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Abstract: An increase of environmental awareness recently has increased the interest of researchers
in using of biopolymer-based films. The films have been prepared extensively by utilizing starch,
carboxymethyl cellulose, chitosan, protein, gelatin, carrageenan, alginate, pectin, guar gum and
pullulan. They are typically modified with surface-active agents (surfactants) such as glycerol
monostearate, sucrose ester, sodium stearoyl lactate, sodium dodecyl sulfate, ethyl lauroyl arginate
HCl, Span 20 to 80, Tween-20 to 80 and soy lecithin for improving the functional properties of the
films. In this brief review, two types of biopolymer-based films that prepared through casting method
were categorized, specifically solution- and emulsion-based films. The four types of surfactants,
namely non-ionic, anionic, cationic and amphoteric surfactants that are regularly used to modify
biopolymer-based films are also described. The functional properties of the films modified with
different types of surfactants are briefly reviewed. This study enhances the attraction of researchers
in biopolymer-based films and the improvement of new concepts in this niche area.

Keywords: surfactant; biopolymer; film; functional properties

1. Introduction

Today—due to environmental concerns and growing of the biodegradable plastic industry—the use
of biopolymer-based films in the food industry and food packaging has become a trend. The bio-based
resources are also contributing to the growth of the industry since they are sustainable and renewable
supplies. Biopolymers are polymeric biomolecules obtained from natural sources. Starch was commonly
used for the preparation of biopolymer-based films [1,2]. Starch can be obtained from corn [3–6],
potato [7–9], cassava [10,11], tapioca [12,13], sorghum [14], loquat seed [15], kudzu [16], wheat [6]
and yellow pea [17]. On the other hand, carboxymethyl cellulose (CMC) [18,19], chitosan [20–24],
protein [25–31], gelatin [32–36], carrageenan [37,38], pectin [39], guar gum [17,40] and pullulan [41]
(chemical structures displayed in Figure 1) are also utilized in preparation of biopolymer-based films
because of they are biodegradable, renewable, low-cost and abundance. The films also have moderate
mechanical properties such as tensile strength and elongation at break [42]. However, they have high
water vapor permeability character [43] and poor moisture barrier property [44].
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Figure 1. Chemical structures of (a) starch, (b) carboxymethyl cellulose (CMC), (c) chitosan [45], (d) 
carrageenan, (e) pectin, (f) guar gum and (g) pullulan. 

Surface-active agents (surfactants) such as glycerol monostearate [3,5,46], sucrose ester [1,39,47], 
sodium stearoyl lactate [39], sodium dodecyl sulfate [10], ethyl lauroyl arginate HCl [48,49], Span 20 
to 80 [2,5,6,16,50,51], Tween-20 to 80 [11,15,18,20,22,37,41,52] and soy lecithin [2,27,28,31,43,53] 
(chemical structures indicated in Figure 2) are usually used as modifier for the biopolymer-based 
films. Surfactants possessed an amphiphilic character that has hydrophilic and hydrophobic 
properties [12]. The modification of the films by surfactants not only decreases water vapor 
permeability [24], but also improve the moisture barrier property of the films [51]. 

Figure 1. Chemical structures of (a) starch, (b) carboxymethyl cellulose (CMC), (c) chitosan [45],
(d) carrageenan, (e) pectin, (f) guar gum and (g) pullulan.

Surface-active agents (surfactants) such as glycerol monostearate [3,5,46], sucrose ester [1,39,47],
sodium stearoyl lactate [39], sodium dodecyl sulfate [10], ethyl lauroyl arginate HCl [48,49], Span 20 to
80 [2,5,6,16,50,51], Tween-20 to 80 [11,15,18,20,22,37,41,52] and soy lecithin [2,27,28,31,43,53] (chemical
structures indicated in Figure 2) are usually used as modifier for the biopolymer-based films.
Surfactants possessed an amphiphilic character that has hydrophilic and hydrophobic properties [12].
The modification of the films by surfactants not only decreases water vapor permeability [24], but also
improve the moisture barrier property of the films [51].
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In the last two decades, much research has been conducted with the objective of improving
the functional properties (e.g., mechanical properties (tensile strength, elongation at break), water
affinities (water vapor permeability, moisture content, solubility, swelling), contact angle, thermal
stability, oxygen permeability and opacity) of biopolymer-based films by utilizing surfactants.
Moreover, some works have concentrated on the emulsification for the preparation of biopolymer-based
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films. Nevertheless, to the best knowledge of the authors, no brief review has been created comprising
the study on the preparation and modification of biopolymer-based films. This is the purpose of
creating an organized review in this study.

2. Types of Biopolymer-Based Films

2.1. Solution-Based Films

Solution-based films are commonly prepared by dissolving a water-soluble biopolymer in the
solvent such as water and heating at elevated temperatures with stirring to obtain a biopolymer
solution. The attained solution is considered as film-forming solution (FFS) [1,6,33,35,54]. The solution
casting technique is conducted by pouring the FFS into a flat-surfaced mold and drying in an oven
or room temperature to acquire free-standing film [55]. The solution-based films are easy to prepare,
and they are only required inexpensive tools. Table 1 shows the types of biopolymers, additional
components and processing parameters of the films. The additional components such as glycerol,
sorbitol and glucose (chemical structures exhibited in Figure 3) are typically added into the biopolymer
solution to act as plasticizers for the prepared biopolymer-based films [4,9,28]. On the other hand,
acetic acid and glucomannan function as a dissolving agent and a thickening agent for chitosan and
pectin, respectively.

Table 1. Types of biopolymers, additional components and processing parameters of the solution-based films.

Biopolymer Additional
Component Processing Parameter References

Kudzu starch Glycerol 3.0% (w/v) of kudzu starch, 0.9% (w/v) of glycerol, 100 mL
of water, stirring at temperature of 100 ◦C. [16]

CMC Glycerol 2.5 g/L of CMC, 5 g/L of glycerol, 350 mL of water, stirring
at temperature of 60 ◦C. [56]

Chitosan Acetic acid,
glycerol

1 g of chitosan, 1 g of acetic acid, 20 g of glycerol, 100 mL
of water, stirring at room temperature (25 ± 1 ◦C). [24]

Gelatin Glycerol 3.5 g of gelatin, 30 wt% of glycerol, 90 mL of water, stirring
at temperature of 70 ◦C. [57]

Pectin Glucomannan 1% (w/v) of pectin, 0.75% (w/v) of glucomannan, 100 mL of
water, stirring at room temperature (25 ± 1 ◦C). [39]

Guar gum Glycerol 0.3 g of guar gum, 25 wt% of glycerol, 100 mL of water,
stirring at temperature of 40 ◦C. [17]

Pullulan Glycerol 2% (w/v) of pullulan, 15 wt% of glycerol, 100 mL of water,
stirring at temperature of 45 ◦C. [41]

Loquat seed
starch Sorbitol 3.5% (w/v) of loquat seed starch, 45% (w/w) of sorbitol,

100 mL of water, stirring at temperature of 95 ◦C. [15]

Starch/chitosan Glycerol,
glucose

1.5% (w/v) of starch/chitosan, 1% (w/v) of glycerol or
glucose, 100 mL of water, stirring at temperature of 90 ◦C. [9]
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2.2. Emulsion-Based Films

Emulsion-based films are generally prepared by making FFS first (as described in Section 2.1).
After this, oil containing surfactant is made by inserting surfactant into the oil and then it is added into
the FFS, followed by homogenizing to attain film-forming emulsion (FFE) [8,35,36,43,50]. The film
is obtained by casting the FFE into glass plates and drying at elevated temperature or ambient
temperature [21], unless stated differently in Table 2. Table 2 indicates the types of biopolymers,
plasticizers, oils, surfactants and processing parameters of the films. Unlike solution-based films,
emulsion-based films require oil for example, palm oil, beeswax, candelilla wax, virgin coconut oil,
cinnamon bark oil and soybean oil to form emulsions [1,21,34,44,55]. The presence of hydrophobic
substance such as oil can increase the elongation at break and decrease the water vapor permeability of
the films [35,36]. The surfactants such as soy lecithin, sucrose ester (sucrose stearate), sodium dodecyl
sulfate, Tween and Yucca schidigera extract (YSE) frequently modified the biopolymer emulsions by
stabilizing the emulsions and retain homogeneity of the films [15,19]. Moreover, the emulsion-based
films have lower water vapor permeability and higher elongation at break than the solution-based
films as control film [8,29,36,41,43,54].

Table 2. Types of biopolymers, plasticizers, oils, surfactants and processing parameters of the
emulsion-based films.

Biopolymer Plasticizer Oil Surfactant Processing Parameter References

Fish gelatin Glycerol Palm oil Soy lecithin

3.5% (w/v) of fish gelatin, 10% (w/w) of glycerol,
100 mL of water, 25% (w/w) of palm oil, 12.5%

(w/w) of soy lecithin, homogenizing at
22,000 rpm for 3 min at 70 ◦C, casting the FFE
onto a plastic Petri dish and air-blowing for

12 h prior to drying at 25 ◦C and 50% ± 5% RH
for 48 h in an environmental chamber.

[34]

Tapioca
starch/decolorized
hsian-tsao gum

Glycerol Beeswax Sucrose
stearate

2% (w/v) of biopolymer blend, 10 wt% of
glycerol, 100 mL of water, 10 wt% of beeswax,

10-wt% sucrose stearate, homogenizing at
10,000 rpm for 3 min at 95 ◦C, pouring the FFE
onto a level circular Petri dish and drying in an
environmental chamber at 50 ◦C and 58% RH

for 1 h and sequentially at 25 ◦C for 96 h.

[1]

CMC, potato
starch soy

protein, pork
gelatin

Sorbitol Candelilla
wax Tween-40

5% (w/w) biopolymer, 3% (w/w) of sorbitol,
100 mL of water, 0.5% (w/w) of candelilla wax,

0.35% (w/w) of Tween-40, homogenizing at
20,000 rpm for 3 min at 90 ◦C, casting the FFE
onto leveled polycarbonate tray and drying at

25 ± 1 ◦C for 24 h.

[56]

Carrageenan Glycerol Palm oil
Tween-20,
Tween-40,
Tween-80

1% (w/v) of carrageenan, 50% (w/w) of glycerol,
100 mL of water, 3% (v/v) of palm oil,

0.1%–0.5% (v/v) of surfactant, homogenizing at
13,500 rpm for 3 min at 80 ◦C, casting the FFE
at the center of a circular glass plate and drying

at 30 ◦C for 48 h.

[37]

Soy protein Glycerol Virgin
coconut oil YSE

6.5% (w/w) of soy protein, 20% (w/w) of glycerol,
100 mL of water, 0.99%–6.54% (w/w) of virgin

coconut oil, 9%–23% (w/w) of YSE,
homogenizing at 20,500 rpm for 2 min at

70 ± 3 ◦C, dispersing the FFE on acrylic plates
and drying at room temperature (25 ± 3 ◦C) for

24 h.

[44]

Chitosan Glycerol
Cinnamon

bark oil,
soybean oil

Tween-80

2% (w/w) of chitosan, 20% (w/w) of glycerol,
100 mL of water, 1%–3% (w/w) of cinnamon or

soybean oil, 40% (w/w) of Tween-80,
homogenizing at 7000 rpm for 2 min at 21 ◦C,
casting the FFE onto glass plate and drying at

ambient conditions (21 ◦C) for 24 h.

[21]
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Table 2. Cont.

Biopolymer Plasticizer Oil Surfactant Processing Parameter References

Gelatin Glycerol Palm oil Tween-80

3.9 wt% of gelatin, 33 wt% of glycerol, 100 mL
of water, 36 wt% of palm oil, 20 wt% of

Tween-80, homogenizing at 12,000 rpm for
3 min at 60 ◦C, casting the FFE evenly over a
rimmed acrylic plate and drying at 25 ◦C in a

convection chamber for 48 h.

[36]

Soy protein Glycerol Virgin
coconut oil Soy lecithin

6.5% (w/w) of soy protein, 20% (w/w) of glycerol,
100 mL of water, 0.99%–6.54% (w/w) of virgin

coconut oil, 9%–23% (w/w) of soy lecithin,
homogenizing at 20,500 rpm for 2 min at

70 ± 3 ◦C, pouring the FFE on acrylic plate and
drying at 25 ± 3 ◦C for 24 h.

[27]

Fish gelatin Glycerol Palm oil

Tween-20,
soy lecithin,

sodium
dodecyl
sulfate

3.7 wt% of fish gelatin, 30 wt% of glycerol,
90 mL of water, 50 wt% of palm oil, 25 wt% of

surfactant, homogenizing at 22,000 rpm for
3 min at 70 ◦C, casting the FFE onto a rimmed
silicone resin plate and air-blowing for 12 h at
28–30 ◦C prior to further drying at 25 ◦C and

50% ± 5% RH for 24 h in an
environmental chamber.

[43]

3. Modification by Different Types of Surfactants

3.1. Types of Surfactants

Generally, surfactants are classified into four types: non-ionic, anionic, cationic and amphoteric.
The classification is based on the polarity of the surfactant head group, for example, non-ionic, anionic,
cationic and amphoteric or zwitterionic. There is no charge on a head group of non-ionic surfactants,
while anionic and cationic surfactants have negative and positive charges on their head groups,
respectively. On the other hand, there are both negative and positive charges for the amphoteric
surfactants. Table 3 displays the types of surfactants and film-forming used in the preparation
of biopolymer-based films. The non-ionic surfactants such as Span and Tween are widely used
in the preparation of solution- or emulsion-based films [2,5,55,56]. Moreover, another non-ionic
surfactant, for instance, sucrose ester has also been used for the preparation of such films [1,51].
Instead, some anionic surfactants, for example, sodium stearoyl lactate and sodium dodecyl sulfate are
commonly employed in the preparation of solution-based films by using gelatin and starch as polymer
matrices [10,39]. The cationic and amphoteric surfactants such as ethyl lauroyl arginate HCl and soy
lecithin could be utilized for both solution- and emulsion-based films [28,35,48,58].

Table 3. Types of surfactants and film-forming used in the preparation of biopolymer-based films.

Surfactant Type of Surfactant Film-Forming References

Span 20 to 80 Non-ionic Solution/Emulsion [2,5,16,47]
Tween-20 to 80 Non-ionic Solution/Emulsion [20,21,37,55]
Sucrose ester Non-ionic Solution/Emulsion [1,51,59]

Sodium stearoyl lactate Anionic Solution [39]
Sodium dodecyl sulfate Anionic Solution [10,30]

Ethyl lauroyl arginate HCl Cationic Solution/Emulsion [48,49,58]
Soy lecithin Amphoteric Solution/Emulsion [2,28,35,43]

3.2. Modification by Non-Ionic Surfactants

Table 4 shows examples of non-ionic surfactants, hydrophilic–lipophilic balance (HLB) values,
alkyl chain length and functional properties of biopolymer-based films. Most of the non-ionic surfactants
such as Span, Tween and sucrose ester are used in the preparation of biopolymer-based films [1,5,6].
Span and Tween with high HLB values have slightly shorter alkyl chain-length than low HLB values,
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whereas sucrose ester that have the same alkyl chain length possess different HLB values (Table 4).
The HLB reveals the attraction of surfactant to water or oil. The HLB values can be calculated via
Davies’ method as in the equation below:

HLB = 7 +
∑

(hydrophilic group numbers) +
∑

(lipophilic group numbers)
For example, Span 40 or sorbitan monopalmitate (chemical structure presented in Figure 4).
HLB = 7 +

∑
(group number of sorbitan) +

∑
(group number of CH2 and CH3)

HLB = 7 + (6.8) + (15 x −0.475)
HLB = 7 + (6.8) + (−7.125)
HLB = 6.675
HLB ≈ 6.7
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Table 4. Examples of non-ionic surfactants, hydrophilic–lipophilic balance (HLB) values, alkyl chain
length and functional properties of biopolymer-based films.

Non-Ionic
Surfactant

HLB
Value

Alkyl Chain
Length Biopolymer Film-

Forming WVP TS EAB Op References

Span 40 6.7 C16 Corn starch Solution ↓ ↓ ↓ ↓ [5]
Span 80 4.3 C18 Corn/wheat starch Emulsion ↓ ↓ ↑ ↑ [6]

Tween-20 16.7 C12 Kudzu starch Solution ↓ ↓ ↑ n/a [16]
Tween-80 15.0 C18 Corn/wheat starch Emulsion ↓ ↓ ↓ ↑ [6]

Sucrose ester
(S-1570) 15.0 C18

Tapioca starch/decolorized
hsian-tsao gum Solution ↓ ↓ ↓ ↓ [1]

Sucrose ester
(S-1170) 11.0 C18

Tapioca starch/decolorized
hsian-tsao gum Emulsion ↓ ↓ ↓ ↑ [1]

WVP—water vapor permeability, TS—tensile strength, EAB—elongation at break and Op—opacity; The symbol ↑
corresponds to an increase in the properties and ↓ a decrease in the properties while “n/a” means “not available”.

The higher the HLB values are, the larger the attraction to water is and the smaller the HLB values
are, the larger the attraction to oil is [20]. Span 40 has an HLB value of 6.7 which is higher compared
to Span 80 which has an HLB value of 4.3, thus, Span 40 was frequently used in the preparation of
solution-based films [5], whereas Span 80 is considered as hydrophobic surfactant, it was utilized in
the creation of emulsion-based films [6]. On the other hand, Tween-20 (has an HLB value of 16.7)
and Tween-80 (has an HLB value of 15.0) have also been used in solution- and emulsion-based films,
respectively [6,16]. The same trend was observed for sucrose ester as well, whereby sucrose ester with
high HLB value was utilized in the preparation of solution-based films and vice versa [1].

Table 4 also shows that Span 40 has modified the FFS of corn starch in the preparation of the corn
starch-based films [5]. The modification by Span 40 improves the functional properties such as water
vapor permeability (WVP) and opacity (Op) of the films. The WVP of the films decreases by up to
30% compared to the film without Span 40. This is attributed to the enhancement in the tortuosity
factor for mass transport in the corn starch [5]. In addition, the transparency of the films is slightly
decreased by up to 0.8% due to the existence of distributed surfactant aggregates, with a dissimilar
refractive index, which increases the light scattering effect. The lower transparency suggests that
the films are opaquer. Moreover, the tensile strength (TS) and elongation at break (EAB) of the films
decrease by up to 57% and 12%, respectively compared to the film without Span 40. This is because of
the creation of an additional anisotropic structure with decreased cohesion forces [5]. On the other
hand, Span 80 modifies the FFE of corn/wheat starch containing essential oil in the preparation of the
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emulsified corn/wheat starch films [6]. The modification by Span 80 improves the functional properties
such as WVP, EAB and Op of the films. The WVP of the films decreases by up to 17% compared
to the corn/wheat starch film. This is attributed to Span 80, which is a hydrophobic surfactant with
lower HLB value and cannot interact with water or corn/wheat starch [6]. Moreover, the EAB of the
films slightly increases by up to 7.3% also because of the hydrophobicity of Span 80 which can have
less effect on the intermolecular hydrogen bonding within starch–starch, consequently resulting in
the increase of EAB. Furthermore, the Op of the films is significantly increased by up to 186% due
to the hydrophobicity of Span 80 as well, which cannot lead to uniform structure with corn/wheat
starch. However, the TS of the films decreases by up to 26% compared to the corn/wheat starch film.
This result proves that Span 80 plays a major impact on the reduction of TS value [6].

Tween-20 modifies the FFS of kudzu starch in the preparation of the kudzu starch-based films [16].
The modification by Tween-20 has improved the functional properties such as WVP and EAB of
the films. The WVP of the films is slightly decreased by up to 7% compared to the film without
Tween-20. The low decrease of WVP is attributed to the inherent hydrophilic property of Tween-20 [16].
In addition, the EAB of the films is significantly increased by up to 65% due to Tween-20 acted
mechanically as plasticizer. However, the TS of the films is decreased by up to 35% compared to
the film without Tween-20, this behavior is similar with the high flexibility films [16]. On the other
hand, Tween-80 modifies the FFE of corn/wheat starch containing essential oil in the preparation of
the emulsified corn/wheat starch films [6]. The modification by Tween-80 improves the functional
properties such as WVP and Op of the films. The WVP of the films decreases by up to 11% compared
to the corn/wheat starch film. The low decrease of WVP is attributed to Tween-80 is a hydrophilic
surfactant with higher HLB value and can interact with water or corn/wheat starch [6]. In addition,
the Op of the films has significantly increased by up to 193% due to the hydrophilicity of Tween-80
as well, which can lead to uniform structure with corn/wheat starch. However, the TS and EAB of
the films are decreased by up to 28% and 12%, respectively compared to the corn/wheat starch film.
This is because Tween-80 interacts with corn/wheat starch which weakens the intermolecular hydrogen
bonding, subsequently resulting in the decrease of mechanical properties [6].

Sucrose ester (S-1570) or sucrose stearate modifies the FFS of tapioca starch/decolorized hsian-tsao
gum in the preparation of the starch/gum-based films [1]. The modification by S-1570 has only
improved the functional properties such as WVP of the films. The WVP of the films is decreased by up
to 54% compared to the film without S-1570. This is attributed to the hydrogen bonding interaction
between starch/gum and polar groups of S-1570, which reduces the number of polar groups free to
interact with water molecules [1]. Nevertheless, the Op of the films is slightly decreased by up to 5.2%
due to S-1570 can dissolve in FFS with individual molecules or micelles of the nanometers size and
interact with amylose of starch and gum. Additionally, the TS and EAB of the films have decreased by
up to 48% and 19%, respectively compared to the film without S-1570. This is because S-1570 has an
HLB value of 15, has more hydrophilic functional groups to interact with tapioca starch and hsian-tsao
gum and hindered the interaction between starch and gum chains [1]. On the other hand, sucrose
ester (S-1170) modifies the FFE of tapioca starch/decolorized hsian-tsao gum containing beeswax in
the preparation of the emulsified starch/gum films [1]. The modification by S-1170 has improved the
functional properties such as WVP and Op of the films. The WVP of the films is decreased by up
to 24% compared to the starch/gum film. This is attributed to the presence of beeswax, which also
enhances the water barrier property. Moreover, the Op of the films has significantly increased by up
to 155% because of the formation of beeswax globules of the micrometers size in the FFE during the
drying process [1]. Nevertheless, the TS and EAB of the films have decreased by up to 55% and 30%,
respectively compared to the starch/gum film, therefore the existence of beeswax did not give benefits
on improving the mechanical properties.
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3.3. Modification by Ionic Surfactants

There are two types of ionic surfactants specifically anionic and cationic surfactants. They are
usually employed in solution-based films through the preparation of FFS. Table 5 demonstrates
the examples of ionic surfactants, HLB values, alkyl chain length and functional properties of
biopolymer-based films. Most of the ionic surfactants such as sodium stearoyl lactate, sodium
dodecyl sulfate and ethyl lauroyl arginate HCl have been used in the preparation of biopolymer-based
films [10,39,49]. Table 5 also shows that the longer the alkyl chain length is, the lesser the HLB values
are, in contrast to non-ionic surfactants. Sodium stearoyl lactate has an HLB value of 8.3, it has
longer alkyl chain length than sodium dodecyl sulfate which has an HLB value of 40. In addition,
ethyl lauroyl arginate HCl also has the same alkyl chain length as sodium dodecyl sulfate and it
has an HLB value of 16, which is higher compared to sodium stearoyl lactate. On the other hand,
sodium stearoyl lactate and sodium dodecyl sulfate were frequently used in the preparation of
solution-based films [10,39], whereas ethyl lauroyl arginate HCl could also be utilized in the creation
of both solution- and emulsion-based films [49,58]. Therefore, the use of ionic surfactants in the
preparation of biopolymer-based films can be associated with their HLB values.

Table 5. Examples of ionic surfactants, HLB values, alkyl chain length and functional properties of
biopolymer-based films.

Ionic Surfactant HLB
Value

Alkyl Chain
Length Biopolymer Film-

Forming WVP TS EAB Op References

Sodium stearoyl lactate 8.3 C18 Bovine skin Gelatin Solution ↓ ↓ ↑ ↑ [39]
Sodium dodecyl sulfate 40 C12 Cassava starch Solution ↓ ↑ ↓ ↑ [10]

Ethyl lauroyl arginate HCl 16 C12 Gelatin Solution �� ↑ ↑ ↓ [49]
Ethyl lauroyl arginate HCl 16 C12 Chitosan Emulsion ↑ ↓ ↑ n/a [58]

WVP—water vapor permeability, TS—tensile strength, EAB—elongation at break and Op—opacity; The symbol ↑
corresponds to an increase in the properties and ↓ a decrease in the properties while “n/a” and ��mean “not available”
and “unchanged”; respectively.

Table 5 also displays that sodium stearoyl lactate has modified the FFS of bovine skin gelatin in the
preparation of the gelatin-based films [39]. The modification by sodium stearoyl lactate has improved
the functional properties such as WVP, EAB and Op of the films. The WVP of the films has decreased
by up to 68% compared to the film without sodium stearoyl lactate. This is attributed to the negatively
charged hydrophilic part is electrostatically interacted with the positively charged amino acid residues
in gelatin [39]. In addition, the EAB of the films has slightly increased by up to 2.6% due to the presence
of interactions between sodium stearoyl lactate and gelatin chains. The Op of the films has slightly
increased by up to 8.3% because sodium stearoyl lactate has caused the component rearrangement in
the gelatin film during the drying process. However, the TS of the films has slightly decreased by up to
6.8% compared to the film without sodium stearoyl lactate, this is common behavior for films with
high EAB. On the other hand, sodium dodecyl sulfate has modified the FFS of cassava starch in the
preparation of the cassava starch-based films [10]. The modification by sodium dodecyl sulfate has
improved the functional properties such as WVP, TS and Op of the films. The WVP of the films has
decreased by up to 10% compared to the film without sodium dodecyl sulfate. This is attributed to the
increased interaction between sodium dodecyl sulfate and starch which decreased the free channel for
the transit of water vapor. In addition, the TS of the films has significantly increased by up to 1179%
due to sodium dodecyl sulfate could form rigid complexes with amylose and amylopectin of the starch
molecular chains with higher rigid and tension [10]. However, the EAB of the films has decreased
by up to 39% because of the tensile strength extremely increased in starch films in the presence of
sodium dodecyl sulfate. In addition, the Op of the films has increased by up to 192% compared to
the film without sodium dodecyl sulfate, this is due to sodium dodecyl sulfate and starch have more
interactions between molecules, which provided the starch with greater continuity and fewer empty
spaces, resulting in a film that blocked more light path [10].
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Ethyl lauroyl arginate HCl modifies the FFS of gelatin in the preparation of the gelatin-based
films [49]. The modification by ethyl lauroyl arginate HCl has improved the functional properties such
as TS and EAB of the films. The TS of the films has slightly increased by up to 4.3% compared to the
film without ethyl lauroyl arginate HCl. Moreover, the EAB of the films has also slightly increased by
up to 7.5%. The slight increase may be due to the low content of ethyl lauroyl arginate HCl modified
the films [49]. Furthermore, the transparency of the films has slightly increased by up to 6.3% because
of the good compatibility between film components. The higher transparency suggests that the films
are less opaque. Nevertheless, the WVP of the films has not been influenced by ethyl lauroyl arginate
HCl [49]. On the other hand, ethyl lauroyl arginate HCl modifies the FFE of chitosan containing
cinnamon oil in the preparation of the emulsified chitosan films [58]. The modification by ethyl lauroyl
arginate HCl has only improved the functional properties such as EAB of the films. The EAB of the
films has increased by up to 169% compared to the chitosan film. This is attributed to the uniform
dispersion of positively charged ethyl lauroyl arginate HCl compound in the chitosan matrix [58].
However, the TS of the films has significantly decreased by up to 53% due to the distributed small
droplets of cinnamon oil, which have disrupted the chitosan matrix. Moreover, the WVP of the films
has decreased by up to 39% compared to the chitosan film. This is because of the modification by ethyl
lauroyl arginate HCl may split hydrogen bonding and interrupt the ordered structures of chitosan
molecules, resulting in the raised WVP of the films [58].

3.4. Modification by Amphoteric Surfactant

Amphoteric or zwitterionic surfactants are also ionic surfactants, but they have both negative and
positive charges. Soy lecithin or L-α-phosphatidylcholine is one of the amphoteric surfactants that has
regularly been modified the biopolymer-based films [43]. Soy lecithin is a byproduct of soybean oil
processing [27]. The chemical structure of soy lecithin is shown in Figure 2h, it consists of phosphate
and quat groups (hydrophilic head groups) and two fatty acid groups (lipophilic tail groups) [43].
Soy lecithin has an HLB value of 4.0, and it is a predominantly hydrophobic surfactant [34]. It was
frequently utilized in preparation of emulsion-based films [27,31,35,43,60,61]. Nevertheless, the soy
lecithin can also be employed in the creation of solution-based films [2,28,53]. Table 6 indicates
the functional properties of biopolymer-based films modified with soy lecithin. The biopolymers,
for instance, soy protein and fish gelatin have been used for the preparation of emulsion-based films,
whereas pig hide gelatin and potato starch utilized for the creation of solution-based films. From Table 6,
it can be seen that the modification by soy lecithin has decreased the WVP of the films, this is because
the soy lecithin is principally had lipophilic behavior, which could reduce the amount of water vapor to
pass through the films. On the other hand, the TS of the films has also decreased with the modification
by soy lecithin. However, the presence of soy lecithin has increased the EAB of the films, this is due to
soy lecithin has behaved as plasticizer or lubricant in the films, causing an improvement of flexibility
and the decrease of TS [27]. In addition, the films modified with soy lecithin also have high Op,
especially for emulsion-based films, this is caused by the light-scattering effect of oil droplets, which is
distributed throughout the films [43,61].

Table 6. Functional properties of biopolymer-based films modified with soy lecithin.

Biopolymer Film-Forming WVP TS EAB Op References

Soy protein Emulsion ↓ ↓ ↑ ↑ [27]
Fish gelatin Emulsion ↓ ↓ ↑ ↑ [43]
Fish gelatin Emulsion ↓ ↓ ↑ ↑ [61]

Pig hide gelatin Solution ↓ ↓ ↑ ↑ [53]
Pig hide gelatin Solution ↓ ↓ ↑ ↑ [28]

Potato starch Solution ↓ ↓ ↑ n/a [2]

WVP—water vapor permeability, TS—tensile strength, EAB—elongation at break and Op—opacity; The symbol ↑
corresponds to an increase in the properties and ↓ a decrease in the properties while “n/a” means “not available”.
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4. Conclusions

Biopolymer raw materials, processing parameters and types of biopolymer-based films modified
with surface-active agents (surfactants) have been briefly reviewed in this study. The main functional
properties, for example, water vapor permeability, tensile strength, elongation at break and opacity
of the films have also been identified in this brief review. Surfactants have frequently modified the
biopolymer-based films because they have amphiphilic character. Surfactants employed for different
types of biopolymers are mostly based on HLB value and their chemical structures. Non-ionic and
amphoteric surfactants have been the two most important surfactants for the biopolymer-based films.
Non-ionic surfactants provide a wide range of HLB values and various alkyl chain lengths.
An amphoteric surfactant such as soy lecithin is a promising alternative to synthetic surfactants
because it is a byproduct of soybean oil processing. It also has the capability to use in both solution-
and emulsion-based films. The films modified with soy lecithin have great functional properties such
as low water vapor permeability, high flexibility and opacity. This brief review may be useful for the
commercialization of bio-based, low-cost, environmentally friendly films for numerous applications.
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