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Abstract: It is well accepted that combined heat and power (CHP) generation can increase the
efficiency of power and heat generation at the same time. With the increasing penetration of CHPs,
determination of economic dispatch of power and heat becomes more complex and challenging.
The CHP economic dispatch (CHPED) problem is a challenging optimization problem due to
non-linearity and non-convexity in both objective function and constraints. Hence, in this paper
a novel meta-heuristic algorithm, namely improved artificial bee colony (IABC) algorithm is proposed
to solve the CHPED problem. The valve-point effects, power losses as well as the feasible operation
region of CHP units are taken into account in the proposed CHPED problem model and the optimal
dispatch of power/heat outputs of CHP units is determined via the proposed IABC algorithm.
The proposed algorithm is applied on three test systems, in which two of them are large-scale
CHPED benchmarks. The obtained results and comprehensive comparison with available methods,
demonstrate the superiority of the proposed algorithm for dealing with non-convex and constrained
CHPED problem.

Keywords: combined heat and power; improved artificial bee colony algorithm; non-convex
optimization; valve point effects

1. Introduction

1.1. Motivation and Problem Statement

Heat is considered to be a byproduct of power generation in conventional power generation
systems and when it is not fully used that results in lower efficiency. Co-generation systems or
combined heat and power (CHP) generation systems use the heat from a power plant and send it
around to interested consumers. Thus, co-generation plants can produce both heat and electricity with
better energy efficiency and fuel usage [1]. In recent years, CHP systems have attracted more attention
due to their higher efficiency (up to 85%), network loss reduction, and rapid return of investment [2,3]
compared to conventional systems. The complexity of the economic dispatch problem will be increased
by including the CHP systems. Hence, it is necessary to propose appropriate solution procedure to
obtain optimal schedules for both heat and power.
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1.2. Review of Related Works

Several methods were presented in the literature to solve the CHP economic dispatch (CHPED)
problem, which can fall into two main categories: classical optimization methods and heuristic search
methods. In the first category, classical Lagrangian-based approaches are used to solve the CHPED
problem. In the approximated models, the CHPED can be formulated as a linear programming
problem [4]; however, in the case of realistic models the problem is a non-convex and nonlinear model
due to the objective function and feasible operation region of the CHP units [5]. Therefore, in the most
of cases the CHPED is modeled as a non-convex problem. In these cases, the classical Lagrangian-based
approaches may not be able to find the global optimal solution and hence the obtained heat-power
schedules may be sub-optimal. Also, the need for gradients and in some cases Hessian matrix of
the problem constraints increases the computational burden of these techniques. Some examples are
dual partial-separable programming method [6], quadratic program method [6], Lagrange relaxation
technique [7], and Lagrangian relaxation with surrogate sub-gradient multiplier updating technique [8].
A more recent approach is semi-definite programming method which was proposed in [9]. In the
case of convex problem, this approach gives the optimal solution, and semi-definite programming
relaxation of non-convex problem provides a strong calculable bound to the optimal value. A numerical
procedure, which uses a direct analytical approach to solve the CHPED problem, was proposed in [10].
Another technique with branch and bound algorithm was recorded in [11] which uses the generalized
reduced gradient technique. Most of these numerical methods have approximately the same solutions,
but the respective computational loads and CPU times are different.

Most of the recently proposed approaches to solve the CHPED problem are heuristic search
methods (second category). In [12] the genetic algorithm was applied to solve the CHPED problem.
Genetic algorithm has been used in [13] for daily operation scheduling of CHP units. A solution
using a selective particle swarm optimization approach was presented in [14]. In [15] an approach
based on time varying acceleration coefficients particle swarm optimization (TVAC-PSO) has been
proposed to deal with CHPED problem. Stochastic particle swarm optimization algorithm that takes
into account random variations in power and heat demands was used in [16]. Specific evolutionary
approaches used to solve the CHPED include harmony search algorithms [3,17], improved ant
colony search algorithm [18], enhanced firefly algorithm [19], direct search method [20], artificial
immune system [21], bee colony optimization [22], differential evolution [23], an augmented Lagrange
combined with Hopfield neural network [24]. Also, [25] optimizes heat and power from CHP units
and expected wind power, by stochastic particle swarm optimization approach. These heuristic
search methods have the ability of well handling non-convex problems; however, due to the fact
that they are population-based and they have stochastic nature, their convergence to the optimal
solution is not ensured, and they may be trapped in a local optimal or even a non-optimal solution.
The comprehensive review of the application of different stochastic search algorithms for solution of
CHPED is provided in [26].

As was previously mentioned, the implemented classical and mathematical-based optimization
methods are not efficient for solving nonlinear and non-convex optimization problems. On the other
hand, the meta-heuristic algorithms can find better results in comparison with classical optimization
methods in non-convex optimization problems. By investigating the literature in CHPED problem
solution, it can be observed that different heuristic algorithms yield different solutions. A better
solution for CHPED problem has a great economic saving in system operation cost. Hence, it is
required to improve the capabilities of heuristic algorithms such that more optimal solutions (i.e.,
solutions with lower costs) attained for non-convex CHPED problems. It is worth mentioning that some
exact gradient-based mathematical programming algorithms, such as [27–31], have not implemented
for CHPED in the literature. Therefore, it is not possible to judge their performance in comparison
with the meta-heuristic optimization algorithms, and it can be considered in future works.
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1.3. Contributions

Many literature works are listed in the previous section that concentrated on the solution of
the CHPED problem. Given that the CHPED problem is a non-convex and nonlinear problem of
optimization, there is no mathematical or metaheuristic algorithm that can guarantee the optimal
global solution to these problems. Because of high economic saving potential of better algorithms, this
paper focuses on solution methodology of CHPED problem. In this study, a related problem in the
literature [12,15,20–24] is used to compare the results obtained with the methods previously applied to
CHPED problem. In this paper a method based on improved artificial bee colony (IABC) algorithm is
proposed to solve the CHPED problem. ABC is a heuristic optimization technique, which is based on
the intelligent search behavior of honey bee swarm. It provides a population-based search procedure
in which individuals (which called foods positions) are modified by the artificial bees, which their aim
is to discover the places of food sources with the highest nectar amount [32]. The main contributions
of this work can be summarized as follows:

1. Proposing an improved version of artificial bee colony algorithm for dealing with non-convex
optimization problems.

2. Studying the effectiveness and performance of the proposed algorithm using normal and
large-scale test systems and benchmark functions.

3. Implementation of the proposed algorithm on CHPED problem with different sizes and characteristics.
4. Compared with available methods in the literature, achieving feasible and better results for

large-scale CHPED test systems.

1.4. Paper Organization

The rest of this paper is organized as follows. Section 2 provides the mathematical formulation of
the CHPED problem considering valve-point effects, transmission losses and regional heat dispatch.
Section 3 describes the proposed IABC algorithm. Section 5 gives the step by step procedure of the
proposed IABC algorithm for solving the CHPED problem. Several case studies are presented in
Section 6. Finally, conclusions are given in Section 7.

2. Chp Economic Dispatch Problem Formulation

The considered co-generation system in this study consists of power-only units, heat-only units and
CHP units. The objective of the CHPED problem is to minimize total cost of serving the heat and power
demands. The total cost can be stated as sum of the costs of generating heat and power as follows [20].

min TC =
Npo

∑
e=1

Ce(Ppo
e ) +

Nchp

∑
c=1

Cc(Pchp
c , Hchp

c ) +
Nho

∑
h=1

Ch(Hho
h ) $/h (1)

The cost functions of the different units can be expressed using the following quadratic functions.

Ce(Ppo
e ) = apo

e (Ppo
e )2 + bpo

e Ppo
e + cpo

e $/h (2)

Cc(Pchp
c , Hchp

c ) = achp
c (Pchp

c )2 + bchp
c Pchp

c + cchp
c + dchp

c (Hchp
c )2 + echp

c Hchp
c + f chp

c Hchp
c Pchp

c $/h (3)

Ch(Hho
h ) = aho

h (Hho
h )2 + bhoh Hho

h + ch $/h (4)

The quadratic function approximation (2) is widely used in the literature for modelling the cost
function of power-only units [17]. Usually, an absolute sinusoidal term is added to the quadratic cost
function for modeling the valve-point effects [33] as follows.

Ce(Ppo
e ) = apo

e (Ppo
e )2 + bpo

e Ppo
e + cpo

e + |dpo
e sin( f po

e (Ppo,min
e − Ppo

e ))| (5)
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Therefore, the CHPED problem becomes non-convex. The objective function (1), should be
minimized subject to the following technical constraints [19]:

Npo

∑
e=1

Ppo
e +

Nchp

∑
c=1

Pchp
c = PD + PL (6)

PL =
Npo

∑
e=1

Npo

∑
m=1

Ppo
e BemPpo

m +
Npo

∑
e=1

Nchp

∑
c=1

Ppo
e BecPchp

c +

Nchp

∑
c=1

Nchp

∑
n=1

Pchp
c BcnPchp

n (7)

Nchp

∑
c=1

Hchp
c +

Nho

∑
kh=1

Hho
h = HD (8)

Ppo,min
e ≤ Ppo

e ≤ Ppo,max
e e = 1, . . . , Npo (9)

Hho,min
h ≤ Hho

h ≤ Hho,max
h h = 1, . . . , Nho (10)

Pchp,min
c (Hchp

c ) ≤ Pchp
c ≤ Pchp,max

c (Hchp
c ) c = 1, . . . , Nchp (11)

Hchp,min
c (Pchp

c ) ≤ Hchp
c ≤ Hchp,max

c (Pchp
c ) c = 1, . . . , Nc (12)

where (6) models the power production and consumption balance. The power transmission system loss
is calculated using B−matrix coefficients using (7). The heat production and demand balance is modeled
using (8). The capacity limits of the power-only units and heat-only units are bounded using (9) and (10),
respectively. The production limits of heat and power generation of CHP units are modeled using (11)
and (12). It is observed from these equations that the upper and lower limits of power generation of CHP
units are functions of produced heat (or vice versa). This heat-power dual dependency is presented using
feasible operation region (FOR) for a specific CHP. The FOR of CHP units represents either a convex
region or non-convex region as described in [34]. In the case of non-convex region, the CHPED problem
becomes more complicated, due to non-convexity in both the objective function and the constraints.
Typical FORs of CHP units is presented in Figures 1 and 2. As it can be observed, Figure 1 represents a
convex region while Figure 2 represents a non-convex region [35].

Figure 1. Convex feasible operation region (FOR) of CHP units.
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Figure 2. Non-convex feasible operation region (FOR) of CHP units.

3. Improved Artificial Bee Colony Algorithm

3.1. Original Abc Algorithm

This algorithm is based on particle swarm intelligence that is inspired by the behavior of honey
bees finding food. Bee colony algorithm first was proposed by Karaboga [32]. In this algorithm there
are three categories of bees, i.e., employed, onlooker and scout bees. The population of employed bees
and onlooker bees are equal (i.e., half of the colony).

Employed bees are responsible for exploiting the nectar sources and providing the waiting bees
(onlooker bees) in the hive with information about the nature of the locations of the food source which
they exploit. Onlooker bees wait in the hive and decide to exploit a food source based on knowledge
exchanged by the bees they are working. Scouts either search the area randomly to find a new food
source according to their internal motivation or based on potential external clues [36]. The process of
finding food source in honey bee colony can be divided into three parts [32]:

1. Employed bees discover food sources and determine the quality of nectar and share its location
with others bees.

2. Onlooker bees decide based on the quality of the food sources found by employed bees and
follow the location of food sources of employed bees.

3. If the food source of an employed bee is abandoned, it becomes scout bee and discover new food
source randomly.

In ABC algorithm, each multi-dimensional particle (or food source) is shown as follows [32].

X =
[
x1, ..., xj, ..., xD

]
(13)

Thus, the i-th particle is shown as follows.

Xi =
[
xi,1, ..., xi,j, ..., xi,D

]
(14)

Here, SN is number of artificial bees and D is the number of optimization variables (or problem
dimension), i ∈ {1, ..., SN} and j ∈ {1, ..., D}.



Processes 2020, 8, 1036 6 of 22

That bee employed is associated with a single place of food source. Therefore, the number of
places of food supply is equal to the number of bees employed. In each iteration of ABC algorithm,
employed bees discover food sources as follows [32].

xnew
i,j = xold

i,j + rand(−1, 1)× (xold
i,j − xold

k,j ) (15)

In the above equation k is a random integer that it selected from the set {1, ..., SN}. After
production of new solutions in each iteration, the fitness (nectar) function is calculated from the
following expression [32].

Fit(Xi) =

{
1

1+ f (Xi)
f (Xi ) ≥ 0

1 + abs( f (Xi)) f (Xi) < 0
(16)

where f (Xi) is the objective function value for Xi to be minimized. After calculation of objective
function fitness, if Fit(Xnew

i ) > Fit(Xold
i ) then Xold

i is replaced with Xnew
i .

The onlooker bees select the employed bees location based on the fitness value of their
corresponding food sources. For this purpose, the possibility of choosing the food source location is
calculated as follows.

Pi =
Fit(Xi)

SN
∑

k=1
Fit(Xk)

(17)

As the nectar quantity of food sources (fitness of solutions) increases, so does the number of
onlookers visiting them, which facilitates convergence to the optimal solution [36].

For each iteration a random real number is generated for each source within the range [0,1]. If the
probability (Pi in (17) associated with this source is greater than this random number, the onlooker bee
modifies the location of this source of food by using (15). After the food source is evaluated from (16),
if the fitness value is improved, then the onlooker bee replaces the old food source location by the new
one, otherwise it keeps the old location.

If after a certain number of iterations, employed bee’s food source location does not improved,
the food source location is abandoned and this location is replaced with a random new location by the
scout bee from:

xScout
i,j = xmin

j + rand(0, 1)× (xmax
j − xmin

j ) (18)

where xmax
j and xmin

j are upper and lower bounds for j-th decision variable xj, respectively.

3.2. Improved Abc (Iabc) Algorithm

The ABC algorithm has been implemented successfully in various optimization problems such as
in hydroelectric generation estimation [37] and parameter estimation of solar cells [38]. However, it still
attracts the attention of many researchers to improve its performance. Most of these methods modify
Equation (15). For example, Kraboga proposed a new search equation for employed bees as follows [36].

xnew
i,j =


xold

i,j + rand(−1, 1)×
(

xold
i,j − xold

k,j

)
, Ri,j ≤ MR

xold
i,j , Otherwise

(19)

In the above equation MR is modification rate which is equal to 0.8, Ri,j is a uniformly distributed
random number in the interval [0, 1].
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Also, in [39] Gao and Liu proposed a new search equation as follows.

xnew
i,j = xbest

j + rand(−1, 1)× (xold
r1,j − xold

r2,j) (20)

where r1 and r2 are mutually different random integers selected from the set {1, ..., SN}. xbest
j is the

individual xj corresponds to the particle with the best fitness in the current population.
The results reported using the above modifications indicate that both of the above search rules

are very effective approaches in the optimization problems solved by ABC algorithm [39].
In this paper, a hybrid search technique is proposed which combines the above search formulas

as follows.

xnew
i,j =


xbest

j + rand(−1, 1)× (xold
r1,j − xold

r2,j), Ri,j ≤ MR

xold
i,j , Otherwise

(21)

The main distinguishing features of the proposed IABC algorithm are as follows:

1. As it is observed from Equation (21), as the difference between xr1,j and xr2,j decreases, the
disturbance of position xi,j decreases. Therefore, the length of step is adaptively reduced by
approaching to an optimal solution, and hence the algorithm converges to the optimal solution.

2. It is observed from Equation (18) that the algorithm automatically jumps form local optimal or
even non-optimal points, since scout bees are generated when no progress made in the search for
a specified food source (or solution).

3. Onlooker bees capability included in this algorithm enables comparison of the behavior of all
food sources (or solutions) simultaneously. In other words, it is observed from Equation (17) that
if a specified solution (or food source) i has a small Pi, then it is a good solution, and hence it is
not updated by onlooker bees. Otherwise, it is replaced with new position by onlooker bees.

4. Investigation of Iabc Algorithm on the Benchmark Functions

To investigate the performance of proposed IABC algorithm, two studies are conducted here
as follows.

4.1. Study-I: Investigations on Six Benchmark Functions

In this study, six well-known benchmark functions which have different characteristics are
examined. These functions which have been employed in [39,40] for evaluation of ABC algorithm and
its variants, are given in Table 1.

The proposed IABC algorithm is applied to the above benchmark functions. Similar to the
settings of GABC algorithm given in [40], the following settings are considered for the proposed IABC
algorithm evaluation: Population size (or SN) is 80, maximum iterations number (Itermax) is 5000 and
the number of trial runs is 30.

For the above settings, the mean value and standard deviation of the results are presented in
Table 2. The obtained results are compared with MABC [39], ABC [40] and GABC [40]. It can be
observed from Table 2 that the proposed IABC algorithm converges to better results in comparison
with ABC, MABC and GABC algorithms, in terms of the mean and standard deviation of the results.
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Table 1. Studied benchmark functions.

Name Formula D (Problem Dimension) Search Space Global Minimum

Schaffer [39] f1(x) = 0.5 +
sin2

(√
n
∑

i=1
x2

i

)
−0.50(

1+0.001×
(

n
∑

i=1
x2

i

))2 30 [−100, 100]n 0

Rosenbrock [39] f2(x) =
n−1
∑

i=1
(100(xi+1 − x2

i ))
2 + (xi − 1)2 30 [−50, 50]n 0

Sphere [39] f3(x) =
n
∑

i=1
x2

i 30 [−100, 100]n 0

Griewank [39] f4(x) = 1 + 1
4000 ∑n

i=1 (xi − 100)2 −∏n
i=1 cos( xi−100√

i
) 30 [−600, 600]n 0

Rastrigin [40] f5(x) =
n
∑

i=1
(x2

i − 10 cos(2πxi) + 10)2 30 [−5.12, 5.12]n 0

Ackly [39] f6(x) = −20 exp(−0.2

√
1
n

n
∑

i=1
x2

i )− exp( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e 30 [−32.768, 32.768]n 0

Table 2. Comparison of the obtained results for benchmark functions.

Benchmark Function ABC [40] GABC [40] MABC [39] Proposed

Number Name Mean SD Mean SD Mean SD Mean SD

f1 [39] Schaffer 4.47 × 10−1 2.22 × 10−2 2.81 × 10−1 9.12 × 10−2 2.56 × 10−1 4.65 × 10−2 2.12 × 10−1 2.23 × 10−2

f2 [39] Rosenbrock 3.65 × 10−1 5.04 × 10−1 7.93 × 10−1 1.36 × 100 1.73 × 10−1 1.61 × 10−1 1.05 × 10−1 1.45 × 10−1

f3 [39] Sphere 6.38 × 10−16 1.20 × 10−16 4.17 × 10−16 7.36 × 10−17 9.43 × 10−32 6.67 × 10−32 3.21 × 10−35 1.30 × 10−34

f4 [39] Griewank 1.27 × 10−15 1.46 × 10−15 2.96 × 10−17 4.99 × 10−17 0.00 0.00 0.00 0.00
f5 [40] Rastrigin 1.35 × 10−13 7.97 × 10−14 1.32 × 10−14 2.44 × 10−14 0.00 0.00 0.00 0.00
f6 [39] Ackly 4.70 × 10−14 5.95 × 10−15 3.21 × 10−14 3.25 × 10−15 2.98 × 10−14 2.26 × 10−15 2.87 × 10−14 3.65 × 10−15

4.2. Study-Ii: Investigations on Large-Scale Benchmark Functions

To examine the capability of proposed IABC algorithm for solution of large-scale optimization
problems, it is implemented on the 300 variables version of the benchmark functions f4– f6 [41]. Table 3
compares the mean value obtained by the proposed IABC algorithm with GSO [41], GA [41], PSO [41],
EP [41], ES [41], ABC [36], and MABC [39]. It is evidently observed from this table that IABC algorithm
outperforms the above existing approaches, since the obtained solution by IABC is very close to the
global optimal solution in all considered benchmark functions.

Table 3. Comparison of the obtained results by IABC with other algorithms for large-scale benchmark
functions.

# GSO [41] GA [41] PSO [41] EP [41] ES [41] ABC [36] MABC [39] Proposed

f4 1.82 × 10−7 3.70 × 10−1 1.81 × 100 2.84 × 10−2 1.58 × 10−1 1.35 × 10−10 8.35 × 10−15 0
f5 98.9 121.3 427.1 383.3 583.2 6.82 × 10−14 1.04 × 10−5 0
f6 1.35 × 10−3 6.24 × 100 3.95 × 10−6 2.95 × 10−1 9.62 × 100 7.52 × 10−4 9.62 × 10−10 8.93 × 10−11

Besides, in Table 4 the performance of IABC algorithm is compared with the basic ABC [36] and
MABC [39] in terms of the best and worst obtained solutions for the above three benchmarks. It is
observed from this table that the proposed IABC approach gives smaller values for both the best and
worst solutions. especially for f4 and f5 these values are both zero, which means the algorithm always
converges to the global optimal point.

Table 4. Comparison of the obtained results for the variants of ABC algorithm in large-scale benchmark
functions.

ABC [36] MABC [39] Proposed

# Best Worst Best Worst Best Worst

f4 0 6.46 × 10−10 7.55 × 10−15 9.44 × 10−15 0 0
f5 0 1.14 × 10−13 4.27 × 10−11 5.20 × 10−5 0 0
f6 5.33 × 10−4 1.10 × 10−3 7.80 × 10−10 1.08×109 6.82 × 10−11 1.10 × 10−10
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5. Implementation of Iabc on the Chped Problem

To solve the CHPED problem by the IABC algorithm, the following steps are performed.

1. Step-1: The first stage in IABC algorithm is initialization of the employed bees. Every food source
location is a candidate solution of CHPED problem. The position of each food source (Xi) is a
vector of all real power and heat outputs of the units as presented in the following.

Xi = [X(1)
i , X(2)

i , X(3)
i ] (22)

X(1)
i = [Ppo

i,1 , · · · , Ppo
i,Npo

] (23)

X(2)
i = [Pchp

i,1 , · · · , Pchp
i,Nchp

] (24)

X(3)
i = [Hchp

i,1 , · · · , Hchp
i,Nchp

, Hho
i,1, · · · , Hho

i,Nho
] (25)

The initial population of employed bees for power-only and heat-only units are determined from
(26) and (27), respectively. Also, the population of employed bees for CHP units is determined
from (28) and (29), respectively.

Ppo
i,j = Ppo,min

j + rand(0, 1)× (Ppo,max
j − Ppo,min

j ) (26)

Hho
i,j = Hho,min

j + rand(0, 1)× (Hho,max
j − Hho,min

j ) (27)

Pchp
i,j = Pchp,min

j + rand(0, 1)× (Pchp,max
j − Pchp,min

j ) (28)

Hchp
i,j = Hchp,min

j + rand(0, 1)× (Hchp,max
j − Hchp,min

j ) (29)

2. Step-2: By setting Iter = 1 (where Iter is the iteration number of the algorithm), discover new
food source locations by employed bees using Equation (21).

3. Step-3: In this step the objective function value for the population of bees are calculated at the
current iteration. Since the CHPED is a constrained optimization problem, it is converted to an
unconstrained problem using penalty coefficient (λ). λ is assumed to be 10000 for all test systems
studied in the following section. Hence, the objective function will be as follows.

f (Xi) =
Npo

∑
e=1

Ce(Ppo
e ) +

Nchp

∑
c=1

Cc(Pchp
c , Hchp

c ) +
Nho

∑
h=1

Ch(Hho
h ) (30)

+ λ× (
Npo

∑
e=1

Ppo
e +

Nchp

∑
c=1

Pchp
c − PD − PL)2 + λ× (

Nchp

∑
c=1

Hchp
c +

Nho

∑
kh=1

Hho
h − HD)2

4. Step-4: Fitness of i-th food source is calculated from Equation (16). If the new food source fitness is
better than the old, then the old food source is replaced with the new location (obtained in Step-2,
and BScout,i = 0 (BScout,i is a counter that determines limit value for converting i-th employed bee
to scout bee), otherwise old location is preserved and BScout,i = BScout,i + 1.

5. Step-5: At this step onlooker bees select food source of employed bees by using the roulette wheel
criterion given in (17). Based on the value of Pi for each food source, the onlooker bees modify
the selected locations of employed bees by using (21), as follows: If Pi > rand(0, 1), then the
fitness of new food source is calculated from (16). If it is better than old fitness value, the old food
source is replaced with new location and BScout,i = 0, otherwise the old food location is kept and
BScout,i = BScout,i + 1.

6. Step-6: After the completion of the food source update process for employed and onlooker bees,
if BScout,i > Limit, then that food source is abandoned, and the employed bee is converted to a
scout bee. The scout bee selects its new food source randomly in the space via (18).
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7. Step-7: Check the stopping criterion. If the algorithm converged, then go to Step-8, else Iter =

Iter + 1 and go to Step-2 and repeat the above procedure. In this paper, the stopping criterion
is reaching to the maximum number of iterations in each run. In other words, if Iter = Itermax,
then the algorithm stopped.

8. Step-8: Stop. To clarify the optimization process for energy engineers, the implemented method is
presented in Figure 3.

Figure 3. Flowchart of implementation process of proposed method on CHPED problem.
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6. Case Studies

In this section, the effectiveness and validity of the proposed method is evaluated by implementing
it on three different test systems. The numerical study is performed using MATLAB 7.5 software on a
PC with an Intel Core i7, 2.93 GHz CPU and 8 GB of RAM. The obtained results using the proposed
IABC are compared with the reported results in the literature. The parameters used in the algorithm
for different case studies are presented in Table 5.

Table 5. Parameters of IABC for different test systems.

Test System # SN Limit Itermax

I 100 50 300
II 200 50 2000
III 200 100 5000

6.1. Test System I (7-Unit System)

The first test system consists of four power-only units (units 1–4), two CHP units (units 5–6) and
a heat-only unit (unit 7). The valve-point effects and transmission losses are considered in this test
system. The cost function parameters of this case along with the feasible region coordinates of CHP
units are available in [23]. Data of test system I is provided in Table 6. By investigating the published
papers, it was found that there were three different loss matrix data for this system. Hence, we have
solved the problem for this system using the available data in three cases.

Table 6. Cost function parameters of test system I.

Power Only Units

Unit apo
e bpo

e cpo
e dpo

e f po
e Ppo,min

e Ppo,max
e

1 0.008 2 25 100 0.042 10 75
2 0.003 1.8 60 140 0.04 20 125
3 0.0012 2.1 100 160 0.038 30 175
4 0.001 2 120 180 0.037 40 250

CHP Units

achp
c bchp

c cchp
c dchp

c echp
c f chp

c feasible region coordinates [Pchp
c , Hchp

c ]
5 0.0345 14.5 2650 0.03 4.2 0.031 [98.8,0], [81,104.8], [215,180], [247,0]
6 0.0435 36 1250 0.027 0.6 0.11 [44,0], [44,15.9],[40,75],[110.2,135.6], [125.8,32.4],[125.8,0]

Heat Only Units

aho
h bho

h cho
h Hho,min

h Hho,max
h

7 0.038 2.0109 950 0 2695.20

6.1.1. Case I

In this case, the coefficients of the network loss matrix are provided as follows [15].

B = 10−7 ×



49 14 15 15 20 25
14 45 16 20 18 19
15 16 39 10 12 15
15 20 10 40 14 11
20 18 12 14 35 17
25 19 15 11 17 39


The optimal dispatches of the units in this case are provided in Table 7. The obtained results

using the proposed IABC algorithm are compared with the results of line-up competition algorithm
(LCA) [42], teaching learning-based optimization (TLBO) [42], oppositional teaching learning-based
optimization (TLBO) [42], conventional PSO (CPSO) [15] and time varying acceleration coefficients
PSO (TVAC-PSO) [15] in Table 7. The distribution of the total cost for 50 independent runs is presented
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in Figure 4. It is inferred from this figure that in 33 runs the obtained value for cost is less than the
mean value, which means the algorithm is capable of attaining a solution better that than the mean
value in 66% of trails. The minimum, average and maximum values of the obtained costs for these
runs are also provided in Table 7. The convergence characteristics of the proposed method for this case
is depicted in Figure 5. It is observed that the proposed IABC algorithm converges quickly in early
iterations and hence, the number of maximum runs can be decreased to save the solution time.

Table 7. Comparison of the obtained results for 7-unit test system (Case I).

Control Variable LCA [42] OTLBO [43] TLBO [43] CPSO [15] TVAC-PSO [15] Proposed

P1 44.2812 45.8860 45.2660 75.0000 47.3383 45.8514
P2 98.5446 98.5398 98.5479 112.3800 98.5398 98.5388
P3 112.7192 112.6741 112.6786 30.0000 112.6735 112.6734
P4 211.4443 209.8141 209.8284 250.0000 209.8158 209.8169
P5 93.7494 93.8249 94.4121 93.2701 92.3718 93.8594
P6 40.0000 40.0002 40.0062 40.1585 40.0000 40.0000
H5 29.7358 29.2914 25.8365 32.5655 37.8467 29.0616
H6 74.5000 75.0002 74.9970 72.6738 74.9999 74.9839
H7 45.2641 45.7084 49.1666 44.7606 37.1532 45.9542

Minimum Cost ($/h) 10,104.38 10,094.3529 10,094.8384 10,325.3339 10,100.3164 10,094.2718
Average Cost ($/h) NA 10,099.4057 10,114.1539 NA NA 10,095.4446

Maximum Cost ($/h) NA 10,106.8314 10,133.6130 NA NA 10,100.9445

CPU time (s) NA 3.06 2.86 3.29 3.25 2.21
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Figure 4. Distribution of total costs for 50 independent runs for 7-unit test system (Case I).
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Figure 5. Convergence characteristics of the proposed IABC algorithm for 7-unit test system (Case I).
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6.1.2. Case II

In this case, the coefficients of the network loss matrix are assumed to be as follows [44].

B = 10−6 ×



49 14 15 15 20 25
14 45 16 20 18 19
15 16 39 10 12 15
15 20 10 40 14 11
20 18 12 14 35 17
25 19 15 11 17 39


B0 = 10−3 ×

(
−0.3908 −0.1297 0.7047 0.0591 0.2161 −0.6635

)
B00 = 0.056

The optimal solution results using the proposed algorithm are presented in Table 8 and is
compared with the real coded genetic algorithm (RCGA) [44] and Grey wolf optimization algorithm
(GWO) [45]. It can be observed that the average of the obtained costs using the proposed algorithm for
50 independent runs is lower than the minimum cost obtained using RCGA.

Table 8. Comparison of the obtained results for 7-unit test system (Case II).

Control Variable RCGA [44] GWO [45] Proposed (IABC)

P1 74.5357 52.8074 45.2848
P2 99.3518 98.5398 98.5507
P3 174.7196 112.6735 112.6845
P4 211.017 209.8158 209.8439
P5 100.9363 93.8115 93.8194
P6 44.1036 40 40.0000
H5 24.3678 29.3704 29.3226
H6 72.527 75 74.9944
H7 53.1052 29.3704 45.6832

Minimum Cost ($/h) 10,712.86 10,111.24 10,092.9593
Average Cost ($/h) NA 10,194.41 10,152.5012

Maximuum Cost ($/h) NA 10,452.12 11,547.5437

CPU time (s) 20.3438 5.2618 2.21

6.1.3. Case III

In this case, the coefficients of the network loss matrix are provided as follows [22].

B = 10−6 ×



49 14 15 15 20 25
14 45 16 20 18 19
15 16 39 10 12 15
15 20 10 40 14 11
20 18 12 14 35 17
25 19 15 11 17 39


Using the above data, the problem is solved using the proposed algorithm and the results are

presented in Table 9. The obtained results are compared with particle swarm optimization (PSO) [22],
real-coded genetic algorithm (RCGA) [22], evolutionary programming (EP) [22], artificial immune
system (AIS) [21], bee colony optimization (BCO) [22] and differential evolution (DE) [23] in Table 9.
It can be found that the proposed algorithm outperforms all of the previously proposed algorithms in
the literature in less time.
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Table 9. Comparison of the obtained results for 7-unit test system (Case III).

Control Variable EP [22] BCO [22] AIS [21] PSO [22] DE [23] RCGA [22] Proposed

P1 61.361 43.9457 50.1325 18.4626 44.2118 74.6834 52.5848
P2 95.1205 98.5888 95.5552 124.2602 98.5383 97.9578 98.5685
P3 99.9427 112.9320 110.7515 112.7794 112.6913 167.2308 112.7003
P4 208.7319 209.7719 208.7688 209.8158 209.7741 124.9079 209.8723
P5 98.8000 98.8000 98.8000 98.8140 98.8217 98.8008 93.8212
P6 44.0000 44.0000 44.0000 44.0107 44.0000 44.0001 40.0000
H5 18.0713 12.0974 19.4242 57.9236 12.5379 58.0965 29.3057
H6 77.5548 78.0236 77.0777 32.7603 78.3481 32.4116 74.9573
H7 54.3739 59.879 53.4981 59.3161 59.1139 59.4919 45.7375

Minimum Cost ($/h) 10,390.0000 10,317.0000 10,355.0000 10,613.0000 10,317.0000 10,667.0000 10,111.8592
Average Cost ($/h) NA NA NA NA NA NA 10,656.4161

Maximum Cost ($/h) NA NA NA NA NA NA 13,638.7295

CPU time (s) 5.27 5.16 5.29 5.38 5.26 6.47 2.21

6.2. Test System Ii (24-Unit System)

This system is one of the large benchmarks for the CHPED problem, which is proposed in [15].
Data of cost functions of the second test system is presented in Table 10. The valve-point effects are
considered in this test system. This test system consists of 13 power only units, 6 CHP units, and 5
heat-only units. The total electricity demand is 2350 MW and the total heat demand is 1250 MWth.
The power only units’ data are based on the 13-unit challenging standard economic dispatch test
system [46]. Data of the test system can be accessed from [15].

Table 11 shows the obtained results using the proposed algorithm for this system. The obtained
results in this table are compared with the recent algorithms such as TLBO [43], OTLBO [43], CPSO [15],
TVAC-PSO [15], arithmetic crossover harmony search (ACHS) [47], group search optimization method
(GSO) [48], improved GSO (IGSO) [48] and Grey wolf optimization algorithm (GWO) [45]. As it
can be observed from this table, the proposed IABC algorithm obtains a better solution compared to
other reported algorithms in the literature. It should be mentioned that the minimum, average, and
maximum cost of 50 independent runs are also presented in Table 11. Distribution of total costs in
these trail runs for this test system is depicted in Figure 6. It is inferred from this figure that in 27 runs
the obtained cost by the proposed IABC algorithm is less than the average value of 50 trials. This
means that the algorithm is able to find a solution better that than the mean value in 54% of trails. The
convergence characteristics of the proposed IABC algorithm for 24-unit test system is provided in
Figure 7. As it can be observed from this figure the proposed algorithm is converged to the optimal
solution in earlier iterations.
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Table 10. Cost function parameters of test system II.

Power Only Units

Unit apo
e bpo

e cpo
e dpo

e f po
e Ppo,min

e Ppo,max
e

1 0.00028 8.1 550 300 0.035 0 680
2 0.00056 8.1 309 200 0.042 0 360
3 0.00056 8.1 309 200 0.042 0 360
4 0.00324 7.74 240 150 0.063 60 180
5 0.00324 7.74 240 150 0.063 60 180
6 0.00324 7.74 240 150 0.063 60 180
7 0.00324 7.74 240 150 0.063 60 180
8 0.00324 7.74 240 150 0.063 60 180
9 0.00324 7.74 240 150 0.063 60 180

10 0.00284 8.6 126 100 0.084 40 120
11 0.00284 8.6 126 100 0.084 40 120
12 0.00284 8.6 126 100 0.084 55 120
13 0.00284 8.6 126 100 0.084 55 120

CHP Units

achp
c bchp

c cchp
c dchp

c echp
c f chp

c feasible region coordinates [Pchp
c , Hchp

c ]
14 0.0345 14.5 2650 0.03 4.2 0.031 [98.8,0], [81,104.8], [215,180], [247,0]
15 0.0435 36 1250 0.027 0.6 0.011 [44,0], [44,15.9],[40,75],[110.2,135.6], [125.8,32.4],[125.8,0]
16 0.0345 14.5 2650 0.03 4.2 0.031 [98.8,0], [81,104.8], [215,180], [247,0]
17 0.0435 36 1250 0.027 0.6 0.011 [44,0], [44,15.9],[40,75],[110.2,135.6], [125.8,32.4],[125.8,0]
18 0.1035 34.5 2650 0.025 2.203 0.051 [20,0],[10,40], [45,55],[60,0]
19 0.072 20 1565 0.02 2.34 0.04 [35,0],[35,20],[ 90,45],[90,25], [105,0]

Heat Only Units

aho
h bho

h cho
h Hho,min

h Hho,max
h

20 0.038 2.0109 950 0 2695.20
21 0.038 2.0109 950 0 60
22 0.038 2.0109 950 0 60
23 0.052 3.0651 480 0 120
24 0.052 3.0651 480 0 120

Table 11. Comparison of the obtained results for 24-unit test system.

Control Variable TLBO [43] TVAC-PSO [15] ACHS [47] OTLBO [43] CPSO [15] GSO [48] IGSO [48] GWO [45] Proposed (IABC)

P1 538.5656 538.5656 628.3185 538.5656 680 627.7455 628.152 538.584 628.3185
P2 299.2123 299.2123 299.1992 299.2123 0 76.2285 299.4778 299.3423 299.1993
P3 299.122 299.122 299.199 299.122 0 299.5794 154.5535 299.3423 299.1993
P4 109.992 109.992 109.8665 109.992 180 159.4386 60.846 109.9653 109.8665
P5 109.9545 109.9545 109.8665 109.9545 180 61.2378 103.8538 109.9653 109.8666
P6 110.4042 110.4042 60 110.4042 180 60 110.0552 109.9653 60
P7 109.8045 109.8045 109.8665 109.8045 180 157.1503 159.0773 109.9653 109.8666
P8 109.6862 109.6862 109.8665 109.6862 180 107.2654 109.8258 109.9653 109.8665
P9 109.8992 109.8992 109.8665 109.8992 180 110.1816 159.992 109.9653 109.8665
P10 77.3992 77.3992 40 77.3992 50.5304 113.9894 41.103 77.6223 40
P11 77.8364 77.8364 76.9505 77.8364 50.5304 79.7755 77.7055 77.6223 76.9498
P12 55.2225 55.2225 55 55.2225 55 91.1668 94.9768 55 55
P13 55.0861 55.0861 55 55.0861 55 115.6511 55.7143 55 55
P14 81.7524 81.7524 81 81.7524 117.4854 84.3133 83.9536 83.465 81
P15 41.7615 41.7615 40 41.7615 45.9281 40 40 40 40
P16 82.273 82.273 81 82.273 117.4854 81.1796 85.7133 82.7732 81
P17 40.5599 40.5599 40 40.5599 45.9281 40 40 40 40
P18 10.0002 10.0002 10 10.0002 10.0013 10 10 10 10
P19 31.4679 31.4679 35 31.4679 42.1109 35.097 35 31.4568 35
H14 105.2219 105.2219 104.8 105.2219 125.2754 106.6588 106.4569 106.0991 104.8
H15 76.5205 76.5205 75 76.5205 80.1175 74.998 74.998 75 75
H16 105.5142 105.5142 104.8 105.5142 125.2754 104.9002 107.4073 105.789 104.8
H17 75.4833 75.4833 75 75.4833 80.1174 74.998 74.998 75 75
H18 39.9999 39.9999 40 39.9999 40.0005 40 40 40 40
H19 18.3944 18.3944 20 18.3944 23.2322 19.7385 20 18.3782 20
H20 468.9043 468.9043 470.4 468.9043 415.9815 469.3368 466.2575 469.7337 470.3907
H21 59.9994 59.9994 60 59.9994 60 60 60 60 60
H22 59.9999 59.9999 60 59.9999 60 60 60 60 60
H23 119.9854 119.9854 120 119.9854 120 119.6511 120 120 120
H24 119.9768 119.9768 120 119.9768 120 119.7176 119.8823 120 120

Minimum cost 58,006.9992 58,122.746 57,825.4368 57,856.2676 59,736.2635 58,225.745 58,049.0197 57,846.84 57,825.2594
Maximum cost 58,038.5273 58,359.552 NA 57,913.7731 60,076.6903 58,318.8792 58,219.1413 57,910.98 57,857.1058

Mean cost 58,006.9992 58,198.3106 NA 59,853.478 59,853.478 58,295.9243 58,156.5192 57,873.86 57,836.9224

CPU time (s) 5.67 52.25 NA 5.82 53.36 35.54 35.54 5.48 49.98
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Figure 6. Distribution of total costs for 50 independent runs for 24-unit test system.
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Figure 7. Convergence characteristics of the proposed IABC algorithm for 24-unit test system.

6.3. Test System Iii (48-Unit System)

This system consists of 48 units which includes 26 power-only, 12 CHP, and 10 heat-only units. The
data of this system is given in [15]. The total electricity demand is 4700 MW and the total heat demand
is 2500 MWth. Table 12 summarizes the optimal heat and power dispatches using the proposed method.
The obtained results using the proposed algorithm are compared with the recent algorithms such as
TLBO [43], OTLBO [43], CPSO [15], TVAC-PSO [15], group search optimization method (GSO) [48]
and improved GSO (IGSO) [48].

It should be mentioned that the total costs presented in this table are directly quoted from the
corresponding references. Some of the algorithms have obtained a lower cost, but with the expense of
violating some of the technical constraints. Table 13 presents the feasibility analysis of the different
algorithms. As it can be observed from this table, the solutions obtained by TLBO, OTLBO, GSO, and
IGSO are not feasible. The CHP units which violate their corresponding feasible operation regions
are indicate in Table 13 by × symbol. For example, for the TLBO method the CHP unit 38 violates
its feasible region and the total power and heat mismatch is −69.9975. The minimum, mean and
maximum obtained total costs are presented for 50 independent runs. Distribution of total costs for
50 independent runs for this test system is presented in Figure 8. It is observed from this figure that
in 28 runs the obtained solution is better than the average solution, and if we ignore solution 34, the
remaining solutions are also very close to the average solution. This shows good diversity of the
obtained solutions by this algorithm. The convergence characteristics of the proposed algorithm for
this system is depicted in Figure 9. As it can be observed from this figure the proposed algorithm is
converged to the optimal solution in earlier iterations, similar to previous test cases, which confirms
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the capability of the algorithm in dealing with large scale CHPED problems. To calculate the annual
cost-saving, the studied hourly load is considered to be the average load during a year. Therefore,
in the 48-unit test system, as an example, the saving will be 6,082,861 ($/year) if the result of the
proposed algorithm is compared with the result of the best available feasible algorithm (TVAC-PSO).
This comparison shows that the proposed optimization algorithm reduces the system operation
cost considerably.

Table 12. Comparison of the obtained results for 48-unit test system.

Control Variable TVAC-PSO [15] CPSO [15] GSO [48] IGSO [48] TLBO [43] OLTBO [43] Proposed

P1 538.5587 359.0392 627.5814 629.4952 538.5693 628.3199 628.3071
P2 75.134 74.5831 302.5046 151.9991 225.3021 225.3313 224.5321
P3 75.134 74.5831 225.3696 299.2996 229.9473 223.9653 224.6053
P4 140.6146 139.3803 178.6488 159.2254 159.1352 159.8516 159.7442
P5 140.6146 139.3803 178.2134 173.6004 160.0561 109.915 109.8049
P6 140.6146 139.3803 159.8844 93.4383 109.7821 159.7795 159.7348
P7 140.6146 139.3803 161.4173 160.773 159.6609 109.8946 109.9910
P8 140.6146 139.3803 108.776 159.351 159.6492 109.9321 110.0123
P9 140.6146 139.3803 109.0234 161.4184 109.966 159.9569 159.7589
P10 112.1998 74.7998 115.1364 115.2927 40.3726 40.897 40.0033
P11 112.1998 74.7998 114.2308 112.8994 77.5821 41.3115 40.0604
P12 74.7999 74.7998 107.2839 97.5394 92.2489 55.1748 55.1632
P13 74.7999 74.7998 93.0811 55 55.1755 92.4003 92.3016
P14 269.2794 679.881 0 0 448.6854 448.8359 359.0530
P15 299.1993 148.6585 223.7257 299.268 149.4238 225.7871 224.3763
P16 299.1993 148.6585 356.9056 225.4102 224.7173 75.46 74.8094
P17 140.3973 139.0809 109.2667 162.4605 109.9355 160.1192 159.6180
P18 140.3973 139.0809 160.4169 160.9664 159.9052 110.3532 109.7450
P19 140.3973 139.0809 109.6482 164.0177 159.7255 159.819 159.7410
P20 140.3973 139.0809 160.0005 168.4149 159.782 159.7765 159.8047
P21 140.3973 139.0809 174.5336 159.5402 60.0777 159.737 159.6745
P22 140.3973 139.0809 118.6394 110.8099 110.0689 160.1751 159.6378
P23 74.7998 74.7998 40.063 40.6399 77.6818 40.114 40.0053
P24 74.7998 74.7998 41.2253 114.3701 40.2707 40.3042 40.0109
P25 112.1997 112.1993 55 92.3275 92.4108 92.4149 92.1754
P26 112.1997 112.1993 92.0406 55 55.0956 92.5012 92.4037
P27 86.9119 92.8423 81.3512 82.1821 81.4882 85.9857 90.0393
P28 56.1027 98.7199 40 40 44.5478 98.5005 81.0528
P29 86.9119 92.8423 81.0383 81.089 81.056 81.7197 82.4319
P30 56.1027 98.7199 40 40.4281 91.6819 48.9055 81
P31 10.0031 10.0002 10 10.6913 10.548 10.0832 10
P32 35 56.7153 35.2736 35.0696 52.718 39.311 38.8071
P33 95.4799 109.1877 82.878 81 82.1522 82.0236 98.9499
P34 54.9235 65.6006 40 40.1014 52.0606 40.1105 81.0677
P35 95.4799 109.18 81 81.0922 82.7394 81.3039 98.9518
P36 54.9235 65.6006 40.3336 40.1056 45.7398 45.67 47.3001
P37 23.4981 10.6158 10.5087 10 10.0075 13.8709 10
P38 54.0882 60.5994 35 35.6838 30.0332 30.3881 35.3241
H27 108.1177 111.4458 104.9965 103.5903 105.0678 107.5951 109.8506
H28 88.9006 125.6898 74.998 74.998 78.9162 125.4997 110.4369
H29 108.1177 111.4458 104.8209 104.2548 104.827 105.1942 105.5403
H30 88.9006 125.6898 74.998 75.3686 119.6006 82.6853 110.3925
H31 40.0013 40.0001 40.001 40.0999 40.2345 40.0346 39.9999
H32 20 29.8706 19.2636 19.2943 28.0508 21.9568 21.7102
H33 112.926 120.6188 105.5564 104.8032 105.4339 105.3622 114.8715
H34 87.8827 97.0997 74.998 75.0858 85.40864 75.0938 110.4267
H35 112.926 120.6188 104.8032 104.8511 105.7694 104.9667 114.8542
H36 87.8827 97.0997 332.3293 75.086 79.9447 79.8936 81.2985
H37 45.7849 40.2639 39.5514 40 40.0001 41.6554 39.9999
H38 28.6765 31.6361 20 20.3111 17.7401 17.9018 20.1409
H39 433.9113 357.9456 486.4858 428.0157 394.616 445.0937 399.5313
H40 60 59.9916 60 59.5061 59.93 59.9967 60
H41 60 59.9916 60 59.9205 59.9578 59.9974 60
H42 120 120 118.7549 114.8048 118.5797 119.8834 120
H43 120 120 113.2371 117.9877 118.3425 119.5231 119.9999
H44 415.9741 370.6214 212.5981 535.65 480.6566 428.7605 400.9482
H45 60 59.9999 59.5362 60 59.9346 59.9957 60
H46 60 59.9999 59.9138 60 59.981 59.9638 60
H47 119.9989 119.9856 113.9272 107.7179 117.8207 119.5025 120
H48 119.9989 119.9856 119.2305 118.6434 119.1898 119.444 119.9999

Minimum cost 117,824.8956 119,708.8818 117,824.896 112,320.4159 116,739.364 116,579.239 117,130.505
Maximum cost NA NA NA NA 116,756.0057 116,613.6505 117,182.5525

Mean cost NA NA NA NA 116,825.8223 116,649.4473 117,145.5397
CPU time (s) 89.63 93.32 70.65 70.65 10.38 10.93 89.51
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Table 13. Feasibility analysis of the obtained results for 48-unit test system.

CHP Unit No. TVAC-PSO [15] CPSO [15] OLTLBO [43] TLBO [43] GSO [48] IGSO [48] Proposed

27 3 3 3 3 3 3 3
28 3 3 3 3 3 3 3
29 3 3 3 3 × 3 3
30 3 3 3 3 3 3 3
31 3 3 3 3 3 3 3
32 3 3 3 3 3 3 3
33 3 3 3 3 3 3 3
34 3 3 3 3 3 3 3
35 3 3 3 3 3 3 3
36 3 3 3 3 3 × 3
37 3 3 3 3 3 3 3
38 3 3 × × 3 3 3

Total Mismatch of
Equations (6) and (8) −2.00 × 10−4 −0.0079 −3.00 × 10−4 −69.9975 0.064 −1.00 × 10−4 6.23 × 10−4
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Figure 8. Distribution of total costs for 50 independent runs for 48-unit test system.
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Figure 9. Convergence characteristics of the proposed IABC algorithm for 48-unit test system.

7. Conclusions

A new approach based on the improved artificial bee colony (IABC) algorithm is proposed in this
paper for an efficient solution of CHPED problem. Different characteristics and constraints such as
valve-point effect, power losses, feasible operation region of CHP units, and capacity limits of units
are taken into account in the formulation. The effectiveness of the proposed IABC algorithm is verified
using standard benchmark functions and statistical analysis. It is found that the proposed algorithm
can find better solutions in terms of the objective function value, convergence speed and the number



Processes 2020, 8, 1036 19 of 22

of solutions with lower objective function than the mean value, compared with other versions of ABC
algorithm and other heuristic algorithms. Three test cases with different size and characteristics are
used to evaluate the efficiency of the propose algorithm. The obtained results using the proposed
IABC algorithm are compared with the most recent proposed algorithms and it is observed that the
IABC converges to a feasible solution with the lower total cost in a reasonable time in comparison with
the previously reported algorithms. The numerical results substantiate that:

• The obtained results by the proposed IABC algorithm has small diversity and in most cases the
algorithm converges to optimal or near optimal solutions. In other words, the variance of the
obtained solutions is small.

• The algorithm converges in relatively small number of iterations. This means that the algorithm
has a good converge speed which enables it to be used in large systems.

• In test system I, the obtained value for the objective function is less than the average value in 66%
of the trial runs. This is 54% for test system II and 56% for test system III, which means that the
proposed algorithm is able to attain solutions lower than the mean value, in more than half of
the trials.

• The obtained results are also feasible which indicates that the algorithm has the capability of
attaining solutions which are both optimal and feasible.

The better solution results, especially in large test systems, confirms the applicability of the
proposed algorithm for dealing with the real world systems. From the application perspective, the
proposed method results in an hourly saving of $205.14 per hour which means $1,797,033 saving in
each year for small scale 7-unit test system. The hourly saving of $694.4 is obtained for a 48-unit case,
which equals more than $6 million saving annually. As a future work, the proposed method could be
extended to solve unit commitment problem considering CHP units.
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M.J.; supervision, A.R.; project administration, A.R. All authors have read and agreed to the published version of
the manuscript.
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Parameters

PD The electric power load of the system [MW].
HD The heat load of the system [MWth].
PL The electric power loss of the transmission system [MW].
Ppo,max/min

e Maximum/minimum generated electric power of eth power-only unit [MW].
Hho,max/min

h Maximum/minimum generated heat of hth boiler [MWth].
Pchp,max

c (Hchp
c ) Maximum power output of cth CHP unit in MW when generating (Hchp

c ) MWth heat.
Pchp,min

c (Hchp
c ) Minimum power output of cth CHP unit in MW when generating (Hchp

c ) MWth heat.
Hchp,max

c (Pchp
c ) Maximum heat output of cth CHP unit in MWth when generating (Pchp

c ) MW power.
Hchp,min

c (Pchp
c ) Minimum heat output of cth CHP unit in MWth when generating (Pchp

c ) MW power.
apo

e Quadratic cost coefficient of power-only unit e [$/(MW)2h].
bpo

e Linear cost coefficient of power-only unit e [$/MWh].
cpo

e No-load cost coefficient of power-only unit e [$/h].
dpo

e Magnitude of sinusoidal term in cost function of power-only unit e [$/h].
f po
e Frequency of sinusoidal term in cost function of power-only unit e [rad/MWh].

aho
h Quadratic cost coefficient of heat-only unit h $/((MWth)h)2h.

bho
h Linear cost coefficient of heat-only unit h [$/(MWth)h].

cho
h No-load cost coefficient of heat-only unit h [$/h].

achp
c Quadratic cost coefficient of CHP unit c [$/(MW)2h].

bchp
c Linear cost coefficient of CHP unit c [$/MWh].
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cchp
c No-load cost coefficient of CHP unit c [$/h].

dchp
c Quadratic cost coefficient of CHP unit c [$/(MWth)2h].

echp
c Linear cost coefficient of CHP unit c [$/(MWth)h].

f chp
c Quadratic cost coefficient of CHP unit c [$/(MW)(MWth)h].

Continuous Variables

Ppo
e Power output of ith power-only unit at time t.

Pchp
c Power output of jth CHP unit at time t.

Hchp
c Heat output of jth CHP unit at time t.

Hho
h Heat output of kth heat-only unit at time t.

Functions

Ce(Ppo
e ) Cost function of e-th power-only unit.

Cc(Pchp
c , Hchp

c ) Cost function of c-th CHP unit.
Ch(Hho

h ) Cost function of h-th heat-only unit.
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