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Abstract: Encapsulation of dual compounds of different characters (hydrophilic and hydrophobic)
in single nanoparticles carrier could reach the site of action more accurately with the synergistic
effect but it is less investigated. In our previous findings, combined-compounds encapsulation and
delivery from chitosan nanoparticles were impaired by the hydrophilicity of chitosan. Therefore,
hydrophobic modification on chitosan with palmitic acid was conducted in this study to provide an
amphiphilic environment for better encapsulation of antioxidants; hydrophobic thymoquinone (TQ)
and hydrophilic l-ascorbic acid (LAA). Palmitoyl chitosan nanoparticles (PCNPs) co-loaded with TQ
and LAA (PCNP-TQ-LAA) were synthesized via the ionic gelation method. Few characterizations
were conducted involving nanosizer, Fourier-transform infrared spectroscopy (FTIR), field-emission
scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy
(HRTEM). UV–VIS spectrophotometry was used to analyze the encapsulation and release efficiency
of the compounds in PCNPs. Successfully modified PCNP-TQ-LAA had an average particle size of
247.7 ± 24.0 nm, polydispersity index (PDI) of 0.348 ± 0.043 and zeta potential of 19.60 ± 1.27 mV.
Encapsulation efficiency of TQ and LAA in PCNP-TQ-LAA increased to 64.9 ± 5.3% and 90.0 ± 0%,
respectively. TQ and LAA in PCNP-TQ-LAA system showed zero-order release kinetics, with a release
percentage of 97.5% and 36.1%, respectively. Improved preparation method, encapsulation and
release efficiency in this study are anticipated to be beneficial for polymeric nanocarrier development.

Keywords: chitosan; co-loaded nanoparticles; hydrophobic modification; l-ascorbic acid; thymoquinone

1. Introduction

Tremendous illnesse treatments like those of cancers [1–3] and tuberculosis (TB) [4–6] require
a combination of drugs to achieve positive progress, whether to cure, control or palliate the pain.
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Although the standard therapies have been successful to some extent, multi-drug transportation could
be eased by formulating them together rather than taking them individually, without reducing their
effectiveness. Researchers have started to look at multi-drug delivery from single system formulation
for various treatments [7–15]. Aside from knowing drug compatibility, a system definitely needs an
outstanding carrier to content and deliver them excellently.

Nanoparticles (NPs) come to fulfil this request by acting as a promising carrier due to its large
surface area that causes it to be more reactive [11,16,17]. Having a size of 10–1000 nm [18–21], NPs are
classified as potent drug carrier as it can move more freely in the body. NPs uptake by cells was
reported to be 15–250 times higher than 1–10 µm particles [22]. Furthermore, NPs have been broadly
used in the biomedical sector to treat diseases like diabetes [23–25] and cancers [26–29]. As NPs carrier
is now drawing promising outcomes for multi-drug therapy, the present study aims at developing
smart chitosan-based nanoparticles (CNPs) for combined antioxidants, hydrophobic thymoquinone
(TQ) and hydrophilic l-ascorbic acid (LAA).

The use of chitosan (CS) as a polymer for NPs production has been widely discovered [13,30–32].
Abundant sources of CS from chitin of crustacean shells, fungi and insects makes it accessible and
cheap [33–35]. It is one of the most auspicious polymers for drug delivery, which is biodegradable and
biocompatible [33,36,37]. CS can be degraded in vertebrates by enzymatic reactions, depending on
the degree of deacetylation (DD) and molecular weight (MW); low DD and MW could assist in faster
CS degradation [34,38]. Moreover, the cationic property of CNPs enriched its efficacy in internalizing
negatively charged cell plasma membranes [18,39]. CNPs can be synthesized by several routes, but the
ionic gelation method has been more meticulously discovered, involving crosslinking reactions of CS
amine groups with various anionic crosslinkers [36,40]. However, ionic gelation implementation in
producing CNPs was typically done by using sodium tripolyphosphate (TPP) crosslinker [30,36,41,42].

In addition, the presence of amino and hydroxyl groups in CS makes it highly modifiable for
moieties addition [43]. Palmitic acid is one of the potential modifiers for hydrophobic sites addition.
Studies by Sharma et al. stated that the transfection efficiency of CS for gene delivery was successfully
enhanced once modified with palmitic acid [44]. In another study, palmitic acid was used in modifying
CS for an improved controlled release of tamoxifen, a breast cancer drug [45]. Kuen et al. reported on the
modification of CS with palmitic acid for more effective encapsulation of hydrophobic Silibinin into NPs.
The encapsulation efficiency (EE) of Sibilibin in modified palmiltoyl-chitosan nanoparticles (PCNP) was
increased twice as much, compared to the EE of Silibinin in unmodified chitosan nanoparticles (CNP),
because the palmitoyl anchor provides a hydrophobic core for Silibinin to stay in [41]. The concept of
having both hydrophilic and hydrophobic sites in one NP system could be implemented to contain a
wider range of compatible drugs or compounds to elevate synergistic effects. Therefore, this study
aims at developing modified-chitosan nanoparticles by using palmitic acid N-hydroxysuccinimide
(NHS) ester for hydrophobic thymoquinone (TQ) and hydrophilic l-ascorbic acid (LAA) antioxidants,
as illustrated in Figure 1 below.

TQ is an active hydrophobic component of Nigella sativa, known as black seed, that shows
several pharmacological properties and potential therapeutic effects such as anti-inflammatory and
antioxidant properties [46,47]. LAA, known as vitamin C, is a universal antioxidant that possesses
various benefits in preventing and reducing the common cold [48]. Its potential for alleviating acute
viral infections treatments [49,50] was also reported. The combination of LAA and TQ was proven to
have an anticonvulsant property by showing synergistic effects in lessening pentylenetetrazole-induced
seizures [51]. As TQ and LAA are both antioxidants, this powerful combination can scavenge reactive
oxygen species (ROS). ROS are unstable radicals containing oxygen that can easily react with molecules
in a cell. Its inhibition is important to maintain good health because an excessive amount of ROS
in the body could lead to oxidative stress. Prolonged oxidative stress state could then prime the
emergence of complications such as neurological disorders, hypertension and acute respiratory distress
syndrome [52]. Hence, by taking sufficient antioxidants in a more effective formulation, along with
practicing healthy life style, numerous illnesses could be prevented and a more productive life awaits.
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nanoparticles (PCNP)-thymoquinone (TQ)-L-ascorbic acid (LAA). 

TQ is an active hydrophobic component of Nigella sativa, known as black seed, that shows several 
pharmacological properties and potential therapeutic effects such as anti-inflammatory and 
antioxidant properties [46,47]. LAA, known as vitamin C, is a universal antioxidant that possesses 
various benefits in preventing and reducing the common cold [48]. Its potential for alleviating acute 
viral infections treatments [49,50] was also reported. The combination of LAA and TQ was proven to 
have an anticonvulsant property by showing synergistic effects in lessening pentylenetetrazole-
induced seizures [51]. As TQ and LAA are both antioxidants, this powerful combination can scavenge 
reactive oxygen species (ROS). ROS are unstable radicals containing oxygen that can easily react with 
molecules in a cell. Its inhibition is important to maintain good health because an excessive amount 
of ROS in the body could lead to oxidative stress. Prolonged oxidative stress state could then prime 
the emergence of complications such as neurological disorders, hypertension and acute respiratory 
distress syndrome [52]. Hence, by taking sufficient antioxidants in a more effective formulation, along 
with practicing healthy life style, numerous illnesses could be prevented and a more productive life 
awaits. 

The present work demonstrates the synthesis and optimization of stable and homogenously 
dispersed palmitoyl-chitosan nanoparticles co-loaded with thymoquinone and L-ascorbic acid 
(PCNP-TQ-LAA). This study explores how the dual loaded compounds, hydrophobic TQ and 
hydrophilic LAA in a modified chitosan nanoparticles system is possible. Development and study of 
such systems are important, as a lot of treatment regimens involve a concoction of drugs/compounds 
of different physico–kinetic properties and dual administration of their combination are often 
plagued with many problems. This study attempts to be a proof-of-concept to pave way for finding 
a solution to this. As suggested in Figure 2, ammonium cations (from the chitosan chains) form ionic 
interaction with the phosphate anions (from the TPP crosslinker). Such interaction is possible because 
the positively charge chitosan can form an electrostatic attraction with negatively charge TPP. A 
similar interaction was suggested in previous research work [53]. Analysis on particle size, dispersion 
and zeta potential by the nanosizer, investigation on the presence of functional groups by Fourier-
transform infrared spectroscopy (FTIR), surface morphologies by field-emission scanning electron 
microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) together with 
encapsulation and release efficiency studies by UV-Vis spectrophotometry were conducted to 
characterize the NPs. 

Figure 1. Proposed illustration of hydrophobically modified palmitoyl-chitosan nanoparticles
encapsulated with hydrophobic thymoquinone and hydrophilic l-ascorbic acid, palmiltoyl-chitosan
nanoparticles (PCNP)-thymoquinone (TQ)-l-ascorbic acid (LAA).

The present work demonstrates the synthesis and optimization of stable and homogenously
dispersed palmitoyl-chitosan nanoparticles co-loaded with thymoquinone and l-ascorbic acid
(PCNP-TQ-LAA). This study explores how the dual loaded compounds, hydrophobic TQ and
hydrophilic LAA in a modified chitosan nanoparticles system is possible. Development and study of
such systems are important, as a lot of treatment regimens involve a concoction of drugs/compounds
of different physico–kinetic properties and dual administration of their combination are often plagued
with many problems. This study attempts to be a proof-of-concept to pave way for finding a solution to
this. As suggested in Figure 2, ammonium cations (from the chitosan chains) form ionic interaction with
the phosphate anions (from the TPP crosslinker). Such interaction is possible because the positively
charge chitosan can form an electrostatic attraction with negatively charge TPP. A similar interaction
was suggested in previous research work [53]. Analysis on particle size, dispersion and zeta potential
by the nanosizer, investigation on the presence of functional groups by Fourier-transform infrared
spectroscopy (FTIR), surface morphologies by field-emission scanning electron microscopy (FESEM)
and high-resolution transmission electron microscopy (HRTEM) together with encapsulation and
release efficiency studies by UV-Vis spectrophotometry were conducted to characterize the NPs.Processes 2020, 8, x FOR PEER REVIEW 4 of 20 

 

 
Figure 2. Proposed ionic interaction of pamiltoyl-chitosan nanoparticles, PCNP (left) and palmitoyl-
chitosan nanoparticles encapsulated with thymoquinone and L-ascorbic acid, PCNP-TQ-LAA (right). 
“m” and “n” denote repetition of acetylated and deacetylated group of chitosan, respectively. (*) 
denotes hydrophobic–hydrophobic interaction between TQ and palmitic acid, while (~) denotes 
hydrophilic–hydrophilic interaction between L-ascorbic acid and tripolyphosphate. 
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Figure 2. Proposed ionic interaction of pamiltoyl-chitosan nanoparticles, PCNP (left) and
palmitoyl-chitosan nanoparticles encapsulated with thymoquinone and l-ascorbic acid, PCNP-TQ-LAA
(right). “m” and “n” denote repetition of acetylated and deacetylated group of chitosan, respectively.
(*) denotes hydrophobic–hydrophobic interaction between TQ and palmitic acid, while (~) denotes
hydrophilic–hydrophilic interaction between l-ascorbic acid and tripolyphosphate.
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2. Materials and Methods

2.1. Materials

CS with MW = 50,000–190,000 Da, ≥75% (deacetylated) was used as a carrier, and TPP with MW
= 367.86 Da was used as the crosslinking agent. Both were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Glacial acetic acid, sodium hydroxide pallets, 5% w/v hydrochloric acid, l-ascorbic
acid, dimethylsulfoxide (DMSO), sodium bicarbonate, sodium dodecyl sulfate and methanol were
purchased from R&M Chemicals (Semenyih, Selangor, Malaysia). Thymoquinone, palmitic acid
N-hydroxysuccinimide ester and picrylsulfonic acid solution were purchased from Sigma Aldrich
(St. Louis, MO, USA). Absolute ethanol was purchased from Systerm. Phosphate Buffered Saline (PBS)
pellet was purchased from MP Biomedicals (Solon, OH, USA). All chemicals are of analytical grade
and were used without any further purification.

2.2. Synthesis of Palmitic Acid-Modified Chitosan, PCS

For the purpose of modifying chitosan to be more hydrophobic, palmitic acid NHS ester was
added in the synthesis process. Chitosan (CS) powder was dissolved in 1.0% acetic acid and distilled
water to form a concentration of 1.0 mg/mL CS master solution (CS MS). Separately, palmitic acid
NHS ester was dissolved in absolute ethanol to a concentration of 0.36 mg/mL. Then, the CS solution
was adjusted to pH 6. Palmitic acid NHS ester solution was added into the CS solution dropwise,
with a volume ratio of 1:2 and the mixture was left for 20 h at 50 ◦C to react. After the incubation
completed, the solution was adjusted to pH 9 by using 1 M sodium hydroxide. Then, it was centrifuged
at 2200× g for 45 min to form a precipitate. Following precipitation, it was washed once with 50:50
acetone: absolute ethanol and twice with distilled water. The supernatant was removed from each
centrifugation cycle. The precipitate was dried in an oven for 72 h at 50 ◦C. This process produced
pellet, which is called palmitoyl-chitosan (PCS). The PCS pellet will be used to synthesize PCNP,
PCNP-LAA, PCNP-TQ and PCNP-LAA-TQ.

2.3. Synthesis of Palmitic Acid-Modified Chitosan Nanoparticles, PCNP

Firstly, the PCS pellet was dissolved with 1.0% acetic acid and distilled water to a concentration
of 1.0 mg/mL. It was diluted to two-fold to get 0.5 mg/mL PCS working solution. Then, the solution
was adjusted to pH 5 by adding 1 M aqueous sodium hydroxide solution. The crosslinker, TPP was
dissolved in distilled water to make a concentration of 0.7 mg/mL and altered to pH 2.0 by using 1.0 M
hydrochloric acid. PCNP was formed by adding 600 µL of PCS to 250 µL of TPP. Then, the mixture was
centrifuged at 13,000 rpm for 20 min to get purified PCNP (only for unencapsulated PCNP). Previously,
it was found that 250 µL of TPP was an optimum volume to synthesize CNP and therefore, the same
volume was used in this study to synthesize modified PCNP. That optimum TPP volume was mainly
determined based on the smallest empty carrier produced [42]. This is because the expansion after
encapsulation will be most minimal, which will enhance in vivo biological delivery.

2.4. Encapsulation of l-Ascorbic Acid and Thymoquinone into PCNP

For a single encapsulation process, LAA was prepared by first pouring approximately 10.0 mg of
LAA into 10.0 mL of 0.7 mg/mL TPP solution, making an LAA stock concentration of 5.7 mM. Then,
250 µL of diluted LAA was added into 600 µL of 0.5 mg/mL PCS solution, to produce PCNP-LAA.
Final LAA concentration that was used is 160µM. Another single-loaded PCNP, PCNP-TQ, was prepared
by dissolving approximately 2.0 mg of TQ in 2.0 mL of 99.0% DMSO, making a stock concentration
of 6.1 mM. Only 100 µL of diluted TQ was added into 600 µL of 0.5 mg/mL of PCS. Lastly, 250 µL of
0.7 mg/mL of TPP was dropped into the PCS-TQ mixture to produce PCNP-TQ. Final TQ concentration
that was used is 150 µM.

The encapsulation of both compounds, LAA and TQ, used to make PCNP-LAA-TQ is shown in
Figure 1. Basically, the LAA and TQ solutions were prepared as mentioned previously. PCNP-TQ-LAA
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was prepared by mixing 100 µL of diluted TQ solution with 600 µL of 0.5 mg/mL of PCS for a while.
Then, 250 µL of LAA-diluted solution was added into the mixture of TQ and PCS.

2.5. Quantification of Primary Amine Content in CNP and PCNP

Primary amine content determination was done by using a chemical called picrylsulfonic acid
(TNBS reagent) according to modified methods [30,54]. The process started with preparation of
the TNBS reagent, NaHCO3, SDS and HCl at concentration of 0.05% (v/v), 0.1 M, 10.0% (w/v) and
1.0 M, respectively. First, standard solutions of CS were prepared by performing two-fold dilution of
0.5 mg/mL CS solution in 0.1 M NaHCO3; each sample contained 50 µL of CS solution and 50 µL of
NaHCO3, serially diluted. This was followed by the addition of 50 µL of 0.05% (v/v) TNBS. Similar
steps were applied to prepare standard solutions for PCS. Second, for sample solutions, 100 µL of
CNP of different TPP volume (0 to 300 µL) were added into 100 µL of 0.05% (v/v) TNBS. All standards
and sample solutions were incubated at 37 ◦C water bath for 3 h. Next, 100 µL of all standard and
sample solutions were transferred into 96 well plates. This was followed by addition of 100 µL of 10.0%
(w/v) sodium dodecyl sulfate and 75 µL of 1.0 M HCl into each occupied well and they were mixed
well. Samples were then read with on a µQuant microplate reader (Bio-Tek Instruments, Winooski, VT,
USA) at 335 nm. Absorbance values were analyzed by using Equation (2) to find the primary amine
percentage available:

Percentage o f available amines =

Abs. o f CNP
Abs. o f PCNP

Abs. o f CS
Abs. o f PCS

× 100 (1)

2.6. Physicochemical Characterizations of PCNP Samples

2.6.1. Detection of Functional Groups in PCNP Samples

Emergence and disappearance of functional groups in nanoparticle samples were detected by
FTIR. Prior to analyzing samples by FTIR, they were freeze-dried using a Coolsafe 95-15 PRO freeze
drier (ScanVac, Lynge, Denmark) for 48 h to pull out liquid content. FTIR was performed using a
Perkin Elmer Spectrum 100 FTIR Spectrometer (Shelton, CT, USA) with a universal attenuated total
reflectance (ATR) technique to identify the functional groups in the PCNPs. Samples were measured in
the range of 280–4000 cm−1 at 25 ◦C.

2.6.2. Particle Size Distribution, PSD Study

PSD study was performed by using dynamic light scattering (DLS) technique to analyze particle
size, dispersity in the sample and zeta potential. Prepared NPs were diluted with distilled water to
produce 40% v/v solution. Then, the sample was analyzed by using Zetasizer 3000HSA (Malvern
Instruments, Worcestershire, UK). pH of the system was around 6–6.5, near to pKa of chitosan.
Three different synthesis batches (N = 3) were used in this study to obtain the average particle size,
polydispersity index (PDI) and zeta potential.

2.6.3. Surface Morphology of PCNP Samples by Field-Emission Scanning Electron
Microscopy (FESEM)

The surface morphologies of PCNP, PCNP-TQ, PCNP-LAA and PCNP-TQ-LAA were observed
using FESEM analysis. Samples were prepared as for DLS study, which were then sonicated for
five minutes. Small volumes of samples were dropped on cleaned stubs and left to dry for three
days in a 50 ◦C oven. The dried samples were coated with platinum by using JEOL JEC-3000FC
auto fine coater (Tokyo, Japan). Finally, the samples were analyzed under an electron microscope,
JEOL JSM 7600F (Tokyo, Japan). The NP diameters and particle size distributions were calculated
using Image J software by National Institutes of Health (version 1.52a) from the FESEM image analysis
of 50 individual particles [55].
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2.6.4. Surface Morphology of PCNP Samples by High-Resolution Transmission Electron
Microscopy (HRTEM)

HRTEM was used to determine morphology and clarify functions of detected structures; also,
to measure particle size and check its uniformity. Firstly, samples were prepared as for DLS study,
followed by sonication for fifteen minutes. Then, a tiny droplet of each sample was applied onto a
formvar/carbon film, 400 mesh copper TEM grids. After that, the samples were letft to dry for 7 h
under a lamp, followed by the analysis process by JEOL JEM 2100F Field Emission TEM (Tokyo, Japan).

2.6.5. Encapsulation Efficiency Study of Thymoquinone and l-Ascorbic Acid into PCNP

The encapsulation efficiency (EE) was calculated by comparing the difference in absorbance of a
total compound and free compound. Total compound refers to compound solution only, while free
compound refers to the compound that is unencapsulated in PCNP-TQ, PCNP-LAA or PCNP-TQ-LAA.
Both solutions contained the same concentration of the compound. The % EE indicates the percentage of
compound successfully encapsulated in the carrier; it was calculated using the following formula [56]:

Encapsulation e f f iciency, % =
Abs. o f total compound – Abs. o f f ree compound

Abs. o f total compound
× 100 (2)

The absorbance was measured using Lambda 35 UV–Vis spectrophotometer (PerkinElmer,
Waltham, MA, USA) at wavelengths of 257 nm and 267 nm for LAA and TQ, respectively.
The wavelengths were determined based on the highest peak detected. Triplicate test (N = 3)
analysis of single and dual compounds loaded in PCNP were tested.

2.6.6. Preliminary Study of Thymoquinone and l-Ascorbic Acid In Vitro Release from PCNP

The in vitro release study of thymoquinone (TQ) and l-ascorbic acid (LAA) loaded PCNP
formulations were conducted first by freeze-drying all samples using a Coolsafe 95-15 PRO freeze
drier (ScanVac, Lynge, Denmark) for 48 h. Then, the pellet was loaded into a quartz cuvette containing
phosphate-buffered saline (PBS) pH 7.4. The cuvette was later inserted into a UV–Vis spectrophotometer
(PerkinElmer, Waltham, MA, USA) and set to wavelengths of 257 nm and 267 nm for LAA and TQ,
respectively. The sample was left in the UV–Vis spectrophotometer for 48 h, with auto data recording
set for every 1 min (time drive option).

A calibration curve for each compound is needed in order to convert the absorbance reading to
the concentration of the compound released. After considering the dilution factor, the percentage of
compound released (%) could then be measured using the following formula:

Compound released, % =
Released compound concentration

Encapsulated compound concentration
× 100 (3)

Obtained release profiles were analyzed with zero order, first order, Higuchi, Hixson–Crowell
and Korsmeyer–Peppas models.

Zero-order kinetic model is as follows [57]:

mt = mb + k0t, (4)

where mt is the amount of compound released at time t, mb is the amount of compound in solution
before release (usually 0) and k0 is the zero-order rate constant.

First-order kinetic model is as follows [57]:

ln(m0 −mt) = ln(m0) − k1t, (5)

where m0 is the amount of compound in the formulation before the dissolution and k1 is the first-order
release rate constant.
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Higuchi model is as follows [58]:
mt = kH

√
t, (6)

where kH is Higuchi rate constant.
Hixson–Crowell model is as follows [59]:

3√m0 − 3
√

mle f t = kH−Ct, (7)

where mle f t is the amount of compound left in the formulation over time t and kH−C is Hixson–Crowell
rate constant.

Korsmeyer–Peppas model is as follows [60]:

log
( mt

m∞

)
= log kK−P + n log t (8)

where m∞ is the amount of compound released after an infinitive time, kK−P is Korsmeyer–Peppas rate
constant and n is the parameter indicative of the release mechanism.

3. Results and Discussion

3.1. Quantification of Hydrophobic Palmitic Acid Functionalization on Chitosan by (TNBS) Assay

The amount of primary amine content in chitosan (CS) before and after modified with palmitic
acid are shown in Table 1 and Figure 3. At optimum TPP volume of 250 µL, 25% of free amine content
decreased from 88.35 ± 5.78% (CNP) to 62.99 ± 2.18% (PCNP). Decreased in the free primary amine
groups of CS with TPP indicates increased in the crosslinking reactions between cationic amine groups
of CS and anionic TPP. In other words, functionalization of the amine group of CS with hydrophobic
palmitic acid NHS was a success and this outcome is similarly seen in previous studies [30,41]. This is
essential to ensure adequate sites for hydrophobic thymoquinone encapsulation later. As shown
in Figure 4, the palmitic acid only conjugated the amine sites of CS partially and that is crucial
because some of the amine sites will be utilized by TPP crosslinker to interact during the PCNPs
synthesis later [61].

Table 1. Percentage of free amine and significancy test (t-test) between chitosan nanoparticles (CNP)
and PCNP at different sodium tripolyphosphate (TPP) volume. (a) significant **** with a p value
of <0.0001, (b) significant *** with a p value of 0.0004, (c) significant **** with a p value of <0.0001,
(d) significant **** with a p value of <0.0001, (e) significant **** with a p value of <0.0001, (f) significant
*** with a p value of 0.0004, and (g) significant *** with a p value of 0.0004.

Label
Volume of
TPP (µL)

Percentage of Free Amine (%) t-Test

CNP Standard
Deviation PCNP Standard

Deviation p-Value
Significance between

CNP and PCNP Reading
at Different TPP Volume

a 0 100.00 0 84.76 0.77 <0.0001 ****
b 50 97.41 1.15 77.11 2.93 0.0004 ***
c 100 94.05 0.94 74.04 0.79 <0.0001 ****
d 150 93.47 1.59 71.61 1.78 <0.0001 ****
e 200 92.54 2.16 64.72 2.14 <0.0001 ****
f 250 84.87 2.81 62.99 2.18 0.0004 ***
g 300 92.38 4.70 58.17 2.43 0.0004 ***
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Figure 4. Conjugation of palmitic acid to amine group of chitosan. (left) Structure refers to unmodified
CNP, and (right) structure refers to modified PCNP. “m” and “n” denote repetition of acetylated and
deacetylated group of chitosan, respectively.

3.2. Functional Groups Determination by Fourier-Transform Infrared Spectroscopy (FTIR)

ATR-FTIR spectra of the NPs samples; PCNP, PCNP-TQ, PCNP-LAA and PCNP-TQ-LAA are
shown in Figure 5 in the range of 4000–650 cm−1. A number of moieties were recognized based
on the peaks and the numerical values of transmitted beams are reported in Table 2. Based on
Table 2, PCNP, PCNP-LAA and PCNP-TQ-LAA have the same set of peaks. The FTIR interpretation
was done by referring to the Virtual Textbook of Organic Chemistry, Infrared Spectroscopy topic by
William Reusch [62].
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Table 2. Percent transmittance of functional groups existed in PCNP, PCNP-TQ, PCNP-LAA
and PCNP-TQ-LAA.

Peak Functional Group Wavenumber (cm−1)
Percent Transmittance (%)

PCNP PCNP-TQ PCNP-LAA PCNP-TQ-LAA

a Alcohol OH (H bonded) and NH
stretch (2◦ amine) 3399 7.47 4.15 3.17 6.18

b
Amine NH2 scissor (1◦ amine),

carboxylic acid C=O (amide) and
alkene C=C stretch

1647 24.20 20.24 12.46 21.96

c Amine NH2 scissor (1◦ amine) 1563 26.91 - 10.89 18.99

d Carboxylic acid NH (amide) bend 1542 - 62.19 - -

e
Alkane CH2 and CH3

deformation and carboxylic acid
C-O-H bend

1414 42.41 - 24.14 36.45

f Alkane CH2 and CH3
deformation 1379 - 56.40 - -

g Amine C-N and carboxylic acid
C-O stretch, P=O stretch 1106 3.19 9.01 8.52 7.02

h Alkene =C-H and =CH2 bend 903 12.77 28.42 26.88 18.32

i Amine NH2 and N-H wagging
(shifts on H-bonding) 718 64.79 63.52 77.46 86.57
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Figure 5. Fourier-transform infrared spectroscopy (FTIR) spectra of PCNP, PCNP-TQ, PCNP-LAA and
PCNP-TQ-LAA. The labelled peaks that represent certain functional groups are stated in Table 2.

PCNP-TQ, on the other hand, has extra peak d (1542 cm−1) and peak f (1379 cm−1) that represent
carboxylic acid NH (amide) bend and alkane CH2 and CH3 deformation, respectively. The emergence
of these peaks could be supported by the chemical structure of TQ itself (refer to Supplementary
Materials, Figure S1). TQ has many C=O components that might bind with the amine of palmitic
acid-NHS and CS. This answers the emergence of peak d and indirectly proves that hydrophobic TQ
had successfully interacted with hydrophobic palmitic acid-NHS, which enhanced its encapsulation.
Peak f in PCNP-TQ, on the other hand, emerged to resemble CH2 and CH3 deformation in conjunction
with TQ association with palmitic acid NHS.

Peak a at 3399 cm−1 appeared in all samples and it suggests an overlay of alcohol OH (H bonded)
with secondary amine NH stretch. The strong and broad peak a was majorly contributed by OH
(H bonded) stretch, while NH stretch was weak. For peak a, encapsulated PCNPs had stronger
bands as compared to PCNP because PCNP has the least source of OH. PCNP-LAA showed the
strongest band because LAA has the highest OH sites that could have bonded with the OH from
TPP (refer to Supplementary Materials, Figure S1 for LAA chemical structure). On the other hand,
NH contributed to the emergence of the peak a and CS played an important role in supplying NH for
all PCNPs conditions.



Processes 2020, 8, 1040 10 of 19

Peak b at 1647 cm−1 appeared in all samples and they are primary amine, C=O amide and alkene
C=C stretch. It also represents N–C=O group resulted in the addition of palmitic acid to chitosan
during the hydrophobic modification. This N–C=O group was less significant in unmodified chitosan
samples as reported by Othman et al., 2018 in Table 1 [42]. Therefore, this justifies the successful
insertion of palmitic acid to chitosan. Besides, similar palmitoyl-chitosan nanoparticles have been
reported to exhibit palmitic acid in this range [41,45].

3.3. Particle Size Distribution by Zetasizer

The particle size distribution of all samples (PCNP, PCNP-TQ, PCNP-LAA and PCNP-TQ-LAA)
were analyzed by zetasizer. The size, polydispersity index (PDI) and zeta potential of particles
were successfully determined as shown in Table 3 and Figure 6. Particle size resembles the size of
nanoparticles, while PDI resembles homogeneity of particles distribution; lower PDI samples are made
up of more uniform particles size and therefore, they are more monodisperse [30]. Zeta potential,
on the other hand, indicates the surface charge of nanoparticles that develops at the particle–liquid
interface (slipping plane).

Overall, PCNP had the smallest particle size average, 92.6 ± 8.6 nm because it has not been
encapsulated with any antioxidant yet. Therefore, the crosslinked PCS with TPP resulted in the
smallest particles, with a size less than 100 nm. PNCP also had the lowest PDI value, 0.277 ± 0.103;
this indicates that it had the most even dispersion of particles as compared to other samples. Studies
reported that incorporation of compounds or drugs into nanoparticles resulted in increased of particle
size [45,63]. Likewise, in this study, the encapsulated nanoparticle samples, PCNP-TQ, PCNP-LAA and
PCNP-TQ-LAA showed an increment in size. PCNP-LAA had a slightly larger particles, 165.8 ± 12.9 nm
than PCNP-TQ, 158.3 ± 13.9 nm because LAA has a higher molecular weight, 176.12 g/mol, while TQ is
164.20 g/mol. Furthermore, the final concentration of LAA used in the PCNP-LAA and PCNP-TQ-LAA
formulation was 160 µM; which is 10 µM more than TQ encapsulated in PCNP-TQ and PCNP-TQ-LAA.
Additionally, TQ also has more double bonds as compared to LAA; hence, it may have a smaller radius
as it is more compact (refer to Supplementary Materials, Figure S1). For PCNP-TQ-LAA, the average
particle size was the biggest, 247.7 ± 24.0 nm, and it signifies that LAA and TQ had been efficaciously
encapsulated. Besides that, the PDI value of PCNP-TQ-LAA was 0.348 ± 0.043 and it is lower than
PCNP-TQ, 0.374 ± 0.052 and PCNP-LAA, 0.392 ± 0.087. This remarks that dual loaded PCNP had
more unvarying particles size against single loaded PCNP-TQ and PCNP-LAA due to more complex
crosslinking formation.

For zeta potential, the values among samples did not differ much. It can be concluded that the
encapsulation of thymoquinone, TQ and l-ascorbic acid, LAA did not contribute to a significant
change of the nanoparticle surface charge. Therefore, it proves that they did not conjugate to the
nanoparticle, instead they were encapsulated. In addition, the zeta potentials of PCNPs were almost
similar with reported studies, which were in the range of +20 mV to +30 mV [46,64,65]. Moreover,
the positively charged PCNPs could provide better interaction with negatively charged mucosal
membrane; this could later facilitate the PCNPs delivery and cellular uptake [46,66].

Table 3. Particle size, polydispersity index and zeta potential of all samples; PCNP, PCNP-TQ,
PCNP-LAA and PCNP-TQ-LAA.

Sample Particle Size (nm) PDI Zeta Potential (mV)

PCNP 92.6 ± 8.6 0.277 ± 0.103 22.35 ± 1.48
PCNP-TQ 158.3 ± 13.9 0.374 ± 0.052 19.45 ± 1.20

PCNP-LAA 165.8 ± 12.9 0.392 ± 0.087 20.60 ± 1.13
PCNP-TQ-LAA 247.7 ± 24.0 0.348 ± 0.043 19.60 ± 1.27



Processes 2020, 8, 1040 11 of 19

Processes 2020, 8, x FOR PEER REVIEW 11 of 20 

 

3.3. Particle Size Distribution by Zetasizer 

The particle size distribution of all samples (PCNP, PCNP-TQ, PCNP-LAA and PCNP-TQ-LAA) 
were analyzed by zetasizer. The size, polydispersity index (PDI) and zeta potential of particles were 
successfully determined as shown in Table 3 and Figure 6. Particle size resembles the size of 
nanoparticles, while PDI resembles homogeneity of particles distribution; lower PDI samples are 
made up of more uniform particles size and therefore, they are more monodisperse [30]. Zeta 
potential, on the other hand, indicates the surface charge of nanoparticles that develops at the 
particle–liquid interface (slipping plane). 

Table 3. Particle size, polydispersity index and zeta potential of all samples; PCNP, PCNP-TQ, PCNP-
LAA and PCNP-TQ-LAA. 

Sample Particle Size (nm) PDI Zeta Potential (mV) 
PCNP 92.6 ± 8.6 0.277 ± 0.103 22.35 ± 1.48 

PCNP-TQ 158.3 ± 13.9 0.374 ± 0.052 19.45 ± 1.20 
PCNP-LAA 165.8 ± 12.9 0.392 ± 0.087 20.60 ± 1.13 

PCNP-TQ-LAA 247.7 ± 24.0 0.348 ± 0.043 19.60 ± 1.27 

 
Figure 6. (A) Particle size of PCNP, PCNP-TQ, PCNP-LAA and PCNP-TQ-LAA, with t-test conducted 
to see the significance of particle size changes between samples. The confidence level was set to 95% 
and the results are labelled as a to f. (a) Significant ** with a p-value of 0.0022, (b) significant ** with a 
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Polydispersity index and significance test (t-test) of PCNP, PCNP-TQ, PCNP-LAA and PCNP-TQ-
LAA. (a) Not significant with a p-value of 0.2168, (b) not significant with a p-value of 0.2129, (c) not 
significant with a p-value of 0.3279, (d) not significant with a p-value of 0.7820, (e) not significant with 
a p-value of 0.5437, and (f) not significant with a p-value of 0.4818. (C) Zeta potential and significance 
test (t-test) of PCNP, PCNP-TQ, PCNP-LAA and PCNP-TQ-LAA. The differences between all samples 
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Figure 6. (A) Particle size of PCNP, PCNP-TQ, PCNP-LAA and PCNP-TQ-LAA, with t-test conducted
to see the significance of particle size changes between samples. The confidence level was set to 95%
and the results are labelled as a to f. (a) Significant ** with a p-value of 0.0022, (b) significant ** with a
p-value of 0.0012, (c) significant *** with a p-value of 0.0005, (d) not significant with a p-value of 0.5320,
(e) significant ** with a p-value of 0.0051, and (f) significant ** with a p-value of 0.0065. (B) Polydispersity
index and significance test (t-test) of PCNP, PCNP-TQ, PCNP-LAA and PCNP-TQ-LAA. (a) Not
significant with a p-value of 0.2168, (b) not significant with a p-value of 0.2129, (c) not significant with a
p-value of 0.3279, (d) not significant with a p-value of 0.7820, (e) not significant with a p-value of 0.5437,
and (f) not significant with a p-value of 0.4818. (C) Zeta potential and significance test (t-test) of PCNP,
PCNP-TQ, PCNP-LAA and PCNP-TQ-LAA. The differences between all samples were insignificant
with (a–f) p-values of 0.1649, 0.3161, 0.1851, 0.4284, 0.9146 and 0.4936, respectively.

3.4. Surface Morphologies of Nanoparticles

Morphologies of empty PCNP, single loaded PCNP-TQ and PCNP-LAA and dual loaded
PCNP-TQ-LAA were performed by FESEM and HRTEM. FESEM images were taken at 50,000 magnification
as shown in Figure 7A, while HRTEM images were taken at 10,000 magnification as shown in Figure 7C.
All samples were performed at least thrice.
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Figure 7. Field-emission scanning electron microscopy (FESEM) images (column A), normal distribution
of particles based on FESEM images (column B) and high-resolution transmission electron microscopy
(HRTEM) images (column C) of PCNP, PCNP-TQ, PCNP-LAA and PCNP-TQ-LAA samples (from top
to bottom row). Particle sizes increased as the encapsulated number of antioxidant increased (from
empty PCNP to PCNP-TQ-LAA).

Based on FESEM images Figure 7A, the shape of nanoparticles is spherical with uneven surface
texture. As reported by a few researchers, the spherical shape of nanoparticles establishes more
efficacious therapeutics delivery process by having large surface areas [11,16,17]. The formation
of particles was clearly seen and the particle sizes were in range if compared with PSD study.
Figure 7B shows a histogram and normal distribution curves of particle size based on the FESEM
images. The bin range for PCNP is 20 while the other bin range is 30. The average particle size
of PCNP was 81.49 ± 14.33 nm. PCNP had the smallest particle size average in comparison with
PCNP-TQ, 165.32 ± 21.80 nm, PCNP-LAA, 153.50 ± 51.89 nm and PCNP-TQ-LAA, 195.90 ± 34.58 nm.
For PCNP-TQ particle size distribution (refer to Figure 7B, PCNP-TQ), the second most measured
particles have a size range of 90–110 nm. This clarifies that there are few particles unencapsulated and
it matches with encapsulation efficiency percentage of TQ as stated in Table 4, which is only 41.3 ± 0.6%.
On the other hand, PCNP-LAA has better particle dispersion as compared to PCNP-TQ because of the
selectivity of chitosan that readily interacted with LAA which is of the same nature, hydrophilic [67].
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HRTEM images, on the other hand, show layers of compounds by looking at the different color
tones. Black particles represent the nanoparticles that have an average size that is almost the same as
FESEM and PSD results. Besides, there are lots of tiny white pods in PCNP and PCNP-TQ which are
palmitic acid micelles, the chemical used to modify chitosan to hydrophobic. The existence of palmitic
acid in the system could be proven by looking at the FTIR interpretation. However, once PCNP was
loaded with LAA, the white pods were less obvious and solid lines outlining those particles appeared
to separate them from the surrounding. Meanwhile in PCNP-TQ-LAA, the image of particles became
opaque, which indicated that they were fully occupied.

In addition, small white pods were also seen outside of the black particles. They are globular
unreacted palmitic acid micelles. The amount of palmitic acid loaded might be excessive; therefore,
they leached out from the NPs. It was proposed that the palmitic acid will attach to chitosan as an
anchor on the surface of it; instead, it formed circular shapes. The palmitic acid anchor might be too
long, which caused the formation of a circle as a result of joint ends.

3.5. Encapsulation Efficiency (EE)

This study was conducted to quantify how much of the loaded compound was successfully
encapsulated. The concentration of TQ and LAA loaded in each sample PCNP-TQ, PCNP-LAA and
PCNP-TQ-LAA were 150 µM and 160 µM, respectively. These optimized concentrations were used
according to the previous study on unmodified chitosan nanoparticles done by Othman et al. (2018) in
Section 3.5 [42]. According to Table 4 and Figure 8, LAA showed better EE as compared to TQ in both
single and dual system PCNP with EE values of 73.0 ± 2.6% (116.8 µM) and 90.0 ± 0.0% (143.9 µM),
respectively. These EE of LAA were much higher as compared to its EE before the modification by
palmitic acid. By looking at Section 3.5, Table 4 by Othman et al., 2018, the EE of LAA in unmodified
CNP-LAA and CNP-TQ-LAA were 69.3 ± 1.8% (110.9 µM) and 22.8 ± 3.2% (36.5 µM), respectively [42].

Table 4. The concentration of TQ and LAA loaded and encapsulated in PCNP samples.

Compound Loaded Compound
Concentration (µM) EE (%) Standard

Deviation
Encapsulated Compound

Concentration (µM)

TQ in PCNP-TQ
150

41.3 0.6 62.0
TQ in PCNP-TQ-LAA 64.9 5.3 97.3

LAA in PCNP-LAA
160

73.0 2.6 116.8
LAA in PCNP-TQ-LAA 90.0 0.0 143.9
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Figure 8. The percentage encapsulation of TQ in PCNP-TQ, TQ in PCNP-TQ-LAA, LAA in PCNP-LAA,
and LAA in PCNP-TQ-LAA. A t-test was conducted to see the significance of the percentage
encapsulation changes between samples. The confidence level was set to 95% and the results
are labelled as a to f. (a) Significant ** with a p-value of 0.0097, (b) significant *** with a p-value of 0.0005,
(c) significant **** with p-value of <0.0001, (d) not significant with a p-value of 0.0762, (e) significant **
with a p-value of 0.0080, and (f) significant ** with p-value of 0.0031.
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On the other hand, only 41.3 ± 0.6% (62.0 µM) and 64.9 ± 5.3% (97.3 µM) of TQ were encapsulated
in PCNP-TQ and PCNP-TQ-LAA, respectively. Lower EE of TQ compared with LAA in PCNPs was
contributed by the hydrophobic nature of the compound itself, which requires stronger energy to
interact with the main polymer, hydrophilic chitosan [33,46,68]. However, by having the palmitic
acid modifier that holds TQ in place, the EE of TQ in the modified PCNPs were found to be higher
compared to EE of TQ in the unmodified CNPs. As stated by Othman et al., 2018 in Section 3.5, Table 4,
the EE of TQ in unmodified CNP-TQ and CNP-TQ-LAA were 68.7 ± 4.8% (103.1 µM) and 35.6 ± 3.6%
(53.4 µM), respectively [42].

Following the modification, both TQ and LAA showed an increase in the EE for the dual loaded
system. The EE of TQ in modified PCNP-TQ-LAA increased to about 29% compared to unmodified
CNP-TQ-LAA. Meanwhile, the EE of LAA in modified PCNP-TQ-LAA increased to about 67%
compared to unmodified CNP-TQ-LAA. This proves that the modification of chitosan by palmitic
acid NHS was able to augment the EE of antioxidants. Same observations were seen in the increment
of drugs EE when palmitic acid was used as a modifier in chitosan [30,41]. This clarifies that the
palmitic acid is a highly potential modifier in polymeric nanocarrier for encapsulation enhancement
of pharmaceuticals.

3.6. Preliminary Study of Thymoquinone and l-Ascorbic Acid In Vitro Release from PCNP

Release study was conducted to quantify how much of the encapsulated compound was
successfully released from the PCNP carrier. The percentage and concentration of compounds
released were included in Table 5. Release of TQ from the dual loaded system, PCNP-TQ-LAA was
37% more than the release of TQ from single loaded PCNP-TQ. LAA also showed higher release
percentage from the dual loaded system as compared to a single loaded system, PCNP-LAA by around
19%. This trend indicates that when TQ and LAA were encapsulated together in a carrier, they could
be released more efficiently.

Table 5. Release percentage and concentration of thymoquinone (TQ) and l-ascorbic acid (LAA) from
PCNP samples.

Label Release of
Released

Percentage (%) Concentration (µM) Total Time (h)

A TQ from PCNP-TQ 60.6 37.6 43.9
B TQ from PCNP-TQ-LAA 97.5 94.9 43.9
C LAA from PCNP-LAA 17.0 19.8 33.7
D LAA from PCNP-TQ-LAA 36.1 52.0 33.7

The zero-order, first-order, Higuchi, Hixson–Crowell and Korsmeyer–Peppas plots were made for
each release sample (A, B, C and D as labelled in Table 5). Release kinetic of a sample was determined
by selecting the highest correlation value, R2 from the best fit line of all models. Figure 9 summarizes
the best release kinetic model for all samples. Only sample C follows the Higuchi model, while the rest
follow the zero-order model. The zero-order explains the constant release rate of a pharmaceutical
product. It means TQ and LAA were able to be released controllably from the dual loaded system,
PCNP-TQ-LAA. This indirectly tells us that the system could help people predict how long to expect a
pharmaceutical product to work.
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Figure 9. Release kinetics summary of TQ and LAA from all samples. (A) Release of TQ from PCNP-TQ,
(B) release of TQ from PCNP-TQ-LAA, (C) release of LAA from PCNP-TQ-LAA and (D) release of
LAA from PCNP-TQ-LAA. (A,B,D) follow zero-order release kinetics, while (C) follows the Higuchi
release kinetic.

4. Conclusions

In this study, modification of biodegradable and biocompatible chitosan with palmitic acid NHS
prior to nanoparticles formation had resulted in average particle size of around 250 nm for dual loaded
thymoquinone and l-ascorbic acid palmitoyl-chitosan nanoparticles, PCNP-TQ-LAA. The robust and
easy modification had also successfully increased the encapsulation efficiency of thymoquinone and
l-ascorbic acid in the dual loaded system by about 29% and 67%, respectively; therefore, less loaded
antioxidants were unencapsulated. This is supported by FTIR spectra of particular peaks to resemble
related functional groups and also by morphology images using FESEM and HRTEM. It could also be
proven that a 2:1 volume ratio of chitosan to palmitic acid NHS is remarkably appropriate to obtain
partial hydrophobic sites in chitosan for more efficient encapsulation of antioxidants. The achievement of
modifying this carrier with better capability of encapsulating dual classes hydrophilic and hydrophobic
antioxidants has contributed to improvization in multi-drug therapy. As the dual loaded antioxidants
TQ and LAA showed zero- order release kinetics, the polymeric nanoparticles carrier could potentially
be reused with different sets of drugs for more effective delivery.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/9/1040/s1,
Figure S1: Chemical structure of thymoquinone, TQ (left) and l-ascorbic acid, LAA (right).
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