, tends to give increased product yields when attached [34]. Attachment of cells
to a surface is a critical need and one of the most essential points in the optimal functioning of all
anchorage-dependent cells [35,36]. Attachment to the microcarrier is indicative of CEL cells adaptation
to microcarrier culture. It proves that Cytodex™ 1 microcarrier is suitable for growth of CEL cells.
Cytodex™ 1 was engineered to meet all properties essential for a successful microcarrier and has been
used to culture more than sixty different cell lines successfully [37]. It is also cost effective as it can be
reused [20]. The cells grew confluent in the cells within 24 h which shows that proliferation of cells
in the microcarrier was successful. For virus propagation, cells are usually needed, and it is more
needed in higher volumes for vaccine production. This is because cell concentration is of significant
importance in determining viral titer [38], and viral titer has control on the efficacy of vaccines, which
makes the need for a high volume of cells for volume production of vaccine an ongoing requirement.

The infected CEL cells exhibited cytopathic effects synonymous with FAdV on CEL cells which
included rounding and detachment of cells [24,39] from the microcarrier beads. CPE is a sign of
pathogenicity of virus on cells [40] and confirms infection of the cells. This means that CEL cells grown
in the Cytodex™ 1 microcarrier are suitable for propagation of FAdV in a continuous stirred tank
bioreactor system. This corroborates the reports of Lawal et al. [20] and Blumi [16] who used Cytodex™
1 to propagate Infectious bursal disease virus (IBDV) and Influenza virus, and Tapia et al. [21] who
used stirred tank bioreactor to propagate modified vaccinia ankara (MVA) virus in avian AGE1.CR.pIX
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cell line. Mancuso et al. [22] also reported the successful use of E. coli to grow bacteriophages in
stirred tank bioreactor. Stirred tank bioreactors are used in 70% of all fermentation and bioprocess
operations and have been found to be suitable for propagation of virus vaccine candidates for large
volume production [18]. The experimental volume was low especially when 6000 L was reported in
influenza virus propagation [16], but it is a huge improvement when compared to flask propagation.
UPM08136CELP20B1 had a lower titer than the flask propagated isolate which was similar to the
report of Lawal et al. [20]. This could be attributed to the isolate having a lowered infectivity than the
earlier passages. The titer values obtained in the study were 106.5/mL and 107.5/mL TCID50 which were
similar to the report of Chen et al. [41] who obtained a titer of 7.6 log10 TCID50/mL of influenza vaccine
virus grown in Vero cells and 106.4 TCID50/mL reported by Lawal et al. [20] in vvIBDV passaged once
in BGM-70 cell line before bioreactor passage in Cytodex™ 1 adapted BGM-70 cell line. The result
is also comparable to 106 TCID50 reported by Trabelsi et al. [42] in Measles vaccine virus grown in
mammalian cells in microcarrier.

The amplification of the hexon gene of UPM08136CELP5B1 and UPM08136CELP20B1 yielded
a partial hexon DNA 738–750 bp in size, which corresponds to the report of Meulemans et al. [29]
who initially published HexA1/HexB1 primers. The primer had been used by several researchers
for identification and studies of FAdV [43–48]. The amplification of the fiber gene using the novel
fbrF/fbrR primers yielded partial fiber gene, mainly the knob region. Evaluation of fiber gene of FAdV
has become necessary because through the interaction of the fiber knob with host cells, the fiber gene is
responsible for tissue tropism which is also very important in the virulence of FAdV [49]. In fact, it had
been reported that fiber alone could determine virulence of FAdV 8 [50]. The primer pair used in this
study was designed in our laboratory and first published in this report. Analysis of fiber gene of FAdV
had been carried out by previous researchers for identification, characterization and pathogenicity
studies [25,51–53].

The NCBI blastn and blastp for nucleotide and protein sequences respectively of hexon and fiber
genes showed 99–100% homology to FAdV serotype 8b in Genebank. This was synonymous with
other FAdV sequences of Malaysian origin which suggests that the organisms in our study belong
to the same serotype with those reported earlier in the country. Since the development of genomic
analysis technology, researchers rely on NCBI Genebank blast as one of the repositories for virus
taxonomical classification, species identification; and nucleotide and amino acid sequences identity
search [54–56]. The major primary sequence databases are the International Nucleotide Sequence
Database Collaboration (INSDC) databases, which includes GenBank (NCBI), European Nucleotide
Archive (ENA), and the DNA Data Bank of Japan (DDBJ) [57], and Uniprot [58] which constitutes the
main repositories of nucleotide and protein sequence data. In line with this, the sequences of hexon
and fiber gene of isolates from this study were deposited in Genebank.

There were no changes observed in the hexon and fibre genes of UPM08136CELP5B1. There was
also no change in the fiber gene of UPM08136CELP20B1. This means that the propagation of this FAdV
isolate in CEL cells adapted in Cytodex™ 1 microcarrier in stirred tank bioreactor is suitable and had no
adverse effect on the virus. This could be a model for adoption in the propagation of FAdV, especially
serotype 8b when large volume of virus is needed. The bioreactor passage did not affect the virus so
much to disturb its normal conformity. This is similar to the report of Lawal et al. [20] who found
that vvIBD virus propagated in stirred tank bioreactor did not show molecular change in their VP2
protein. Other researchers did not report any change in the characteristics of the bioreactor propagated
viruses which suggests that use of bioreactor for propagation of vaccine virus is suitable for large
volume production of vaccines [41,59,60]. However, there was a point substitution in the hexon gene
of UPM08136CELP20B1 which led to change in the amino acid residues at position 2 from cysteine
to glycine. This alone would not affect the stability of the virus. However, following this change, it
has become pertinent that all viruses propagated in a stirred tank bioreactor for a live-attenuated
vaccine should be monitored for molecular changes in their antigenic proteins to forestall reversion to
virulence. All the bioreactor propagated FAdV clustered together with serotype 8b viruses of Malaysian
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origin and those from other sources. This shows that they are FAdV serotype 8b. The closeness of
the flask and bioreactor isolates in the phylogram of hexon and fibre genes shows their similarity
which confirms the suitability of propagating FAdV serotype 8b in CEL cells adapted Cytodex™ 1
microcarrier using stirred tank bioreactor. As the data on substrate requirement, metabolism, and
specific CEL cells needs and bioreactor conditions for growth of primary CEL cells were not readily
available, further studies should explore to establish the optimal growth conditions for CEL cells in
stirred tank bioreactor and other conditions most appropriate for the propagation of FAdV in CEL cells
adapted in microcarrier for maximum yield, to standardize the scaling-up and industrialization of
FAdV vaccine production. In this way scale up for production of FAdV vaccine up to 5000–10,000 L
could be achieved as this study could only achieve 600 mL volume. Due to paucity of literature on this
area, it is possible that adaptation of primary CEL cells in Cytodex™ 1 microcarrier and using it in
stirred tank bioreactor to propagate FAdV serotype 8b is a novel finding. To our knowledge, there are
no reports on propagation of FAdV serotype 8b in primary CEL cells using the bioreactor technology.
This finding could therefore be a breakthrough in the scale up process of FAdV vaccines and could be
useful for researchers interested in scaling up their developed FAdV serotype 8b vaccines. It will offer
opportunity for large scale production and commercialization of the FAdV vaccine which will aid the
prevention and control of IBH and other FAdV infections worldwide.

5. Conclusions

Chicken embryo liver cells were adapted well to Cytodex™ 1 microcarriers and used to propagate
Fowl adenovirus serotype 8b isolates in a stirred tank bioreactor. These bioreactor isolates were similar
to their corresponding flask isolates in their molecular characteristics, which show that bioreactor
propagation of Cytodex™ 1 adapted chicken embryo liver cells was well tolerated. This could be a
breakthrough in FAdV serotype 8b vaccine scale up process.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/9/1065/s1,
Table S1: NCBI Genebank link for reference adenovirus strains used for phylogenetic analysis of hexon gene,
Table S2: NCBI Genebank link for reference adenovirus strains used for phylogenetic analysis of fibre gene.
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