
Scheduling Two Identical Parallel Machines Subjected to Release Times,
Delivery Times and Unavailability Constraints

Authors:

Adel M. Al-Shayea, Mustafa Saleh, Moath Alatefi, Mageed Ghaleb

Date Submitted: 2021-02-03

Keywords: Cmax, Optimization, delivery times, genetic algorithm (GA), release times, preventive maintenance, parallel machine scheduling

Abstract:

This paper proposes a genetic algorithm (GA) for scheduling two identical parallel machines subjected to release times and delivery
times, where the machines are periodically unavailable. To make the problem more practical, we assumed that the machines are
undergoing periodic maintenance rather than making them always available. The objective is to minimize the makespan (Cmax). A
lower bound (LB) of the makespan for the considered problem was proposed. The GA performance was evaluated in terms of the
relative percentage deviation (RPD) (the relative distance to the LB) and central processing unit (CPU) time. Response surface
methodology (RSM) was used to optimize the GA parameters, namely, population size, crossover probability, mutation probability,
mutation ratio, and pressure selection, which simultaneously minimize the RPD and CPU time. The optimized settings of the GA
parameters were used to further analyze the scheduling problem. Factorial design of the scheduling problem input variables, namely,
processing times, release times, delivery times, availability and unavailability periods, and number of jobs, was used to evaluate their
effects on the RPD and CPU time. The results showed that increasing the release time intervals, decreasing the availability periods,
and increasing the number of jobs increase the RPD and CPU time and make the problem very difficult to reach the LB.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2021.0015
Citation (this specific file, latest version): LAPSE:2021.0015-1
Citation (this specific file, this version): LAPSE:2021.0015-1v1

DOI of Published Version: https://doi.org/10.3390/pr8091025

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

processes

Article

Scheduling Two Identical Parallel Machines
Subjected to Release Times, Delivery Times and
Unavailability Constraints

Adel M. Al-Shayea, Mustafa Saleh * , Moath Alatefi and Mageed Ghaleb

Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
alshayea@ksu.edu.sa (A.M.A.-S.); malatefi@ksu.edu.sa (M.A.); mghaleb@ksu.edu.sa (M.G.)
* Correspondence: msaleh3@ksu.edu.sa

Received: 17 July 2020; Accepted: 17 August 2020; Published: 21 August 2020
����������
�������

Abstract: This paper proposes a genetic algorithm (GA) for scheduling two identical parallel machines
subjected to release times and delivery times, where the machines are periodically unavailable. To make
the problem more practical, we assumed that the machines are undergoing periodic maintenance
rather than making them always available. The objective is to minimize the makespan (Cmax). A lower
bound (LB) of the makespan for the considered problem was proposed. The GA performance was
evaluated in terms of the relative percentage deviation (RPD) (the relative distance to the LB) and
central processing unit (CPU) time. Response surface methodology (RSM) was used to optimize the
GA parameters, namely, population size, crossover probability, mutation probability, mutation ratio,
and pressure selection, which simultaneously minimize the RPD and CPU time. The optimized
settings of the GA parameters were used to further analyze the scheduling problem. Factorial design
of the scheduling problem input variables, namely, processing times, release times, delivery times,
availability and unavailability periods, and number of jobs, was used to evaluate their effects on the
RPD and CPU time. The results showed that increasing the release time intervals, decreasing the
availability periods, and increasing the number of jobs increase the RPD and CPU time and make the
problem very difficult to reach the LB.

Keywords: parallel machine scheduling; preventive maintenance; release times; delivery times;
genetic algorithm (GA); optimization; Cmax

1. Introduction

Scheduling is a process of accomplishing determined tasks by effectively using restricted
resources. Various scheduling problems have been investigated in various research fields, such as
manufacturing operations [1], project management [2], construction [3], airline crew scheduling [4],
outpatient appointments [5], maintenance [6], cloud manufacturing [7], and personnel scheduling [8].
Production scheduling is an important problem that has been widely investigated in the literature,
such as the work presented by Pindo [9]. Production scheduling problem mostly refers to assigning a
job to be processed in one or more machines in a specific sequence that leads to an optimal objective
subjected to specific constraints. Abedinnia et al. [10] conducted a comprehensive literature review of
the production scheduling problem.

Parallel machines scheduling problem refers to assigning a set of jobs for a specific number of
identical machines by allocating each machine to a specific job(s) to optimize a specific objective(s) [11].
Each job must be processed in one machine. Alternately, each machine can only process one job at the
same time. When the processing time of jobs is identical for all machines (machines have the same
speed), the machines are called identical [12]. However, when the processing time depends on the

Processes 2020, 8, 1025; doi:10.3390/pr8091025 www.mdpi.com/journal/processes

Processes 2020, 8, 1025 2 of 19

machine and is different from one machine to another, either uniformly or arbitrary (unrelated), the
machines are called nonidentical [13,14]. Many research studies in the literature have investigated
the parallel machines scheduling problem with different objectives and constraints. The parallel
machines scheduling problem has a different solution approach in the literature, depending on the
desired objectives, which are related, but not limited, to minimizing the flow time [15], total/weighted
tardiness [16,17], number of tardy jobs [18], and makespan [19]. In this context, the makespan is the
maximum completion time when assigning each job to one machine [20]. The makespan objective,
which is the objective of this research, has been studied in many production environments, rather than
parallel machines, such as flow shop [21], job shop [22], flexible open shop [23], and single-machine
scheduling problem [24]. Furthermore, various constraints have been addressed in the parallel machine
scheduling problem, such as setup times [25], machine available times [26,27], ready times [28],
release dates [29], and delivery times [30]. Release date, delivery date, and availability constraints have
been investigated in the literature separately [27,31]. In this study, these constraints will be studied
all together.

The release date refers to the arrival time of the task to the system [32]. In the literature, it has been
studied as a constraint of different production environments. Liu et al. [33] presented a single-machine
scheduling problem with release time. Other scheduling problems with release time are parallel
machines [34], job shop [35], and open shop [36]. Moreover, the delivery time represents the period
between the completion time of the job and its exit from the system [37]. Several studies have addressed
the delivery time in different scheduling problems [38–40]. Another constraint that will be investigated
in this research is the availability time. This constraint is due to preventive maintenance (PM) of the
machines. PM should be well planned to minimize the makespan, considering that the jobs cannot
be interrupted. In this regard, the machines are undergoing planned maintenance in a prespecific
period, to maintain a well-defined operational performance. PM activities usually refer to lubrication,
inspections, cleaning, alignment, replacement, adjustment, and repair [41]. The availability of machines
was considered in machine scheduling in different situations. Since the machine in the real case will
not be available all the time. Usually, machines are subjected to PM, sudden breakdowns, processing of
special tasks or high-priority jobs, completing unfinished jobs from the previous period, or tool
changes. These situations of machine unavailability were investigated in the literature [42–50].

The objective of this paper is to minimize the makespan of parallel machines with release dates,
delivery dates, and machine availability constraints. To the best of our knowledge, no research study
has investigated this problem. However, many reports in the literature have investigated the problem of
minimizing the makespan of parallel machines with the release and delivery dates without considering
machine availability [32,37,51].

The succeeding topics are divided as follows: Section 2 discusses the research problem. Section 3
explains the algorithm used in this study. Section 4 explains the experimental designs. Section 5
presents the results and discussions. Finally, Section 6 is the conclusion.

2. Problem Description

The scheduling problem of two identical parallel machines subjected to release time, delivery
time, and machine unavailability is formally defined as follows. A set of n jobs j1, . . . , jn have to be
processed by a set of m identical parallel machines m1 and m2. Each job j has a release time r j from
which it will be ready to be processed. Job j has a processing time p j and has to be processed on
the available machines mi. A particular machine is available for a period of ti after which it will be
unavailable for a time si, a required time to conduct a PM action on the machine mi. Since the two
machines are identical, the available and unavailable periods for the two machines will be considered
to be the same. In other words, t1 = t2 = t and s1 = s2 = s. Each j ∈ J must spend a duration called
delivery time q j after processing had been finished on the machine mi. The processing of all jobs on the
identical parallel machines is conducted under the following assumptions:

• Each machine can process only one job at a time, and all jobs are non-preemptive.

Processes 2020, 8, 1025 3 of 19

• If machine i is unavailable (down for a PM action), it will not be capable of processing jobs until s
is finished.

• PM activities can be done early (before the end of the period t), but for the possibility of failure
occurring, they cannot be delayed.

• The machines are available for processing again after the unavailable period (PM activity).
• The release time r j, delivery time q j, and processing time p j for each job j are known in advance.
• The availability t and unavailability s periods of a particular machine are deterministic and known

in advance.

The objective is to minimize the makespan (Cmax). According to [37], the related problem without
addressing machine’s availability and PM is an NP-hard problem. Therefore, the considered problem is
NP-hard, and can be expressed using Graham’s notations as follows: P2

∣∣∣r j, q j, av− pm
∣∣∣Cmax. “av− pm”

denotes the constraint of machine unavailability due to preventive maintenance (PM). The following
notations will be used to define the considered problem:

n: number of jobs;
m: number of machines;
j: job’s index (j = 1, . . . , n);
i: machine’s index (i = 1, 2);
p j: processing time of job j;
r j: release time of job j;
q j: delivery time of job j;
st j: starting time for processing job j;
t: machine available time;
s: machine unavailable time, the required time to perform a PM action;
C j: completion time of job j, C j = st j + p j + q j;
Cmax: maximum completion time, max (C j).

The proposed objective function for the considered scheduling problem under investigation is
stated as follows:

Minimize Cmax (1)

where Cmax can be calculated as max
j∈n

C j, where C j = st j + p j + q j. The following example illustrates the

schedule construction of the considered problem, P2
∣∣∣r j, q j, av− pm

∣∣∣Cmax. Consider a set of eight jobs,
with the processing times, release times, and delivery times as shown in Table 1. The jobs have to be
scheduled on two identical machines: m1 and m2. The machine available periods and the unavailable
periods, the required time for performing the PM actions, are presented in Table 2. For example,
machine 1 is considered to be available for 9 units of time before a PM action, and then, it will be down
(unavailable) for 2 units of time (under maintenance). Let the current job sequence π be (7, 5, 3, 8, 1, 6,
2, 4). According to the given sequence, the jobs are assigned to the nearest available machine.

Table 1. Processing times, release times, and delivery times of the example.

j 1 2 3 4 5 6 7 8

rj 1 1 2 4 2 3 1 2
pj 2 5 2 1 6 2 6 3
qj 3 5 7 4 6 4 4 2

Table 2. Available and unavailable periods of machines 1 and 2 of the example.

t s

m1, m2 9 2

Processes 2020, 8, 1025 4 of 19

The constructed schedule of the given sequence π is presented on a Gantt chart shown in Figure 1.
From the π sequence, job 7 is the first job to be scheduled. Since the two machines are available at time
0 and job 7 is ready at time 1 (r7 = 1), job 7 can be assigned to one of the two machines. Here, job 7
is assigned to m1, and it is processed for 6 units of time (p7 = 6) starting at time 1 (st7 = 1) and
finishing at 7. Job 7 has a delivery time of 4 units of time (q7 = 4), so its completion time is C7 = 11
(C7 = st7 + p7 + q7 = 1 + 6 + 4 = 11). The second job to be scheduled is job 5, which is available at time
2 (r5 = 2). Machine m2 is available at time 2. Hence, job 5 is assigned to machine 2, and the starting
processing time of job 5 is 2. Furthermore, it will be processed for 5 units (p5 = 6), finishing at time 8.
Job 5 has a delivery time of 6 units of time (q5 = 6), so its completion time is C5 = 14. The rest of the
unscheduled jobs will be scheduled on the same procedure until all jobs in π are scheduled. Since
machines are not always available as they need periodic PM, jobs cannot be processed when machines
are under PM actions. From Table 2, machines 1 and 2 should have a PM every 9 operational times
(t = 9), and the required time to do the PM is 2 units (s = 2). A PM for machine 1 will be performed
for 2-unit times at time 9, despite machine 1 having worked for only 8 units of time. This is because
job 1, the next scheduled job in π, has a processing time of 2 units, which will exceed the availability
period (t = 9), and for the possibility of failure, the PM on machine 1 will be performed before starting
processing job 1 at time 9. Machine 1 will be available again at time 11 and start processing job 1.
Note that the machine will be in its best condition after the PM action. Machine 2 will be operated for
9 units until time 11, so it will be unavailable for 2 units. After finishing PM on machine 2, job 2 will be
processed by machine 2. From Figure 1 the Cmax, for the given sequence, is 23.

Processes 2020, 8, x FOR PEER REVIEW 4 of 19

The constructed schedule of the given sequence 𝜋 is presented on a Gantt chart shown in Figure
1. From the 𝜋 sequence, job 7 is the first job to be scheduled. Since the two machines are available at
time 0 and job 7 is ready at time 1 (𝑟 = 1), job 7 can be assigned to one of the two machines. Here,
job 7 is assigned to 𝑚 , and it is processed for 6 units of time (𝑝 = 6) starting at time 1 (𝑠𝑡 = 1) and
finishing at 7. Job 7 has a delivery time of 4 units of time (𝑞 = 4), so its completion time is 𝐶 = 11
(𝐶 = 𝑠𝑡 + 𝑝 + 𝑞 = 1 + 6 + 4 = 11). The second job to be scheduled is job 5, which is available at time
2 (𝑟 = 2). Machine 𝑚 is available at time 2. Hence, job 5 is assigned to machine 2, and the starting
processing time of job 5 is 2. Furthermore, it will be processed for 5 units (𝑝 = 6), finishing at time 8.
Job 5 has a delivery time of 6 units of time (𝑞 = 6), so its completion time is 𝐶 = 14. The rest of the
unscheduled jobs will be scheduled on the same procedure until all jobs in 𝜋 are scheduled. Since
machines are not always available as they need periodic PM, jobs cannot be processed when machines
are under PM actions. From Table 2, machines 1 and 2 should have a PM every 9 operational times (𝑡 = 9), and the required time to do the PM is 2 units (s = 2). A PM for machine 1 will be performed
for 2-unit times at time 9, despite machine 1 having worked for only 8 units of time. This is because
job 1, the next scheduled job in 𝜋, has a processing time of 2 units, which will exceed the availability
period (𝑡 = 9), and for the possibility of failure, the PM on machine 1 will be performed before
starting processing job 1 at time 9. Machine 1 will be available again at time 11 and start processing
job 1. Note that the machine will be in its best condition after the PM action. Machine 2 will be
operated for 9 units until time 11, so it will be unavailable for 2 units. After finishing PM on machine
2, job 2 will be processed by machine 2. From Figure 1 the 𝐶 , for the given sequence, is 23.

Figure 1. Gantt chart of the example (𝐶 = 23).

It is worth mentioning that the number of jobs, processing times, release times, delivery times, and
availability and unavailability periods affect the 𝐶 . For example, machine 1 will wait 1 unit of time
for job 7 to be ready, and machine 2 will wait for 2 units for job 5 to be ready for processing. Besides,
jobs 1 and 2 will wait for processing on machines 1 and 2, respectively, as they are not available.

For this problem, we propose the lower bound (LB) for the considered problem, 𝑃2|𝑟 , 𝑞 , 𝑎𝑣 −𝑝𝑚|𝐶 , as follows:
Clearly, no job 𝑗 can be finished earlier than 𝑝 + 𝑟 + 𝑞 [37]. Furthermore, since the machine

availability period must be greater than the maximum processing time such that 𝑡 ≥ 𝑚𝑎𝑥 ∈ 𝑝 (2)

where 𝑡 is the machine availability period, an LB that is similar to that for the problem 𝑝 𝑟 , 𝑞 𝐶
is as follows: 𝐿𝐵 = 𝑚𝑎𝑥 ∈ 𝑝 + 𝑟 + 𝑞 (3)

As machines are subjected to PM actions, the minimum PM times can be calculated based on
[50,52]: 12 ∑ 𝑝∈ 𝑡 (4)

where 𝑡 is the machine availability period before a PM action is needed, and ⌊𝑦⌋ denotes the largest
integer that is smaller than or equal to y.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
M1 7 3 PM 1 6 4

M2 5 8 PM 2

11 16 16 19 20

14 13 23

𝑪𝒋

𝑪𝒋

Time

Figure 1. Gantt chart of the example (Cmax = 23).

It is worth mentioning that the number of jobs, processing times, release times, delivery times,
and availability and unavailability periods affect the Cmax. For example, machine 1 will wait 1 unit
of time for job 7 to be ready, and machine 2 will wait for 2 units for job 5 to be ready for processing.
Besides, jobs 1 and 2 will wait for processing on machines 1 and 2, respectively, as they are not available.

For this problem, we propose the lower bound (LB) for the considered problem, P2
∣∣∣r j, q j, av− pm

∣∣∣Cmax,
as follows:

Clearly, no job j can be finished earlier than p j + r j + q j [37]. Furthermore, since the machine
availability period must be greater than the maximum processing time such that

t ≥ max j∈J
{
p j

}
(2)

where t is the machine availability period, an LB that is similar to that for the problem p
∣∣∣r j, q j

∣∣∣Cmax is
as follows:

LB1 = max j∈J
{
p j + r j + q j

}
(3)

As machines are subjected to PM actions, the minimum PM times can be calculated based on [50,52]:⌊
1
2

∑

j∈J

(
p j

)
t

⌋

(4)

where t is the machine availability period before a PM action is needed, and y denotes the largest
integer that is smaller than or equal to y.

Processes 2020, 8, 1025 5 of 19

The minimum time that a machine will not be available under PM activities can be calculated
as follows:

s
⌊

1
2

∑

j∈J

(
p j

)
t

⌋

(5)

where s is the PM time.
By adding the unavailable time due to the PM activities to the two LBs developed by [51] for the

p
∣∣∣r j, q j

∣∣∣Cmax, we get the following LBs:

LB2 =
1
2

∑
j∈J

(
p j

)
+ min j∈J

(
r j
)
+ min j∈J

(
q j
)
+ s

⌊
1
2

∑

j∈J

(
p j

)
t

⌋

(6)

Ranking the jobs in an increasing manner as regards their release times and delivery times,
such that r1(J) ≤ r2(J) and q1(J) ≤ q2(J) (r1(J) and r2(J) are the two smallest release times and
q1(J) and q2(J) are the two smallest delivery times), we get

LB3 =
1
2

∑
j∈J

(
p j

)
+ r1(J) + r2(J) + q1(J) + q2(J)

+ s
⌊

1
2

∑

j∈J

(
p j

)
t

⌋

(7)

LB(J) = max{LB1, LB2, LB3} (8)

3. Genetic Algorithm

Genetic algorithms (GAs) are adaptive metaheuristic search algorithms used for solving
combinatorial optimization problems. GAs represent one branch in the field of evolutionary algorithms
(EAs). GAs use natural evolution-inspired techniques in which they imitate the biological processes of
reproduction and natural selection to solve for the “fittest” solutions [53]. GA was first proposed by
Holland in 1975, in an attempt to solve some optimization problems by imitating the genetic process
of living organisms and the law of the evolution of species [54]. In 1989, Golberg [55] applied GA to
optimization and machine learning.

To solve the problem under study, we propose a GA to present high-quality solutions within
allowable computing times. The reasons behind choosing the GA are its well-known reputation
for high performance when solving combinatorial optimization problems, and more importantly,
its effectiveness in solving related problems as reported in previous studies (see for example [14,17]).
Several genetic operators are considered, and the selection of the best GA operator parameters has
been optimized based on response surface methodology (RSM) experimental design, as detailed in
Section 4.3. The proposed GA presents the following operators: generation of the initial population,
fitness evaluation, parent selection, crossover, and mutation. In the next subsections, the GA main
elements are discussed.

3.1. Chromosome Encoding

Genes are the main component to build GAs, since chromosomes are a sequence of genes.
When building a GA for scheduling problems, each job in the schedule is represented as a gene
in a chromosome. This operation, that is, representing individual genes, is known as encoding.
Several encoding schemes are presented in related studies. The most used encoding scheme is the
permutation encoding in which every chromosome is represented as a permutation list of jobs.
A permutation list is a linear order list of all the jobs with no repeated values, where an extra gene is
used to distinguish the machines on the chromosome. See Section 2 (Figure 1) for an illustration.

3.2. Initial Population

A population is a collection of chromosomes. In the GA, the two main aspects of a population are
the size of the population and its initial generation process. Usually, the initial population is generated

Processes 2020, 8, 1025 6 of 19

randomly. However, in some cases, for complicated problems, to increase the quality of the generated
population, a small part of the initial population is generated using a problem-specific heuristic, and the
rest is generated randomly to ensure population diversity. In the proposed GA, the population size
is determined using a preliminary study as detailed in Section 4. However, the initial population is
generated randomly to make sure the initial population is diverse.

3.3. Chromosome Evaluation

The evaluation process is used to compute the fitness value of each individual in the present
population. In the evaluation process, the current population is evaluated by decoding each chromosome
in that population and calculating its objective function value. As the generated chromosomes do not
include the PM activities, the following procedure (Procedure 1) is required to decode each chromosome
and calculate its objective value. In the proposed procedure, the evaluation starts by delivering all the
inputs for parameters, including the randomly generated sequence π[n]. Starting with the first job of the
sequence, there are two possibilities. The first is that the current machine age plus the processing time of
that first job is less than or equal to the availability time of the machine before PM. Then, there is no PM,
the machine’s age will be updated, the job will be scheduled on that available machine, the completion
time of the scheduled job will be calculated, and finally, the machine availability will be updated.
The second possibility is that the current machine age, plus the processing time of that first job, is larger
than the availability time of the machine before PM. Then, a PM activity should be assigned to that
machine first before scheduling the job. The starting and completion time of the PM activity is going to
be determined. Then, the machine’s age and availability are going to be calculated. Finally, the job is
going to be scheduled on the machine and the completion time of the scheduled job is going to be
obtained. This process is going to be repeated for all the jobs in the input sequence π[n]. The final step
of the procedure is to calculate Cmax as the maximum of all job’s completion times. All details can be
found in the proposed procedure (Procedure 1).

3.4. Selection and Reproduction Process

The selection process ascertains the chromosomes that are chosen for mating and reproduction.
The main purpose of the selection process is as follows: “the better an individual is, the higher its chance
of being a parent.” In this study, Roulette wheel selection was used in which each individual is assigned
a selection probability that is proportional to its relative fitness, pi = fi/

∑n
j=1 f j. The selection of beta

individuals is performed by beta-independent spins of the roulette wheel. Each spin will select a single
individual, and the better individual will be selected. The roulette wheel selection operator is selected
based on some preliminary experiments, it has been found that, for the problem under investigation,
the roulette wheel selection operator performs better than the tournament selection operator and
random selection. This was consistent with previous research (for example [14,17,53,56]), as they have
suggested that roulette wheel selection operator is the best operator for scheduling problems.

3.5. Crossover

Reproduction in GA is conducted by applying crossovers and mutations. The crossover process
consists of a combination of two parents to create a new child. The crossover operators were selected
using a permutation list; that is, the proposed operator was applied to a permutation of coded
operations. In this study, a position-based crossover (PBX) proposed by Syswerda [57] was used.
In a PBX operator, a subset of positions from the first parent is randomly selected and copies the
components at these positions to the offspring chromosome at the same position and then fills the other
positions with the remaining components in the same order as in the second parent. An example of a
PBX is given in Figure 2. The most important variable that needs to be tuned in the crossover process
is the crossover rate Pc(Pc ∈ [0, 1]), which represents the proportion of parents on which a crossover
operator will occur.

Processes 2020, 8, 1025 7 of 19

Procedure 1 Chromosome Evaluation

1 Inputs:
n is the number of jobs;
m is the number of machines, which is 2;
p j are the processing times of each job;
r j are the ready times of each job;
q j are the delivery times of each job;
t is the machine available time;
s is the machine unavailable time;
π[n] is the generated sequence (randomly generated as explained in Section 3.2);

2 For h = 1 to n,
j = x[h]; and i is the assigned machine;
If j is the 1st job in the assigned machine i:

If machine i age + p j ≤ t; %% No PM action
machine i age = machine i age + p j;
st j = r j;
C j = st j + p j + q j;
machine i availability = C j − q j;

Else%% PM action is required
stPM = machine i availability;
ctPM = stPM + s;
machine i availability = ctPM;
machine i age = p j;

st j = max
(
machine i availability, r j

)
;

C j = st j + p j + q j;
machine i availability = C j − q j;

End (if);
Else

If machine i age + p j ≤ t; %% No PM action
machine i age = machine i age + p j;

st j = max
(
machine i availability, r j

)
;

C j = st j + p j + q j;
machine i availability = C j − q j;

Else%% PM action is required
stPM = machine i availability;
ctPM = stPM + s;
machine i availability = ctPM;
machine i age = p j;

st j = max
(
machine i availability, r j

)
;

C j = st j + p j + q j;
machine i availability = C j − q j;

End (if);
End (if);

End (for);

3
Output:
Cmax = max

(
C j

)
;

Processes 2020, 8, x FOR PEER REVIEW 8 of 19

Figure 2. Example of a position-based crossover (PBX) operator.

3.6. Mutation

Mutation occurs after crossover is completed. This operator applies the changes randomly to
one or more “genes” to produce a new offspring. Hence, it creates new adaptive solutions good in
avoiding local optima. The percentage of genes that will be mutated is denoted as Mu. Mutation
probability (Pm) determines how many chromosomes (offspring) should be mutated in one
generation. Pm is in the range of [0, 1]. In this paper, we used a combination of swap, reversion, and
insertion mutation operators for producing the mutation offspring. Operators are selected randomly
with equal probability, i.e., every time the mutation function was called by GA, one of the three
operators will be randomly chosen with equal probability.

3.7. Replacement and Termination Condition

The replacement phase concerns the survivor selection of both the parent and the offspring
populations. In this study, the population was updated based on elitism in which the best individuals
are selecting from the parents and offspring. The GA preserves the solution with the best value of the
objective function in the next generation when adopting elitism [57].

Computational time and convergence of the fitness value are considered simultaneously for
terminating the GA iterations. In this paper, the search process will be terminated if the fitness
reaches the LB, no improvement in the best fitness values of the current population values for a given
number of successive iterations, or the number of iterations reaches the maximum allowable number.
The algorithm is repeated until the termination condition is satisfied.

4. Experimental Design

In this section, we describe the design of the experiments performed to select the best GA
parameters proposed in Section 3. In the next sections, we present the indicators used for the
evaluations, describe the test instances, and discuss the selection of the GA parameters.

4.1. Indicator of the Evaluation

The statistics used in the analysis of the computational experiments to assess the performance
of the proposed algorithm are based on the proposed LB presented in Equation (9). For each instance,
the relative distance to the LB was calculated. Thus, for instance 𝑖, the relative gap between the 𝐶𝑚𝑎𝑥 and 𝐿𝐵 is calculated using the relative percentage deviation (RPD), denoted as 𝑅𝑃𝐷 in
Equation (9): 𝑅𝑃𝐷 = 𝐶𝑚𝑎𝑥 − 𝐿𝐵𝐿𝐵 ∗ 100 (9)

In addition to the RPD, the computation time taken to solve each instance 𝐶𝑃𝑈𝑡𝑖𝑚𝑒 was
presented.

4.2. Description of Test Instances

To study the effect of the scheduling problem constraints, an experimental study based on the
factorial design was conducted using a set of instances. The test instances were generated randomly

1 2 3 4 5 6 7 8

8 7 4 2 5 3 1 6

8 2 5 4 3 6 7 1

Parent 1:

Parent 2:

Offspring:

Figure 2. Example of a position-based crossover (PBX) operator.

Processes 2020, 8, 1025 8 of 19

3.6. Mutation

Mutation occurs after crossover is completed. This operator applies the changes randomly to one
or more “genes” to produce a new offspring. Hence, it creates new adaptive solutions good in avoiding
local optima. The percentage of genes that will be mutated is denoted as Mu. Mutation probability
(Pm) determines how many chromosomes (offspring) should be mutated in one generation. Pm is in
the range of [0, 1]. In this paper, we used a combination of swap, reversion, and insertion mutation
operators for producing the mutation offspring. Operators are selected randomly with equal probability,
i.e., every time the mutation function was called by GA, one of the three operators will be randomly
chosen with equal probability.

3.7. Replacement and Termination Condition

The replacement phase concerns the survivor selection of both the parent and the offspring
populations. In this study, the population was updated based on elitism in which the best individuals
are selecting from the parents and offspring. The GA preserves the solution with the best value of the
objective function in the next generation when adopting elitism [57].

Computational time and convergence of the fitness value are considered simultaneously for
terminating the GA iterations. In this paper, the search process will be terminated if the fitness
reaches the LB, no improvement in the best fitness values of the current population values for a given
number of successive iterations, or the number of iterations reaches the maximum allowable number.
The algorithm is repeated until the termination condition is satisfied.

4. Experimental Design

In this section, we describe the design of the experiments performed to select the best GA
parameters proposed in Section 3. In the next sections, we present the indicators used for the
evaluations, describe the test instances, and discuss the selection of the GA parameters.

4.1. Indicator of the Evaluation

The statistics used in the analysis of the computational experiments to assess the performance of
the proposed algorithm are based on the proposed LB presented in Equation (9). For each instance,
the relative distance to the LB was calculated. Thus, for instance i, the relative gap between the Cmaxi
and LBi is calculated using the relative percentage deviation (RPD), denoted as RPDi in Equation (9):

RPDi =
Cmaxi − LBi

LBi
∗ 100 (9)

In addition to the RPD, the computation time taken to solve each instance CPUtimei was presented.

4.2. Description of Test Instances

To study the effect of the scheduling problem constraints, an experimental study based on the
factorial design was conducted using a set of instances. The test instances were generated randomly
based on the data set designed by previous studies. Two sets of processing times p j were similar
to Liao et al. [42], and the sets were generated uniformly in the intervals of (a = 20, b = 50) and
(a = 20, b = 100). Two sets of release time times r j were uniformly distributed in the intervals of
(1, a) and

(
1, bn

m

)
, where a and b correspond to p j, n is the number of jobs, and m is the number of

machines (m = 2). The first set was similar to that in [37], while the second one was generated so that
the jobs arrive throughout the scheduling plan which makes the problem more practical. Two sets of
delivery times q j were generated, with random values uniformly distributed in the intervals of (1, 0.5b),
and (1, 1.5b) considering the delivery time as a function of the processing time. Machine availability
and unavailability periods were generated similarly to that in Liao et al. [42] considering the t and s as
a function of the processing times and number of jobs. Two sets of machine availability periods t of

Processes 2020, 8, 1025 9 of 19

were generated such that t ∈ (a+b)n
4 and (a + b)n. Two sets of machine unavailability periods s were

generated such that s ∈ (a+b)n
12 and (a+b)n

6 .
For every combination of p j, r j, q j, t, and s, different problem sizes of n jobs were generated where

n ∈ (10, 20, 30, 40, 50, 100, 200, 300, 400, and 500). For each size, five instances were randomly generated.
The summary of the instance characteristics of the problem is presented in Table 3.

Table 3. Experimental characteristics of the generated instances.

Input
Levels

1 2 3 4 5 6 7 8 9 10

p U(20,50) U(20,100)
r U(1,a) U(1, bn

m)
q U(1,0.5b) U(1,1.5b)
t (a+b)n

4
(a + b)n

s (a+b)n
12

(a+b)n
6

n 10 20 30 40 50 100 200 300 400 500

4.3. Response Surface Methodology

The influence of the GA parameters, discussed in Section 3, on its performance was evaluated
through an experimental design approach. RSM was used for the parametric study and optimization
of the GA parameters for efficient solving of the scheduling problem under study. In this work,
RSM’s face-centered central composite (FCC) design, a second-order experimental design with three
levels, was employed to analyze the effects of the selected five GA parameters on output response
(RPDi and CPUtimei). Based on the literature and a preliminary screening, five GA parameters and
their respective levels were selected, as shown in Table 4. The design consists of a full factorial having
52 runs including 32 cube points and 20 center points (10 center points in a cube and 10 center points
along the axis).

Table 4. The genetic algorithm (GA) parameters and their respective levels.

Parameter −1 0 1

Popsize 20 210 400
Pc 0.1 0.695 0.99
Pm 0.1 0.5 0.9
Mu 0.001 0.1505 0.3
Beta 1 10 19

Analysis of variance (ANOVA) was performed to investigate the significance of the GA parameters
and their interactions in relation to RPD and central processing unit (CPU) time. P-values less than 0.05
indicate model terms are significant. Model reduction was performed using the forward elimination
process to improve the model by deleting insignificant terms without a statistically significant loss
of fit. The data sets, that were used to experimentally optimize the GA’s parameters, were selected
from the generated instances described in Section 4.2, taking into account the sample size, n ∈ (10, 500).
The GA was run 10 times, and the average RPD and CPU time were reported for the selected instances.

Tables 5 and 6 present the reduced ANOVA tables for the RPD and central processing unit (CPU)
time, respectively. For the RPD, the population size, mutation ratio, and beta are statistically significant
factors as their P-values less than 0.05 (Table 5). The interactions of the population size with mutation
probability and beta are statistically significant. For the CPU time, the population size, mutation rate,
and mutation probability are statistically significant (Table 6). The interactions of population size with
mutation probability and mutation rate and the interactions of mutation probability with mutation
rate are statistically significant. Note that the two-way interactions have a contribution of 36.04%,

Processes 2020, 8, 1025 10 of 19

which indicates that a second-order model should be adapted for optimizing the GA parameters. It is
worth noting that the normality assumption is satisfied and the adjusted R2 for the RPD and CPU time
models are 90.14% and 82.45%, respectively.

Table 5. Reduced analysis of variance (ANOVA) table for the relative percentage deviation (RPD).

Source DF Seq SS Contribution Adj SS Adj MS F-value P-value

Model 8 0.007765 90.14% 0.007765 0.000971 49.16 0
Linear 4 0.006092 70.72% 0.006092 0.001523 77.14 0

Popsize 1 0.005858 68.00% 0.005858 0.005858 296.71 0
Pm 1 0 0.00% 0 0 0.01 0.935
Mu 1 0.000131 1.52% 0.000131 0.000131 6.61 0.014
Beta 1 0.000103 1.20% 0.000103 0.000103 5.22 0.027

Square 1 0.00131 15.21% 0.00131 0.00131 66.37 0
Popsize2 1 0.00131 15.21% 0.00131 0.00131 66.37 0

Two-way interaction 3 0.000363 4.21% 0.000363 0.000121 6.13 0.001
Popsize×Pm 1 0.000229 2.66% 0.000229 0.000229 11.61 0.001
Popsize×Beta 1 0.000091 1.06% 0.000091 0.000091 4.6 0.038

Pm×Mu 1 0.000043 0.50% 0.000043 0.000043 2.17 0.148
Error 43 0.000849 9.86% 0.000849 0.00002

Pure error 9 0.00003 0.35% 0.00003 0.000003

Total 51 0.008614 100.00%

R-sq: 90.14%; R-sq(adj): 88.31%; R-sq(pred): 83.95%.

Table 6. Reduced ANOVA table for the central processing unit (CPU) time.

Source. DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Model 8 572,596 82.45% 572,596 71,574 25.26 0
Linear 4 322,331 46.42% 322,331 80,583 28.44 0

Popsize 1 102,731 14.79% 102,731 102,731 36.25 0
Pc 1 4120 0.59% 4120 4120 1.45 0.234
Pm 1 131,009 18.87% 131,009 131,009 46.23 0
Mu 1 84,471 12.16% 84,471 84,471 29.81 0

Two-way interaction 4 250,265 36.04% 250,265 62,566 22.08 0
Popsize×Pc 1 3960 0.57% 3960 3960 1.4 0.244
Popsize×Pm 1 92,875 13.37% 92,875 92,875 32.77 0
Popsize×Mu 1 71,356 10.28% 71,356 71,356 25.18 0

Pm×Mu 1 82,074 11.82% 82,074 82,074 28.96 0
Error 43 121,852 17.55% 121,852 2834

Pure error 9 2039 0.29% 2039 227

Total 51 694,448 100.00%

R-sq: 82.45%; R-sq(adj): 79.19%; R-sq(pred): 69.06%.

The mathematical models in terms of actual factors have been obtained to make predictions and
multiobjective optimization. The mathematical models of RPD and CPU time are given in Equations
(10) and (11), respectively.

PRD = 0.02862 − 0.000200 PopSize− 0.00464 Pm + 0.02278 Mu
+ 0.000401 Beta + 0.0000003 PopSize ∗ PopSize
+ 0.000035 PopSize ∗ Pm− 0.000001 PopSize ∗ Beta
− 0.0193 Pm ∗Mu

(10)

CPU time = 70.4 − 0.177 PopSize + 4.4 Pc − 121.1 Pm − 439 mu
− 0.198 PopSize ∗ Pc + 0.709 PopSize ∗ Pm + 1.662 PopSize
∗ Mu + 847 Pm ∗Mu

(11)

Desirability function, embedded in Minitab software, has been used for multiobjective optimization
of the GA parameter settings. Desirability function is a mathematical method used for multiple response
optimization, proposed by Derringer and Suich [58]. In the desirability function, each response
is transformed into a desirability function that ranges from 0 to 1, where 0 is least desirable.
Overall‘desirability of the multi-response system is measured by combining the individual desirabilities

Processes 2020, 8, 1025 11 of 19

of the responses. The objective is to find parameter settings that maximize the overall desirability.
In this study, the optimal solution is to minimize RPD and CPU time. Table 7 shows the optimal
combination values of the GA parameters as a result of multiobjective optimization with overall
desirability of 0.9867.

Table 7. The optimal combination values of the GA parameters.

GA Parameters Popsize Pc Pm Mu Beta

Best Settings 200 0.90 0.14 0.001 1

5. Results and Discussions

In this section, the effect of the scheduling problem variables on the RPD and CPU time is
investigated. A full factorial experimental study is conducted using a set of instances generated
randomly, described in Section 4.2, based on five factors, which are process times (p), release times
(r), delivery times (q), availability period (t), unavailability period (s), and the number of jobs (n).
Two levels were considered for these variables except for the number of jobs in which there were
10 levels (Table 3), which resulted in the generation of 320 instances. Furthermore, every instance was
generated five times. A total of 1600 instances was generated. The GA was run five times for every
instance, and the average Cmax and CPU time was reported.

The proposed GA has been coded using MATLAB software (The MathWorks Inc., MA, USA), and
the computational experiments for all instances have been conducted on the same computer with the
following specifications: Intel® Core™ i5-3230M at 2.6 GHz for the CPU processor (Intel Corporation,
CA, USA) and 4.0 GB for RAM.

The computational results of the GA for the RPD and CPU times are given in Tables 8 and 9,
respectively. Results are also presented in Figure 3a–f. The following notations are used in Table 8,
Table 9, and Figure 3:

• n denotes the number of jobs.
• 1,2 refer to the low and high levels, respectively, corresponding to variables p, r, q, t, and s.
• RPD-1 and RPD-2 refer to the RPD at low and high levels, respectively, corresponding to variables

p, r, q, t, and s.
• CPU-1 and CPU-2 refer to the CPU time at low and high levels, respectively, corresponding to

variables p, r, q, t, and s.

Table 8. Computational results of the RPD.

Input n

p r q t s 10 20 30 40 50 100 200 200 400 500

1

1

1
1

1 0.1 0 0.05 0.03 0.01 0.002 0.003 0.0008 0.003 0.003
2 0.29 0.04 0.03 0 0 0.016 0 0.001 0.001 0.003

2
1 0.72 0.01 0 0 0.02 0.001 0.005 0.001 0.003 0.001
2 0.11 0.01 0 0 0.03 0.002 0.003 0.001 0.004 0.002

2
1

1 0.23 0 0.05 0.01 0.02 0.032 0.021 0.008 0.008 0.008
2 1.11 0 0.01 0.01 0.05 0.012 0.014 0.008 0.013 0.008

2
1 0.91 0.1 0.02 0.03 0.01 0.018 0.011 0.013 0.009 0.004
2 1 0.37 0 0.02 0.04 0.018 0.025 0.011 0.008 0.007

2

1
1

1 2.51 3.51 7 7.46 3.37 0.592 16.34 11.48 5.827 2.464
2 4.45 7.08 4.64 2.73 3.26 5.592 5.531 4.789 16.41 13.79

2
1 0 1.66 0.39 0.3 1.89 0.905 1.692 1.2 1.519 1.717
2 4.95 0.19 0.28 0.89 0.87 1.536 1.916 2.104 1.989 1.754

2
1

1 2.03 2.08 0.47 3.3 7.76 13.02 14.28 8.618 7.224 5.802
2 3.9 2.94 3.93 3.79 7.59 12.28 5.342 8.06 7.597 10.45

2
1 0 0.15 0.11 0.16 0.27 0.541 1.234 1.184 2.002 1.592
2 0.26 0.29 0.25 0.79 0.11 1.059 1.448 1.503 1.626 1.583

Processes 2020, 8, 1025 12 of 19

Table 8. Cont.

Input n

p r q t s 10 20 30 40 50 100 200 200 400 500

2

1

1
1

1 0.54 0 0 0.03 0.01 0.013 0.004 0.001 0.008 0.002
2 0.4 0.03 0.02 0.01 0.02 0.005 0.002 0.005 0.002 0.004

2
1 0.63 0 0.05 0.01 0.02 0.011 0.015 0.002 0.004 0.003
2 0 0 0.01 0.02 0.02 0.007 0.007 0.005 0.003 0.002

2
1

1 1.71 0.02 0.02 0.02 0.05 0.031 0.017 0.011 0.013 0.01
2 0.82 0.18 0.04 0.01 0.03 0.022 0.017 0.012 0.007 0.01

2
1 0.86 0 0.04 0.03 0.02 0.031 0.022 0.018 0.017 0.007
2 0.75 0.05 0 0.04 0.02 0.023 0.022 0.019 0.008 0.008

2

1
1

1 2.07 0.9 2.67 1.93 0.59 2.327 3.921 3.449 3.781 6.719
2 2.25 5.29 3.6 4.07 3.47 17.65 15.41 10.71 18.5 14.65

2
1 0.35 0.59 2.45 0.64 0 0.102 0.451 0.442 0.695 0.537
2 2.98 0.89 0.87 0.54 0.62 0.376 0.963 0.555 0.828 0.537

2
1

1 1.3 0.02 3.03 0.43 0.22 2.253 2.666 3.132 6.514 3.623
2 0.47 5.27 6.16 7.39 9.57 1.011 9.588 9.407 13.65 10.79

2
1 1.57 0 0 0.07 0.14 0.082 0.515 1.029 0.462 0.741
2 0 0.02 0.24 0.63 0.06 0.394 0.517 0.453 0.333 0.614

Table 9. Computational results of the CPU time.

Input n

p r q t s 10 20 30 40 50 100 200 200 400 500

1

1

1
1

1 2.1 0.6 3.6 3.5 2.3 2.9 6.2 5.1 15.0 20.2
2 3.8 2.5 2.3 0.5 1.8 6.1 2.8 5.7 10.5 23.6

2
1 7.2 0.7 0.5 0.6 2.8 2.8 7.6 6.1 15.1 10.2
2 2.5 0.8 0.6 1.0 4.6 2.5 6.0 7.1 18.6 18.9

2
1

1 3.4 0.3 3.2 2.9 3.9 7.2 16.6 15.6 28.5 37.9
2 6.1 0.5 1.8 2.7 6.2 7.6 17.7 17.6 31.1 34.6

2
1 7.7 3.7 2.3 3.2 2.3 5.8 14.1 22.4 26.7 23.3
2 6.0 4.3 0.9 2.3 5.6 6.9 24.7 21.1 23.6 31.6

2

1
1

1 3.9 8.7 13.8 15.7 18.3 47.2 204.6 368.1 746.3 962.6
2 5.2 12.9 8.5 12.6 18.4 71.7 274.5 440.5 561.6 1113.9

2
1 0.1 6.4 7.5 5.1 10.8 31.4 139.0 231.3 333.2 530.7
2 7.4 2.3 7.3 9.7 13.1 43.7 143.4 239.2 404.6 565.5

2
1

1 5.5 7.8 6.6 13.5 27.6 48.6 223.7 501.0 793.0 1057.9
2 7.4 8.3 12.6 13.7 24.9 75.9 243.1 370.2 794.5 1008.9

2
1 0.1 2.6 2.1 5.1 4.2 32.7 148.2 200.3 369.2 519.3
2 1.9 2.2 4.0 7.8 7.7 32.9 125.5 239.9 400.2 534.1

2

1

1
1

1 6.5 1.0 0.7 3.3 4.5 9.2 11.3 10.7 31.7 28.3
2 3.4 3.1 4.6 2.8 5.3 4.5 9.2 22.9 15.6 36.2

2
1 6.3 0.8 5.3 1.4 4.4 8.9 22.1 12.0 22.3 29.7
2 0.2 0.4 1.9 4.0 4.6 6.4 15.9 19.8 22.3 27.7

2
1

1 7.7 2.1 2.4 3.4 4.1 13.4 17.2 32.4 50.3 55.7
2 8.7 9.4 2.3 3.2 4.0 11.7 20.8 30.0 38.3 49.9

2
1 7.9 1.3 4.1 3.6 4.0 12.7 25.2 30.6 44.6 46.5
2 8.1 2.7 0.8 5.6 3.5 11.2 23.5 37.2 36.8 48.0

2

1
1

1 5.2 2.4 5.0 8.3 11.4 42.7 154.5 404.9 666.9 779.8
2 5.1 7.1 7.8 15.6 12.2 46.5 142.3 438.2 743.7 983.5

2
1 1.6 3.7 6.6 5.6 0.4 17.1 65.3 167.5 316.1 452.3
2 3.6 2.0 4.9 4.4 4.7 27.7 106.1 188.8 376.8 383.2

2
1

1 1.6 2.0 9.0 5.1 7.5 50.3 161.4 308.2 595.2 845.2
2 1.8 8.9 13.7 9.9 22.7 65.4 156.9 394.6 653.8 744.8

2
1 2.0 0.1 0.2 2.7 8.0 13.9 93.2 244.0 318.0 522.8
2 0.1 1.9 2.5 3.5 2.4 22.8 81.7 174.3 263.6 455.4

Processes 2020, 8, 1025 13 of 19
Processes 2020, 8, x FOR PEER REVIEW 12 of 19

Figure 3. Effects of variables (a) number of jobs, 𝑛; (b) processing times, 𝑝; (c) ready times, 𝑟; (d)
delivery times, 𝑞, (e) machine availability time, 𝑡; and (f) machine unavailability time, 𝑠 on the RPD
and CPU time.

Computational results of the RPD and CPU time are summarized in Table 8 and Table 9. It is
evident from Table 8 that the release time factor has the most effect on the RPD. Increasing the release
time interval from low level (𝑈(1, 𝑎)) to the high level (𝑈(1,)) makes the problem very difficult to
reach the LB and take high CPU time. The maximum error (RPD) at a low level of 𝑟 was 1.71%, while
the error reaches 18.50% at a high level of 𝑟. The maximum CPU time at a low level of 𝑟 was 55.7
seconds, while the CPU time reached 1113.9 seconds at a high level of 𝑟. However, the RPD and CPU
time are relatively reduced at a high level of 𝑟 when the availability period is high ((𝑎 + 𝑏)𝑛). The
CPU time is significantly increased with an increase in 𝑛.

Table 8. Computational results of the RPD.

Input n
p r q t s 10 20 30 40 50 100 200 200 400 500

1 1
1

1
1 0.1 0 0.05 0.03 0.01 0.002 0.003 0.0008 0.003 0.003
2 0.29 0.04 0.03 0 0 0.016 0 0.001 0.001 0.003

2 1 0.72 0.01 0 0 0.02 0.001 0.005 0.001 0.003 0.001
2 0.11 0.01 0 0 0.03 0.002 0.003 0.001 0.004 0.002

2 1 1 0.23 0 0.05 0.01 0.02 0.032 0.021 0.008 0.008 0.008

0
100
200
300
400
500
600
700
800

0

1

2

3

4

5

6

10 20 30 40 50 100 200 300 400 500

CP
U

tim
e

(s
ec

)

RP
D

(%
)

n

RPD CPU

0
100
200
300
400
500
600
700
800

0

1

2

3

4

5

6

10 20 30 40 50 100 200 300 400 500

CP
U

tim
e

(s
ec

)

RP
D

(%
)

n

RPD-1 RPD-2 CPU-1 CPU-2

0
100
200
300
400
500
600
700
800

0

1

2

3

4

5

6

10 20 30 40 50 100 200 300 400 500

CP
U

tim
e

(s
ec

)

RP
D

(%
)

n

RPD-1 RPD-2 CPU-1 CPU-2

0
100
200
300
400
500
600
700
800

0

1

2

3

4

5

6

10 20 30 40 50 100 200 300 400 500

CP
U

tim
e

(s
ec

)

RP
D

(%
)

n

RPD-1 RPD-2 CPU-1 CPU-2

0
100
200
300
400
500
600
700
800

0

1

2

3

4

5

6

10 20 30 40 50 100 200 300 400 500

CP
U

tim
e

(s
ec

)

RP
D

(%
)

n

RPD-1 RPD-2 CPU-1 CPU-2

0
100
200
300
400
500
600
700
800

0

1

2

3

4

5

6

10 20 30 40 50 100 200 300 400 500

CP
U

tim
e

(s
ec

)

RP
D

(%
)

n

RPD-1 RPD-2 CPU-1 CPU-2

(a) (b)

(c) (d)

(e) (f)

Figure 3. Effects of variables (a) number of jobs, n; (b) processing times, p; (c) ready times, r; (d) delivery
times, q, (e) machine availability time, t; and (f) machine unavailability time, s on the RPD and CPU time.

Computational results of the RPD and CPU time are summarized in Tables 8 and 9. It is evident
from Table 8 that the release time factor has the most effect on the RPD. Increasing the release time
interval from low level (U(1, a)) to the high level (U

(
1, bn

m

)
) makes the problem very difficult to reach

the LB and take high CPU time. The maximum error (RPD) at a low level of r was 1.71%, while the
error reaches 18.50% at a high level of r. The maximum CPU time at a low level of r was 55.7 seconds,
while the CPU time reached 1113.9 seconds at a high level of r. However, the RPD and CPU time are
relatively reduced at a high level of r when the availability period is high ((a + b)n). The CPU time is
significantly increased with an increase in n.

Figures 3a and 4f show the effect of these variables on the average RPD and CPU time with the
changes in the number of jobs. Figure 3a shows that an increase in the number of jobs increases the
RPD and CPU time. Figure 3b shows the average RPD and CPU time at low and high p variable.
Moreover, there is no difference between them as the trends at low and high p are very close to each
other. Figure 3c shows a significant effect of the r variable on the average RPD and CPU time. Figure 3d
shows the average RPD and CPU time at low and high q variable. Furthermore, there is no difference
between them as the trends at low and high q are very close to each other. Figure 3e shows a significant
effect of the t variable on the average RPD. However, the effect of r on the CPU time is significant at a
high number of jobs.

Processes 2020, 8, 1025 14 of 19

Processes 2020, 8, x FOR PEER REVIEW 16 of 19

4b shows that the processing time, availability period, and delivery time are inversely proportional
to the RPD. However, the unavailability period, release time, and sample size are directly
proportional to the RPD.

Figure 4. Main effects of the factors being studied on (a) the CPU time and (b) PRD.

Moreover, the interaction plot of the factors that affect the RPD and CPU time are plotted in
Figure 5. Figure 5a shows that there is a significant effect in the interaction between the availability
period and release time in the CPU. Additionally, the more availability period and release time, the
CPU time is less. Furthermore, the release time increases the CPU time with the increase in sample
size. Figure 5b shows the interaction plot for the RPD. It is worth noting that almost the same
interaction effects of the CPU times are applied to the RPD.

Figure 5. Interaction plots for (a) the CPU time and (b) RPD.

6. Conclusions

The scheduling problem of two identical parallel machines subjected to release times and
delivery times, where the machines are periodically unavailable, is tackled in this study. The
machines were assumed undergoing periodic maintenance instead of assuming they are always
available. This makes the scheduling problem more practical. The objective is to schedule all jobs
such that the 𝐶 is minimized. An LB was proposed for the problem. A GA was proposed to solve
the problem, since the problem is considered an NP-hard problem. The GA performance was
evaluated in terms of the RPD (the relative distance to the LB) and CPU time. For better performance
of the GA, RSM was used to optimize the GA parameters, namely, population size (Popsize),
crossover probability (Pc), mutation probability (Pm), mutation ratio (Mu), and pressure selection

21
400

300

200

100

0

21 21 21 21

50
0

40
0

30
0

20
0

10
05040302010

p

M
ea

n
of

 C
PU

tim
e

s t q r n

Means

(a)

(b)

21

3

2

1

0

21 21 21 21

50
0

40
0

30
0

20
0

10
05040302010

p

M
ea

n
of

 R
PD

s t q r n

Means

800

600

400

200

0

21

800

600

400

200

0
21

t * r

t * n

t

r * n

r

1
2

r

10
20
30
40
50

100
200
300
400

n

M
ea

n
of

 C
PU

tim
e

6.0

4.5

3.0

1.5

0.0

21

6.0

4.5

3.0

1.5

0.0
21

t * r

t * n

t

r * n

r

1
2

r

500

10
20
30
40
50

100
200
300
400

n

M
ea

n
of

 R
PD

(a) (b)

Figure 4. Main effects of the factors being studied on (a) the CPU time and (b) PRD.

The effects of these variables were also studied statistically using ANOVA. In this section,
ANOVA analysis will be used to investigate the effect of five factors on each response. First, the ANOVA
table for the CPU time has been presented. Table 10 shows the ANOVA table of the CPU time. Note that
the CPU time data was transformed using Box-Cox transformation λ = 0.5 (square root) to meet
normality assumption. After conducting a model fitting, it was revealed that a two-way interaction
model is the best fit for the data. P-values less than 0.05 indicate model terms are significant. In this case,
processing times (p), release times (r), availability period (t), delivery times (q), and sample sizes (n) are
significant model terms. In other words, these factors significantly affect the transformed CPU time.
P-values greater than 0.05 indicate that the model terms are not significant. Moreover, the interactions
between the release times (r) and the processing times (p), available period (t), delivery times (q),
and sample sizes (n) have significant effects on the CPU times. This is also true for the interactions
between the sample sizes (n) and the available period (t). It is worth noting that the adjusted R2

is equal to 98.17%, which indicates an excellent representation of the variability of the data by the
model terms. Moreover, the contribution of the model is very high, since it is more than 98%. The most
significant effects are contributed by changing the sample size (n) factor (48.47%), and then followed
by the interaction between the release times (r) and the sample sizes (n) (25.01%). Release time (r) has a
contribution of (20.65%).

Table 11 presents the ANOVA results for the RPD. It is worth noting that the data was transformed
using square root transformation to meet the normality assumption. Since the used data are more
than 300; the normality assumption has been verified using the values of skewness and kurtosis [59].
The results revealed that the processing times (p), unavailability period (s), available period (t),
release times (r), and sample sizes (n) have a significant effect on the RPD, since their P-values are
all less than 0.05. Consequently, the processing times (p), unavailability period (s), available period
(t), release times (r), and sample sizes (n) have a significant effect on the quality of the solution
obtained by the model. Moreover, the interactions between the processing times (p) and unavailability
period (s); between processing times (p) and release times (r); between unavailability period (s) and
available period (t); between unavailability period (s) and release times (r); between available period
(t) and release times (r); between delivery times (q) and release times (r); and between release times
(r) and sample sizes (n), all have a significant effect on the quality of the solution obtained by the
model. This model has shown a good R2 value = 0.83, which indicates the data variability is more

Processes 2020, 8, 1025 15 of 19

represented by the model. Moreover, the contribution of the model is high since it is more than 83%.
However, changing the release times (r) (45.06%) and its interaction with availability times (t) (12.81%)
contribute more effects.

Table 10. ANOVA for the CPU time.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Model 35 17,129.5 98.17% 17,129.5 489.41 435.05 0
Linear 14 12,301.4 70.50% 12,301.4 878.67 781.07 0

p 1 4.5 0.03% 4.5 4.54 4.03 0.046
s 1 3.2 0.02% 3.2 3.18 2.82 0.094
t 1 223.1 1.28% 223.1 223.09 198.31 0
q 1 10.7 0.06% 10.7 10.68 9.49 0.002
r 1 3603.2 20.65% 3603.2 3603.24 3202.97 0
n 9 8456.7 48.47% 8456.7 939.63 835.25 0

2-Way Interactions 21 4828 27.67% 4828 229.91 204.37 0
p× r 1 71 0.41% 71 71.03 63.14 0
t× r 1 214.8 1.23% 214.8 214.8 190.94 0
t× n 9 155.8 0.89% 155.8 17.31 15.39 0
q× r 1 21.7 0.12% 21.7 21.67 19.26 0
r× n 9 4364.7 25.01% 4364.7 484.97 431.1 0
Error 284 319.5 1.83% 319.5 1.12

Total 319 17,448.9 100.00%

Table 11. ANOVA for the RPD.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Model 29 273.925 83.35% 273.925 9.446 50.06 0
Linear 14 203.531 61.93% 203.531 14.538 77.05 0

p 1 1.509 0.46% 1.509 1.509 8 0.005
s 1 3.459 1.05% 3.459 3.459 18.33 0
t 1 42.627 12.97% 42.627 42.627 225.91 0
q 1 0.254 0.08% 0.254 0.254 1.35 0.247
r 1 148.072 45.06% 148.072 148.072 784.73 0
n 9 7.61 2.32% 7.61 0.846 4.48 0

2-Way Interactions 15 70.395 21.42% 70.395 4.693 24.87 0
p× s 1 0.995 0.30% 0.995 0.995 5.27 0.022
p× r 1 1.932 0.59% 1.932 1.932 10.24 0.002
s× t 1 1.896 0.58% 1.896 1.896 10.05 0.002
s× r 1 3.768 1.15% 3.768 3.768 19.97 0
t× r 1 42.091 12.81% 42.091 42.091 223.07 0
q× r 1 1.87 0.57% 1.87 1.87 9.91 0.002
r× n 9 17.843 5.43% 17.843 1.983 10.51 0
Error 290 54.721 16.65% 54.721 0.189

Total 319 328.646 100.00%

Furthermore, the results have been visualized to represent the direction impacts of the factors and
their interactions on the corresponding response. Figure 4 shows the main effects of the factors being
studied on the RPD and CPU time. Figure 4a shows that the more the availability period (t), the less
the CPU time needed for obtaining a good solution for the corresponding problem, regardless of the
other factors. Furthermore, the first level of the release time factor (r) shows less CPU time. This is
caused by the short period receiving orders in the first level of the release time factor. In addition,
as it is shown, the greater the sample size, the more CPU time is needed. Moreover, Figure 4b shows
that the processing time, availability period, and delivery time are inversely proportional to the RPD.
However, the unavailability period, release time, and sample size are directly proportional to the RPD.

Processes 2020, 8, 1025 16 of 19

Moreover, the interaction plot of the factors that affect the RPD and CPU time are plotted in
Figure 5. Figure 5a shows that there is a significant effect in the interaction between the availability
period and release time in the CPU. Additionally, the more availability period and release time, the CPU
time is less. Furthermore, the release time increases the CPU time with the increase in sample size.
Figure 5b shows the interaction plot for the RPD. It is worth noting that almost the same interaction
effects of the CPU times are applied to the RPD.

Processes 2020, 8, x FOR PEER REVIEW 16 of 19

4b shows that the processing time, availability period, and delivery time are inversely proportional
to the RPD. However, the unavailability period, release time, and sample size are directly
proportional to the RPD.

Figure 4. Main effects of the factors being studied on (a) the CPU time and (b) PRD.

Moreover, the interaction plot of the factors that affect the RPD and CPU time are plotted in
Figure 5. Figure 5a shows that there is a significant effect in the interaction between the availability
period and release time in the CPU. Additionally, the more availability period and release time, the
CPU time is less. Furthermore, the release time increases the CPU time with the increase in sample
size. Figure 5b shows the interaction plot for the RPD. It is worth noting that almost the same
interaction effects of the CPU times are applied to the RPD.

Figure 5. Interaction plots for (a) the CPU time and (b) RPD.

6. Conclusions

The scheduling problem of two identical parallel machines subjected to release times and
delivery times, where the machines are periodically unavailable, is tackled in this study. The
machines were assumed undergoing periodic maintenance instead of assuming they are always
available. This makes the scheduling problem more practical. The objective is to schedule all jobs
such that the 𝐶 is minimized. An LB was proposed for the problem. A GA was proposed to solve
the problem, since the problem is considered an NP-hard problem. The GA performance was
evaluated in terms of the RPD (the relative distance to the LB) and CPU time. For better performance
of the GA, RSM was used to optimize the GA parameters, namely, population size (Popsize),
crossover probability (Pc), mutation probability (Pm), mutation ratio (Mu), and pressure selection

21

400

300

200

100

0

21 21 21 21

50
0

40
0

30
0

20
0

10
05040302010

p

M
ea

n
of

 C
PU

tim
e

s t q r n

Means

(a)

(b)

21

3

2

1

0

21 21 21 21

50
0

40
0

30
0

20
0

10
05040302010

p

M
ea

n
of

 R
PD

s t q r n

Means

800

600

400

200

0

21

800

600

400

200

0
21

t * r

t * n

t

r * n

r

1
2

r

10
20
30
40
50

100
200
300
400

n

M
ea

n
of

 C
PU

tim
e

6.0

4.5

3.0

1.5

0.0

21

6.0

4.5

3.0

1.5

0.0
21

t * r

t * n

t

r * n

r

1
2

r

500

10
20
30
40
50

100
200
300
400

n

M
ea

n
of

 R
PD

(a) (b)

Figure 5. Interaction plots for (a) the CPU time and (b) RPD.

6. Conclusions

The scheduling problem of two identical parallel machines subjected to release times and delivery
times, where the machines are periodically unavailable, is tackled in this study. The machines were
assumed undergoing periodic maintenance instead of assuming they are always available. This makes
the scheduling problem more practical. The objective is to schedule all jobs such that the Cmax is
minimized. An LB was proposed for the problem. A GA was proposed to solve the problem, since the
problem is considered an NP-hard problem. The GA performance was evaluated in terms of the
RPD (the relative distance to the LB) and CPU time. For better performance of the GA, RSM was
used to optimize the GA parameters, namely, population size (Popsize), crossover probability (Pc),
mutation probability (Pm), mutation ratio (Mu), and pressure selection (Beta), while minimizing the
RPD and CPU time. The optimization of multiple responses (RPD and CPU time) was performed
using the desirability analysis. Optimized settings of the GA parameters were used to further
evaluate the scheduling problem. Factorial design of the scheduling problem input variables, namely,
processing times, release times, delivery times, availability and unavailability periods, and the number
of jobs, was used to evaluate the GA performance.

The results show that the GA parameters have significant effects on the RPD and CPU time with
R2 being equal to 90.14% and 82.45%, respectively. Furthermore, the GA parameter interactions have
high contributions to the RPD and CPU time. To minimize the RPD and CPU time, the GA parameters
should be set as follows: Popsize is 200, Pc is 0.9, Pm is 0.14, Mu is 0.001, and Beta is 1. Regarding the
scheduling problem input variables, increasing the release time interval makes the problem very
difficult to reach the LB. Moreover, increasing the release time interval leads to a significant increase in
the CPU time when the number of jobs is high. Increasing the number of jobs leads to an increase in
CPU time. Decreasing the availability periods leads to a significant increase in the RPD and CPU time
when the number of jobs is greater than 50 jobs.

Release times and availability period variables and their interaction most affect the RPD.
Finally, the most significant variables that affect the CPU time are release times and sample sizes and
their interactions.

Author Contributions: Conceptualization, M.S.; Data curation, M.S. and M.A.; Funding acquisition, A.M.A.-S.;
Investigation, A.M.A.-S., M.S., M.A. and M.G.; Methodology, A.M.A.-S., M.S. and M.A.; Resources, M.S. and M.G.;
Supervision, A.M.A.-S. and M.S.; Validation, M.S.; Visualization, M.S. and M.A.; Writing—original draft, M.S.
and M.A.; Writing—review & editing, A.M.A.-S., M.S., M.A. and M.G. All authors have read and agreed to the
published version of the manuscript.

Processes 2020, 8, 1025 17 of 19

Funding: This research was funded by Vice Deanship of Scientific Research Chairs (DSRVCH) and the APC was
funded by Vice Deanship of Scientific Research Chairs (DSRVCH).

Acknowledgments: The authors are grateful to the Deanship of Scientific Research, King Saud University for
funding this research project through Vice Deanship of Scientific Research Chairs (DSRVCH) and the authors
thank RSSU at King Saud University for their technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pinedo, M.; Chao, X. Operations Scheduling with Applications in Manufacturing and Services; McGraw Hill:
New York, NY, USA, 1999.

2. Kerzner, H. Project Management: A Systems Approach to Planning, Scheduling, and Controlling; John Wiley &
Sons: Hoboken, NJ, USA, 2017.

3. Callahan, M.T.; Quackenbush, D.G.; Rowings, J.E. Construction Project Scheduling; McGraw-Hill: New York,
NY, USA, 1992.

4. Barnhart, C.; Cohn, A.M.; Johnson, E.L.; Klabjan, D.; Nemhauser, G.L.; Vance, P.H. Airline crew scheduling.
In Handbook of Transportation Science; Kluwer’s International Series; Springer: New York, NY, USA, 2003;
pp. 517–560.

5. Kaandorp, G.C.; Koole, G. Optimal outpatient appointment scheduling. Health Care Manag. Sci. 2007, 10,
217–229. [CrossRef] [PubMed]

6. Malik, M.A.K. Reliable preventive maintenance scheduling. AIIE Trans. 1979, 11, 221–228. [CrossRef]
7. Liu, Y.; Xu, X.; Zhang, L.; Wang, L.; Zhong, R.Y. Workload-based multi-task scheduling in cloud manufacturing.

Robot. Comput.-Integr. Manuf. 2017, 45, 3–20. [CrossRef]
8. Porto, A.F.; Henao, C.A.; López-Ospina, H.; González, E.R. Hybrid flexibility strategy on personnel scheduling:

Retail case study. Comput. Ind. Eng. 2019, 133, 220–230. [CrossRef]
9. Pinedo, M. Scheduling: Theory, Algorithms, and Systems; Springer: New York, NY, USA, 2012; Volume 5.
10. Abedinnia, H.; Glock, C.H.; Grosse, E.H.; Schneider, M. Machine scheduling problems in production:

A tertiary study. Comput. Ind. Eng. 2017, 111, 403–416. [CrossRef]
11. Cheng, T.; Sin, C. A state-of-the-art review of parallel-machine scheduling research. Eur. J. Oper. Res. 1990,

47, 271–292. [CrossRef]
12. Wang, S.; Wu, R.; Chu, F.; Yu, J. Identical Parallel Machine Scheduling with Assurance of Maximum Waiting

Time for an Emergency Job. Comput. Oper. Res. 2020, 104918. [CrossRef]
13. Li, K.; Yang, S.-l. Non-identical parallel-machine scheduling research with minimizing total weighted

completion times: Models, relaxations and algorithms. Appl. Math. Model. 2009, 33, 2145–2158. [CrossRef]
14. Vallada, E.; Ruiz, R. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence

dependent setup times. Euro. J. Oper. Res. 2011, 211, 612–622. [CrossRef]
15. Anand, S.; Bringmann, K.; Friedrich, T.; Garg, N.; Kumar, A. Minimizing maximum (weighted) flow-time on

related and unrelated machines. Algorithmica 2017, 77, 515–536. [CrossRef]
16. Wang, J.-Y. Minimizing the total weighted tardiness of overlapping jobs on parallel machines with a learning

effect. J. Oper. Res. Soc. 2019, 71, 910–927. [CrossRef]
17. Chaudhry, I.A.; Elbadawi, I.A. Minimisation of total tardiness for identical parallel machine scheduling

using genetic algorithm. Sādhanā 2017, 42, 11–21. [CrossRef]
18. Zheng, F.; Huang, J. Uniform parallel-machine scheduling to minimize the number of tardy jobs in the

MapReduce system. In Proceedings of the 2019 International Conference on Industrial Engineering and
Systems Management (IESM), Shanghai, China, 25–27 September 2019; pp. 1–6.

19. Ozturk, O.; Begen, M.A.; Zaric, G.S. A branch and bound algorithm for scheduling unit size jobs on parallel
batching machines to minimize makespan. Int. J. Prod. Res. 2017, 55, 1815–1831. [CrossRef]

20. Martello, S.; Soumis, F.; Toth, P. Exact and approximation algorithms for makespan minimization on unrelated
parallel machines. Discret. Appl. Math. 1997, 75, 169–188. [CrossRef]

21. Mansouri, S.A.; Aktas, E.; Besikci, U. Green scheduling of a two-machine flowshop: Trade-off between
makespan and energy consumption. Eur. J. Oper. Res. 2016, 248, 772–788. [CrossRef]

22. Dao, T.-K.; Pan, T.-S.; Pan, J.-S. Parallel bat algorithm for optimizing makespan in job shop scheduling
problems. J. Intell. Manuf. 2018, 29, 451–462. [CrossRef]

Processes 2020, 8, 1025 18 of 19

23. Bai, D.; Zhang, Z.-H.; Zhang, Q. Flexible open shop scheduling problem to minimize makespan.
Comput. Oper. Res. 2016, 67, 207–215. [CrossRef]

24. Shabtay, D.; Zofi, M. Single machine scheduling with controllable processing times and an unavailability
period to minimize the makespan. Int. J. Prod. Econ. 2018, 198, 191–200. [CrossRef]

25. Hamzadayi, A.; Yildiz, G. Modeling and solving static m identical parallel machines scheduling problem with
a common server and sequence dependent setup times. Comput. Ind. Eng. 2017, 106, 287–298. [CrossRef]

26. Lee, C.-Y. Parallel machines scheduling with nonsimultaneous machine available time. Discret. Appl. Math.
1991, 30, 53–61. [CrossRef]

27. Kaabi, J.; Harrath, Y. Scheduling on uniform parallel machines with periodic unavailability constraints. Int. J.
Prod. Res. 2019, 57, 216–227. [CrossRef]

28. Pfund, M.; Fowler, J.W.; Gadkari, A.; Chen, Y. Scheduling jobs on parallel machines with setup times and
ready times. Comput. Ind. Eng. 2008, 54, 764–782. [CrossRef]

29. Al-harkan, I.M.; Qamhan, A.A. Optimize Unrelated Parallel Machines Scheduling Problems With Multiple
Limited Additional Resources, Sequence-Dependent Setup Times and Release Date Constraints. IEEE Access
2019, 7, 171533–171547. [CrossRef]

30. Mensendiek, A.; Gupta, J.N. Scheduling Identical Parallel Machines with a Fixed Number of Delivery Dates.
In Operations Research Proceedings 2014; Springer: Cham, Switzerland, 2016; pp. 393–398.

31. Hermès, F.; Ghédira, K. Scheduling Jobs with Releases Dates and Delivery Times on M Identical Non-idling
Machines. In Proceedings of the ICINCO (1), Madrid, Spain, 26–28 July 2017; pp. 82–91.

32. Hidri, L.; Al-Samhan, A.M.; Mabkhot, M.M. Bounding Strategies for the Parallel Processors Scheduling
Problem With No-Idle Time Constraint, Release Date, and Delivery Time. IEEE Access 2019, 7, 170392–170405.
[CrossRef]

33. Liu, P.; Gu, M.; Li, G. Two-agent scheduling on a single machine with release dates. Comput. Oper. Res. 2019,
111, 35–42. [CrossRef]

34. Schutten, J.M.; Leussink, R. Parallel machine scheduling with release dates, due dates and family setup times.
Int. J. Prod. Econ. 1996, 46, 119–125. [CrossRef]

35. Timkovsky, V.G. A polynomial-time algorithm for the two-machine unit-time release-date job-shop
schedule-length problem. Discret. Appl. Math. 1997, 77, 185–200. [CrossRef]

36. Bai, D.; Tang, L. Open shop scheduling problem to minimize makespan with release dates. Appl. Math. Model.
2013, 37, 2008–2015. [CrossRef]

37. Gharbi, A.; Haouari, M. An approximate decomposition algorithm for scheduling on parallel machines with
heads and tails. Comput. Oper. Res. 2007, 34, 868–883. [CrossRef]

38. Woeginger, G.J. Heuristics for parallel machine scheduling with delivery times. Acta Inform. 1994, 31, 503–512.
[CrossRef]

39. Mastrolilli, M. Efficient approximation schemes for scheduling problems with release dates and delivery
times. J. Sched. 2003, 6, 521–531. [CrossRef]

40. Kacem, I.; Kellerer, H. Approximation algorithms for no idle time scheduling on a single machine with
release times and delivery times. Discret. Appl. Math. 2014, 164, 154–160. [CrossRef]

41. Das, K.; Lashkari, R.; Sengupta, S. Machine reliability and preventive maintenance planning for cellular
manufacturing systems. Eur. J. Oper. Res. 2007, 183, 162–180. [CrossRef]

42. Liao, C.-J.; Shyur, D.-L.; Lin, C.-H. Makespan minimization for two parallel machines with an availability
constraint. Eur. J. Oper. Res. 2005, 160, 445–456. [CrossRef]

43. Xu, D.; Cheng, Z.; Yin, Y.; Li, H. Makespan minimization for two parallel machines scheduling with a
periodic availability constraint. Comput. Oper. Res. 2009, 36, 1809–1812. [CrossRef]

44. Liao, C.; Chen, C.; Lin, C. Minimizing makespan for two parallel machines with job limit on each availability
interval. J. Oper. Res. Soc. 2007, 58, 938–947. [CrossRef]

45. Lin, C.-H.; Liao, C.-J. Makespan minimization for two parallel machines with an unavailable period on each
machine. Int. J. Adv. Manuf. Technol. 2007, 33, 1024–1030. [CrossRef]

46. Liu, M.; Zheng, F.; Chu, C.; Xu, Y. Optimal algorithms for online scheduling on parallel machines to minimize
the makespan with a periodic availability constraint. Theor. Comput. Sci. 2011, 412, 5225–5231. [CrossRef]

47. Xu, D.; Yang, D.-L. Makespan minimization for two parallel machines scheduling with a periodic availability
constraint: Mathematical programming model, average-case analysis, and anomalies. Appl. Math. Model.
2013, 37, 7561–7567. [CrossRef]

Processes 2020, 8, 1025 19 of 19

48. Hashemian, N.; Diallo, C.; Vizvári, B. Makespan minimization for parallel machines scheduling with multiple
availability constraints. Ann. Oper. Res. 2014, 213, 173–186. [CrossRef]

49. Huo, Y. Parallel machine makespan minimization subject to machine availability and total completion time
constraints. J. Sched. 2017, 1–15. [CrossRef]

50. Huang, H.; Xiong, Y.; Zhou, Y. A larger pie or a larger slice? Contract negotiation in a closed-loop supply
chain with remanufacturing. Comput. Ind. Eng. 2020, 142, 106377. [CrossRef]

51. Carlier, J. Scheduling jobs with release dates and tails on identical machines to minimize the makespan.
Eur. J. Oper. Res. 1987, 29, 298–306. [CrossRef]

52. Low, C.; Ji, M.; Hsu, C.-J.; Su, C.-T. Minimizing the makespan in a single machine scheduling problems with
flexible and periodic maintenance. Appl. Math. Model. 2010, 34, 334–342. [CrossRef]

53. Kundakcı, N.; Kulak, O. Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling
problem. Comput. Ind. Eng. 2016, 96, 31–51. [CrossRef]

54. Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; De La Iglesia, I.; Perallos, A. Crossover versus mutation:
A comparative analysis of the evolutionary strategy of genetic algorithms applied to combinatorial
optimization problems. Sci. World J. 2014, 2014, 1–22. [CrossRef]

55. Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine learning; Addison-Wesley Pub. Co.:
Boston, MA, USA, 1989; ISBN 0201157675.

56. Abreu, L.R.; Cunha, J.O.; Prata, B.A.; Framinan, J.M. A genetic algorithm for scheduling open shops with
sequence-dependent setup times. Comput. Oper. Res. 2020, 113, 104793. [CrossRef]

57. Syswerda, G. Scheduling optimization using genetic algorithms. In Handbook of Genetic Algorithms;
Van Nostrand Reinhold: New York, NY, USA, 1991.

58. Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12,
214–219. [CrossRef]

59. Kim, H.-Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and
kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

