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Abstract: This study analyzes a stochastic continuous review inventory system (Q,r) using a
simulation-based optimization model. The lead time depends on lot size, unit production time,
setup time, and a shop floor factor that represents moving, waiting, and lot size inspection times.
A simulation-based model is proposed for optimizing order quantity (Q) and reorder point (r) that
minimize the total inventory costs (holding, backlogging, and ordering costs) in a two-echelon supply
chain, which consists of two identical retailers, a distributor, and a supplier. The simulation model is
created with Arena software and validated using an analytical model. The model is interfaced with
the OptQuest optimization tool, which is embedded in the Arena software, to search for the least
cost lot sizes and reorder points. The proposed model is designed for general demand distributions
that are too complex to be solved analytically. Hence, for the first time, the present study considers
the stochastic inventory continuous review policy (Q,r) in a two-echelon supply chain system with
lot size-dependent lead time L(Q). An experimental study is conducted, and results are provided to
assess the developed model. Results show that the optimized Q and r for different distributions of
daily demand are not the same even if the associated total inventory costs are close to each other.

Keywords: stochastic inventory problem; dependent lead time; simulation-based optimization; Arena

1. Introduction

Inventory management plays a vital role in supply chains. It is one of the activities associated
with managing customer and vendor relationships and plays a major role in facilitating the balancing
of demand and supply. Effective inventory management in supply chains can lead to an increase in
profits by cutting inventory-holding costs, and this indicates the need for a general model to manage
inventories within a supply chain.

In classical continuous inventory review models (Q, r), demand and lead time are dealt with
as constant input parameters or as random variables that follow a specific probability distribution.
This could lead to an assumption that lead time is not subject to control and given as an input to the
model. In practice, this assumption is not realistic since lead time can be controlled through some of
its components, such as lot size, unit production cost, production time, and preparation time (setup,
moving, and waiting times), as suggested by Kim and Benton [1]. In addition, considering lead time as
a controllable factor allows for lead time reductions; this can lead to better customer satisfaction by
lowering the risk of shortages and reducing safety stock [2]. Therefore, in many real-world systems,
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inventory models are stochastic and lead times are dependent and controllable. Several solution
methodologies have been proposed to solve stochastic continuous inventory review models (Q, r) with
a dependent lead time. These methodologies are classified into two main types: analytical models and
simulation-based optimization models.

One of the first approximation models developed to study the impact of order quantities in
a continuous review inventory policy (Q, r) on lead times was proposed by Kim and Benton [1].
The authors assumed that demand is normally distributed, order quantity Q is fixed, and the
production lead time varies linearly with the order quantity. In addition, queue-waiting times were
assumed to be a fixed fraction of the lead time. Based on an adjusted economic order quantity (EOQ),
they developed an iterative algorithm to find the near-optimal order quantity (Q) and safety stock
(s). Results showed that significant savings could be achieved if the interrelationship between order
quantity and lead time is taken into account. Hariga [3] suggested a modification to the model by
adjusting an expression related to annual backorder cost, in addition to proposing another relationship
for the revised lot size. Both models assumed a constant processing time per unit. The model in [4]
assumed random processing times and the processing time of a lot was correlated with its size.
An exact model was developed, and two cases of lead time dependency were discussed. In the first,
the lead time depends on lot size, and in the second, on the reserved capacity, whereby a customer
can secure shorter processing times by reserving capacity at the supplier’s manufacturing facility.
Ben-Daya and Hariga [5] proposed a model for an integrated production inventory problem for a
vendor–buyer inventory system. A continuous review inventory policy was considered. Demand was
assumed to be normally distributed and the lead time varied linearly with lot size. The lead time
components were lot size-dependent run time and constant delay times, such as moving, waiting,
and setup times. Moon and Cha [6] studied lead time reduction by controlling the manufacturer’s
regular production rate and taking the risk of paying an additional cost into account. The relationship
between the lot size and the production rate of the manufacturer expressed the lead time. An analytical
model was proposed to optimize a continuous review inventory policy, based on the assumption
that demand is normally distributed. Song et al. [7] proposed an integrated production inventory
model for a supplier–buyer inventory system in which the buyer adopted a (Q, r) continuous review
inventory policy. Demand was assumed to be normally distributed, while the supplier and buyer
jointly controlled the lead time. The supplier determines the production rate while the buyer controls
the lot size (order quantity). Song et al. [8] presented a Stackelberg game framework to model the
interactions between a manufacturer and a retailer. Lead time and demand were distribution-free with
only two known parameters: mean and variance. An iterative algorithm was developed to solve the
proposed model. Sarkar et al. [9] proposed an integrated vendor–buyer model with shortages. Demand
was assumed to be normally distributed and lead time was assumed to be a stochastic variable that
depends on the order size and production rate. Sarkar and Giri [10] proposed an algorithm for finding
the optimal solution of an integrated inventory model for a single-vendor single-buyer. The model
assumed that demand follows a normal distribution and lead time is a linear function of batch size,
setup time, and transport time.

Most of the proposed models were approximation models with the assumption that daily demand
is normally distributed. However, it is extremely difficult to analytically solve the constrained
optimization model that was developed by Hadley and Whitin [11]. Due to these limitations and
difficulties, simulation-based optimization models are utilized to model and analyze complex inventory
systems in order to obtain more practical results without the need to make restrictive assumptions.
Al-harkan and Hariga [2] proposed a simulation-based optimization model for a single-supplier
and single-retailer continuous review inventory system assuming a lead time dependent on lot
size. The model was implemented for different daily demand distributions (normal, gamma, and
log-normal). In addition, Tsai and Chen [12] proposed a simulation-based optimization model for
a multi-objective single-supplier and single-retailer inventory system. The proposed model aims to
find the values of reorder point and order quantity that simultaneously minimize the total inventory
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cost, average inventory level, and frequency of inventory shortages. The demand and lead time
were assumed to be random and follow a uniform distribution. Avci and Selim [13] proposed
a multi-objective simulation-based optimization approach for a three-echelon convergent supply
chain system consisting of a customer, a manufacturer, and a number of suppliers. Kleijnen and
Wan [14] studied an (s, S) inventory system to optimize reorder level s and maximum inventory level
S. A simulation-based optimization model was developed using Arena and OptQuest. The metric to
be minimized was the expected inventory costs, which include holding, ordering, and shortage costs
while satisfying service (fill rate) constraints. Simulation-based optimization methods in stochastic
inventory systems have been used to minimize total inventory costs while satisfying service level
constraints as in [15–18]. A comprehensive survey of simulation-based optimization approaches to
solve inventory replenishment problems is presented in [19].

Based on the literature review, we found that previous research solved the single-supplier and
single-retailer continuous review inventory system. Most of the proposed models assumed that daily
demand is normally distributed. Only studies that utilized simulation-based optimization models
considered other distributions for daily demand. The lead time was considered as a variable and
depended on several controllable factors in most previous studies. All the proposed models (analytical
or simulation) aimed to minimize inventory costs.

In this paper, we solve a two-echelon three-stage supply chain stochastic continuous review
inventory system with lot size-dependent lead time. The supply chain system has a supplier in the higher
stage, a distributor in the middle stage, and two retailers in the lower stage. Different distributions
for daily demand were considered. A simulation-based optimization model was developed to find
near-optimal values of reorder point and order quantity that minimize the total inventory cost (holding,
backlogging, and ordering costs). Hence, an efficient simulation-based optimization model is proposed
for the first time for the problem considered herein.

The following section addresses the methodology. Section 3 presents the results and discussions.
Finally, the conclusions are stated in Section 4.

2. Methodology

2.1. Problem Formulation

This study considers a three-stage two-echelon inventory system consisting of a supplier at the
higher stage, a distributor at the middle stage, and two retailers at the lower stage, as shown in Figure 1.
The main aim of this study is to find the optimal or near-optimal order quantities, as well as reorder
points for the distributor and the two retailers that minimize the total inventory costs. The inventory
costs include ordering costs, holding costs, and shortage costs in the three-stage supply chain.
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Figure 1. Three-stage two-echelon supply chain.

A stochastic continuous review inventory control policy (Q, r) is employed, which means that
retailer 1, retailer 2, or the distributor will place an order whenever the inventory position drops below
the reorder point r; the order size is Q. An Arena model is developed to simulate the policy employed
in the three-stage supply chain for ten years (2500 days). The optimization study was conducted using
the developed Arena model, as well as the Arena OptQuest optimization tool. Assuming that the
demand follows different probability distributions, several scenarios are considered in order to study
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the performance of the simulation model. Simulated results were validated with results obtained using
an analytical method developed in [1]. The following assumptions are considered:

• A customer’s demand is satisfied immediately if the on-hand inventory of the retailer is sufficient.
Otherwise, it is considered as a backorder and will be filled by future deliveries.

• A retailer’s order is satisfied immediately if the on-hand inventory of the distributor is sufficient.
Otherwise, it is also considered as a backorder and will be filled by future deliveries.

• There is always a sufficient number of items in the supplier’s storage.
• The lead time depends on the order size Q; this is explained below.

The replenishment order will be received after a period of time, referred to as the lead time,
which depends on the order size (Q). Based on the research conducted by Kim and Benton [1], a linear
relationship between lead time and lot size can be assumed, and can be expressed mathematically
as follows:

L(Q) = (θ+ P· Q)δ (1)

where θ is the setup time (in days); P is the unit production time in days, and δ is the shop floor
queuing factor (δ > 1). We find that the lead time also depends on production time (represented by P)
and other times related to the order preparation, such as setup (represented by θ), moving, and waiting
times (represented by the shop floor factor δ).

In the system described above, the problem is determining the optimal or near-optimal order
sizes and reorder points that minimize the total inventory cost in the system shown in Figure 1
under the given assumptions. Our objective function (the total inventory cost) can be represented
as the sum of the holding, backorders, and ordering costs. Generally, it is difficult to create an exact
formulation of the total inventory cost for a stochastic continuous review inventory system, and several
approximate formulations have been proposed in the literature. One of these approximation treatments
is the constrained model developed in [11]; the reader can refer to the original publication for more
information. The authors reported that it is extremely difficult to analytically solve the constrained
optimization model, even with a normally distributed daily demand.

Therefore, we propose a simulation-based-optimization methodology that can be utilized for daily
demand distributions of any type. A time-persistent model is developed to calculate the simulated
total inventory cost for a period of n days; it is formulated with the following variables:

n Number of days;
nYear Number of days per year;
t Point in time;
Ri Retailer i, where i = 1, 2;
DC Distributor;
I(t) Inventory level at time t;
I+(t) Physical inventory level at time t, I+(t) = max

{
0, I(t)

}
;

I−(t) Backlog amount at time t, I−(t) = max
{
0, −I(t)

}
;

N(n) The number of replenishment orders triggered in (0, n];
H The holding cost per item per unit time;
B The backorder cost per item per unit time;
O The ordering cost for each replenishment order;
TC(n) Total inventory cost for a given number of days (n);
TC(n)Ri Total inventory cost for a given number of days (n) at retailer i;
TC(n)DC Total inventory cost for a given number of days (n) at the distributor (DC).

Then, the simulated total cost for n days, based on one simulation replication of the system, can be
modeled as follows:

TC(n) = TC(n)R1 + TC(n)R2 + TC(n)DC (2)
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where

TC(n)R1 = HR1·

∫ n

0
I+R1(t)dt + BR1·

∫ n

0
I−R1(t)dt + OR1·N(n)R1 (3)

TC(n)R2 = HR2·

∫ n

0
I+R2(t)dt + BR2·

∫ n

0
I−R2(t)dt + OR2.N(n)R2 (4)

TC(n)DC = HDC·

∫ n

0
I+DC(t)dt + BDC·

∫ n

0
I−DC(t)dt + ODC·N(n)DC (5)

When conducting a simulation study, a certain number of replications are needed to estimate a
performance measure. These replications are required to find the system’s steady-state and should
be determined before the actual run of the simulation model. Several pilot runs, as well as some
calculation steps, are conducted using the sequential procedure proposed in [20] to find the number
of replications required. Based on the calculated number of replications, K, the following model is
developed to calculate the expected annual total cost, which is formulated with the following variables:

β The source of system randomness, which represents the sequence of independent
U(0 , 1) random numbers that activate a certain number of simulation replications;
β1, β2, . . . , βK Independent realizations from the distribution of β;

TC
(
n, βk

)
The observed total inventory cost (TC) in the interval (0, n] for the kth simulation replication.

Then, the expected annual total inventory cost (ATC) can be modeled as follows:

E[ATC] =
E[TC(n)]

n
∗ nYear (6)

where, nYear is the number of days per year and

E[TC(n)] = lim
K→∞

1
K

∑K

k=1
TC

(
n, βk

)
(7)

In order to optimize the ordering policy (Q, r), a mixed integer-programming model is formulated
with the following variables:

rLRi The lower bound of the reorder point for retailer i, i = 1, 2;
rLDC The lower bound of the reorder point of the distributor;
rURi The upper bound of the reorder point for retailer i;
rUDC The upper bound of the reorder point for the distributor;
QLRi The lower bound of the order quantity for retailer i;
QLDC The lower bound of the order quantity for the distributor;
QURi The upper bound of the order quantity for retailer i;
QUDC The upper bound of the order quantity for the distributor.

The objective function is given by

Minz = E[ATC] (8)

subject to
rLRi ≤ rRi ≤ rURi i = 1, 2 (9)

rLDC ≤ rDC ≤ rUDC (10)

QLRi ≤ QRi ≤ QURi i = 1, 2 (11)

QLDC ≤ QDC ≤ QUDC (12)
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Constraints (9)–(12) ensure that the reorder points and order quantities are within the corresponding
lower and upper bounds.

2.2. Simulation-Optimization Model

As previously mentioned, in real-world problems, solving inventory systems analytically is
challenging or extremely complex. This complexity is mainly due to the variability (or randomness) in
demand and lead time. Based on the results reported in [11], most inventory models with a stochastic
demand and lead time are a heuristic approximation of real-world systems. In stochastic continuous
review systems (Q, r), analytical solutions can be obtained under some assumptions, such as normally
distributed daily demand, independent lead time, and the out-of-stock time in a cycle being smaller
than the cycle length [2]. However, using simulation-based optimization models, these assumptions
can be easily met and included. Therefore, simulation is utilized to model and analyze complex
inventory systems to obtain more practical results, which is the aim of this study.

2.2.1. Arena Model

As stated above, the system consists of a supplier and a distributor in the higher echelon, and
two retailers in the lower echelon (see Figure 1). An Arena network model for the system is shown
in Figure 2. The modeled network has five parts: each one represents a complete function of the
system. In part 1, several variables related to retailers (1 and 2) are initialized, calculated, and updated.
These variables are demand (customers’ orders) creations, inventory levels, inventory positions,
and backorders (if any). It should be noted that the simulation model does not accept negative demand
values that could be generated in the case of normal distribution. Instead, the negative demand values
were regenerated again in a similar way to that of Al-harkan and Hariga [2]. In part 2, decisions related
to placing orders (for both retailers) are made. In addition, inventory positions for the distributor and
the associated retailer are updated. Then, in parts 3 and 4, replenishments are created for retailers
1 and 2, ordering costs are calculated for retailers 1 and 2, and backorders, if any, are updated. Finally,
distributor replenishments are created, distributor ordering costs are calculated (if an order is made),
and backorders (if assigned) are updated in part 5. Parameters were defined as variables in the
“Variable module” as shown in Table 1. In addition, Table 2 presents the calculations of the costs
reported in Equations (2)–(7) which were calculated using the “Statistic module”.

The model is checked to ensure that it is error-free and running as per requirement. Several pilot
runs are also conducted using the required simulation statistics to determine the required number
of replications K, which is needed to calculate the expected annual total inventory cost in Equations
(6) and (7). Results from the pilot runs were also used in the model validation (refer to Section 2.3.2).
Based on the selected performance measures of the system, we verify the accuracy of the simulation
model in Section 2.3.2.

2.2.2. OptQuest

We use OptQuest, which is a useful tool embedded in the Arena software, to find the best
(near-optimal) order sizes and reorder points for the system. OptQuest can be used to optimize
complex systems that are difficult to formulate or solve analytically using classical optimization tools.
It combines several metaheuristic approaches into a single search heuristic. These approaches are
based on the tabu search algorithm, neural networks, and scatter search algorithm [14]. This advanced
search framework is the key strength of OptQuest [21,22]. OptQuest performs a special (non-monotonic)
search, where different evaluations are produced by the progressively generated inputs; these may not
always be an improvement, but they provide an efficient path to the best solutions over time. In other
words, if a candidate solution is not feasible, OptQuest eliminates it and investigates alternatives that
are potentially better [20].
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The optimization approach used by OptQuest requires a set of inputs to start the search process
for better solutions in the model under investigation. These inputs are related to the model’s decision
variables, objective function, and constraints. In our case, decision variables are the order size Q and
reorder points r for the two retailers and the distributor (refer to Equations (9)–(12)). OptQuest needs
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to specify the initial, lower, and upper values of variables to be optimized. The suggested initial values
state the search starting point of each optimized variable and have a significant effect on the efficiency
and effectiveness of the search process. The related constraints are the lower and upper bound values
for each decision variable to be optimized. These lower and upper bound values are based on the
analytical solutions obtained in Section 2.3.2 and preliminary experiments. The objective function to
be minimized is the annual total cost (ATC) (see Equation (8)). For practical cases, OptQuest allows
simulation inputs to be defined as integers or continuous inputs, based on their nature. Moreover,
a stopping criterion needs to be specified; in our case, the number of simulated candidate solutions is
used as the stopping criterion.

Table 1. Parameter definitions in the “Variable module”.

No. Variable Definition No. Variable Definition

1 Setup_Cost Fixed ordering cost 15 STOCK_D Stock at DC
2 Short_Cost Stock out cost 16 BACKO_R1 Backorder R1
3 Unit_Holding_Cost_day Inventory holding cost 17 BACKO_R2 Backorder R2
4 Prod_Time Unit Preparation time 18 BACKO_D Backorder DC
5 Theta Setup time 19 Order_Size_R1 Order size (R1)
6 Zeta Shop floor queuing factor 20 Order_Size_R2 Order size (R2)
7 n_runs No. of days (n) 21 Order_Size_D Order size (DC)
8 n_year No. of days per year (nYear) 22 Reorder_Point_R1 Reorder point (R1)
9 No_Years No. of years (n/nYear) 23 Reorder_Point_R2 Reorder point (R2)

10 POS_R1 Inventory position (R1) 24 Reorder_Point_D Reorder point (DC)
11 POS_R2 Inventory position (R2) 25 Total_Ordering_Cost_R1 Order cost of R1
12 POS_D Inventory position (DC) 26 Total_Ordering_Cost_R2 Order cost of R2
13 STOCK_R1 Stock at R1 27 Total_Ordering_Cost_D Order cost of DC
14 STOCK_R2 Stock at R2 28 Total_Ordering_Cost Total ordering cost

Table 2. Cost calculations using the “Statistic module”.

Name Type Expression

Holding Cost Time-Persistent
n_runs*Unit_Holding_Cost_day*MX(STOCK_R1,0)+n_runs*
Unit_Holding_Cost_day*MX(STOCK_R2,0)+n_runs*Unit_
Holding_Cost_day*MX(STOCK_D,0)

Annual Holding Cost Output DAVG(Holding Cost)/No_Years

Backlog Cost Time-Persistent n_runs*Short_Cost * BACKO_R1+n_runs*Short_Cost *
BACKO_R2 + n_runs*Short_Cost * BACKO_D

Annual Backlog Cost Output DAVG(Backlog Cost)/No_Years

Annual Order Cost Output
(Total_Ordering_Cost_R1)/No_Years+
(Total_Ordering_Cost_R2)/No_Years +
(Total_Ordering_Cost_D)/No_Years

Annual Total Cost Output Ovalue(Annual Order Cost) +Ovalue(Annual Holding Cost)+
Ovalue(Annual Backlog Cost)

2.3. Empirical Evaluation

The performance of the simulation-based optimization model is assessed in this section. The model
configurations are first illustrated using an analytically solvable example (the case of normally
distributed daily demands) that is used to validate the developed model. An experimental study is
then conducted to solve the considered system. The effects of the variability of daily demand and lead
time, as well as of the types of fitted distributions for the daily demand, on the inventory system’s
performance are investigated.

2.3.1. Configurations

In order to clarify the developed simulation-based optimization model described in the previous
section, we fitted the solved distributions into the system. In the existing literature, a similar case
(two-stage supply chain with a supplier in the higher stage and a retailer in the lower stage) was solved
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analytically by [1,3]. Moreover, the same case was solved in [2] using a simulation optimization model
for three cases of daily demand distributions: normal, gamma, and log-normal. The authors reported
that the approximate problem is analytically solvable only for the normal distribution case, and it is
hard to formulate and compute for other distributions. Therefore, we used the approximate analytical
model to solve the system under the assumption that daily demands are normally distributed. We also
assumed that the two retailers are identical and have the same average demand as the retailer in [1,3].
As a result, the average demand at the distributor was the sum of the demand at the two retailers.
The rest of the required data were considered in a way similar to that used in [1,3]. A summary of the
data is presented in Table 3. In order to verify the developed simulation-based optimization model,
the results of the developed model were compared with the results of the analytical model.

Table 3. Data of Retailer 1, Retailer 2, and Distributor.

Retailer 1 and Retailer 2

Average demand per year DR1,R2 = 5000
Average demand per day (250 days in a year) µR1,R2 = 20

Inventory holding cost HR1,R2 = $0.5 per unit per day
Stock out cost BR1,R2 = 600 per unit (out of stock)

Setup time θR1,R2 = 0.125 days
Ordering cost OR1,R2 = $125 per order

Unit preparation time pR1,R2 = 0.025 day per unit
Queueing factor δR1,R2 = 10

Distributor DC

Average demand per year DDC = 10000
Average demand per day (250 days in a year) µDC = 40

Inventory holding cost HDC = $0.5 per unit per day
Stock out cost BDC = 600 per unit (out of stock)

Setup time θDC = 0.125 days
Ordering cost ODC = $125 per order

Unit production time pDC = 0.025 day per unit
Queueing factor δDC = 10

The simulation-based optimization model has several configurations that need to be set before
solving the special case under consideration. The lower bounds of the decision variables Q and r for
the two retailers (R1 and R2) and the distributor (DC) are (30, 30, 30) and (300, 300, 700), respectively.
The upper bounds for the retailers and distributor are (150, 150, 300) and (800, 800, 1700), respectively.
These lower and upper bound values of the Q and r are based on the analytical solutions obtained in
Section 2.3.2 and preliminary experiments. The developed model is simulated and optimized for a
period of 10 years (2500 days). The daily demand is normally distributed with a mean µ = 20 and
standard deviation (SD) σ = 5, 8, 10, 15, and 22. We used different values for the SD to study the
effect of the variability in demand and lead time on the simulated annual total inventory cost for
the specified period (2500 days). The number of replications K is estimated (based on the simulated
annual total cost as the performance measure) using the sequential procedure proposed by Law and
Kelton [20]. The relative error considered is γ = 0.15 with a confidence level of 95%. We found
that 10 replications are enough to obtain the relative error. However, the actual simulation runs are
conducted with 20 replications to obtain a better estimate of the annual total cost.

2.3.2. Model Validation

The results of the proposed simulation-based optimization model and the analytical approximation
model are reported in Table 4. The terms used in Table 4 are order size (Q), reorder point (R), annual
ordering cost (AOC), annual holding cost (AHC), annual backorders cost (ABC), the annual total cost
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for retailer 1 (ATC_R1), the annual total cost for retailer 2 (ATC_R2), the annual total cost for the
distributor (ATC_D), and the total annual cost for the system (ATC).

Table 4. Results of the simulation-optimization model and the analytical method.

σ 5 8 10 15 22

Model Analytical Simulation Analytical Simulation Analytical Simulation Analytical Simulation Analytical Simulation

R
et

ai
le

r
1

Q 77.75 83.00 68.53 67.00 63.56 68.00 53.96 55.00 44.89 45.00
R 475.67 494.00 462.48 460.00 458.24 480.00 458.43 483.00 474.70 500.00

AOC 8038.51 7536.25 9119.43 9363.75 9833.48 9446.88 11,582.11 12,829.38 13,923.26 18,874.38
AHC 12,599.20 12,143.40 16,134.19 16,699.94 18,402.78 17,527.30 23,824.81 21,619.28 30,962.98 22,640.41
ABC 863.48 766.50 1288.83 224.44 1545.00 1468.31 2120.88 772.10 2818.76 8632.84

ATC_R1 21,501.19 20,446.15 26,542.45 26,288.14 29,781.26 28,442.48 37,527.80 35,220.75 47,705.00 50,147.62

R
et

ai
le

r
2

Q 77.75 79.00 68.53 71.00 63.56 63.00 53.96 52.00 44.89 45.00
R 475.67 474.00 462.48 465.00 458.24 446.00 458.43 467.00 474.70 499.00

AOC 8038.51 7877.50 9119.43 8847.50 9833.48 10,143.75 11,582.11 13,684.38 13,923.26 18,720.63
AHC 12,599.20 12,140.87 16,134.19 15,022.77 18,402.78 16,409.86 23,824.81 21,192.37 30,962.98 22,867.87
ABC 863.48 509.22 1288.83 1308.88 1545.00 1738.69 2120.88 1283.83 2818.76 8279.70

ATC_R2 21,501.19 20,527.59 26,542.45 25,179.15 29,781.26 28,292.30 37,527.80 36,160.58 47,705.00 49,868.19

D
is

tr
ib

ut
or

Q 113.40 111.00 103.14 107.00 97.86 107.00 88.17 103.00 79.49 79.00
R 1292.68 1297.00 1249.32 1310.00 1234.60 1368.00 1229.10 1490.00 1265.00 1476.00

AOC 11,022.97 11,247.50 12,120.03 11,741.25 12,773.02 11,989.38 14,177.22 13,788.75 15,723.54 21,449.38
AHC 20,673.45 25,025.53 27,442.41 30,489.11 31,863.16 34,770.58 42,685.87 40,124.62 57,469.79 47,645.67
ABC 2564.72 762.00 4311.95 681.00 5540.19 1038.00 8778.42 1698.00 13,598.61 1521.00

ATC_D 34,261.14 37,035.03 43,874.39 42,911.36 50,176.37 47,797.96 65,641.51 55,611.37 86,791.94 70,616.04

ATC 77,263.52 78,008.77 96,959.29 94,378.65 109,738.90 104,532.74 140,697.10 126,992.70 182,201.90 170,631.85

A comparison between the two models was conducted using the results reported in Table 4.
The comparison demonstrated that the proposed model provided accurate results. In fact, the
simulation-based optimization model showed (for different values of SD) a slight deviation compared
to the analytical model results. The maximum absolute ATC deviation is 9.74% when σ = 15. In almost
all scenarios, which are different values of SD, the optimization-based simulation model provided
smaller ATC values than the approximate analytical model. Results showed that the optimization-based
simulation model outperformed the approximate analytical model, except for σ = 5, when the absolute
ATC deviation was 0.96%, which is a very small value.

Figure 3 also represents the results of the two models (analytical and simulation). The terms
used in Figure 3 are the same as those in Table 4. ATC increases with the increase in the demand
variability (σ), which demonstrates the significance of the effect of demand variability on the ATC.
Moreover, a paired t-confidence interval was used to analyze the differences in the means of the ATC
generated by the analytical and simulation models. At a confidence level of α = 95%, the reported
paired t-confidence interval was (−13994, 1067) and the p-value was 0.079. Based on the reported
interval and p-value, we can perceive that zero is included in the interval and the p-value is larger than
0.05; this means that there is no significant difference between the results generated by the two models.
Thus, we can report that our model is accurate and valid.
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3. Results and Discussion

As discussed in the previous section, a special case of the problem under consideration was
solved analytically to validate the developed model. The solved case was a two-stage supply chain
(one supplier and one retailer) with a lot size-dependent lead time. Moreover, it was assumed that the
daily demand is normally distributed. However, it has been reported that the analytical solution to
this special case is extremely difficult to arrive at [2,6]. Therefore, a simulation-based optimization
model was developed to solve more complex real-world problems. In this study, we considered the
stochastic inventory continuous review policy (Q, r) in a three-stage two-echelon supply chain system
with lot size-dependent lead time, L(Q). The system has a supplier, a distributor, and two identical
retailers (see Figure 1).

In this section, an experimental study was conducted to solve the system. The developed model
was run for different daily demand distributions to study the effects of the variability of daily demand
and lead time on the simulated ATC of the inventory system. We used three distributions for daily
demand: normal, gamma, and log-normal. The simulation runs are conducted using different values
of the coefficient of variance cv (cv = 0.25, 0.4, 0.5, 0.75, and 1.1) for each of the three distributions of
daily demand. Based on the relative conversion formulas reported in [23] and the reported parameter
values in [2], the used parameters of the gamma and log-normal distributions were chosen so that
they provide the same values for the normal distribution parameters (µ and σ). Table 5 provides a
summary of the parameters used for the three distributions. The results of the experimental study are
summarized in Table 6 and Figure 4.

Table 5. The parameters of the three distributions.

cv Normal
(µ,σ)

Gamma
(α,β)

Log-Normal
(α,β)

0.25 (20, 5) (16.00, 1.25) (2.965, 0.246)
0.40 (20, 8) (6.25, 3.20) (2.9215, 0.385)
0.50 (20, 10) (4.00, 5.00) (2.884, 0.472)
0.75 (20, 15) (1.78, 11.25) (2.773, 0.668)
1.10 (20, 22) (0.83, 24.20) (2.599, 0.891)
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Table 6. Results for different types of normal, gamma, and log-normal demand.

Inventory
cv = σ/µ 0.25 0.4 0.5 0.75 1.1

pdf Normal Gamma Log-Normal Normal Gamma Log-Normal Normal Gamma Log-Normal Normal Gamma Log-Normal Normal Gamma Log-Normal

Retailer 1

Q 83 46 83 67 49 67 68 46 71 55 55 62 45 45 42
R 494 302 491 460 363 463 480 366 517 483 493 582 500 498 750

AOC 7536.3 13,516.3 7516.3 9363.8 12,696.9 9313.8 9446.9 13,493.8 8772.5 12,829.4 11,300.0 10,091.3 18,874.4 13,882.5 14,979.4
AHC 12,143.4 9104.9 11,907.7 16,699.9 14,977.9 17,316.8 17,527.3 17,092.4 21,910.0 21,619.3 27,828.8 34,772.8 22,640.4 33,342.8 65,892.3
ABC 766.5 822.5 1590.7 224.4 1086.2 1194.6 1468.3 757.6 1750.9 772.1 987.0 6041.0 8632.8 16,519.9 30,001.2

ATC_R1 20,446.2 23,443.6 21,014.6 26,288.1 28,761.0 27,825.2 28,442.5 31,343.7 32,433.4 35,220.8 40,115.8 50,905.1 50,147.6 63,745.2 110,872.9

Retailer 2

Q 79 55 71 71 51 65 63 51 91 52 50 53 45 45 47
R 474 352 434 465 358 455 446 397 629 467 474 533 499 500 750

AOC 7877.5 11,306.3 8782.5 8847.5 12,192.5 9580.0 10,143.8 12,228.1 6886.9 13,684.4 12,496.3 11,750.6 18,720.6 13,912.5 13,273.1
AHC 12,140.9 10,298.3 11,507.8 15,022.8 13,281.2 17,504.2 16,409.9 18,005.9 24,430.9 21,192.4 28,034.7 33,798.7 22,867.9 33,536.7 63,723.3
ABC 509.2 910.4 1140.4 1308.9 1521.0 1424.7 1738.7 1096.2 655.0 1283.8 1045.0 2317.1 8279.7 15,886.4 726.7

ATC_R2 20,527.6 22,515.0 21,430.7 25,179.2 26,994.8 28,508.9 28,292.3 31,330.2 31,972.8 36,160.6 41,575.9 47,866.4 49,868.2 63,335.5 77,723.2

Distributor

Q 111 103 111 107 83 107 107 91 110 103 97 95 79 93 75
R 1297 1196 1304 1310 1042 1313 1368 1155 1397 1490 1345 1343 1476 1500 1311

AOC 11,247.5 12,067.5 11,246.3 11,741.3 14,953.8 11,660.0 11,989.4 13,660.0 11,378.1 13,788.8 12,860.0 13,153.1 21,449.4 13,482.5 16,713.1
AHC 25,025.5 22,417.9 25,986.9 30,489.1 26,783.3 31,858.1 34,770.6 31,345.9 38,374.6 40,124.6 47,547.0 49,432.8 47,645.7 71,014.8 68,653.6
ABC 762.0 435.0 909.0 681.0 1215.0 1092.0 1038.0 3270.0 4582.5 1698.0 4360.5 7125.0 1521.0 3660.0 4290.0

ATC_D 37,035.0 34,920.4 38,142.1 42,911.4 42,952.1 44,610.1 47,798.0 48,275.9 54,335.2 55,611.4 64,767.5 69,711.0 70,616.0 88,157.3 89,656.7

ATC 78,008.8 80,879.0 80,587.4 94,378.7 98,707.8 100,944.2 104,532.7 110,949.9 118,741.4 126,992.7 146,459.2 168,482.4 170,631.9 215,238.1 278,252.8
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As shown in Figure 4, the ATC increases with the increase in the coefficient of variance (cv) for all
the distributions and increases the most when the daily demand follows log-normal. This indicates a
significant effect of the cv and the distribution type on the ATC. The results in Table 6 demonstrate that
the solutions generated (order sizes and reorder points) for different distributions of daily demand are
not the same even if the associated total costs are close to each other. This explains the difficulty in
solving inventory systems with a stochastic daily demand.

Moreover, results have been tested statistically using the analysis of variance (ANOVA) with 0.95
confidence to examine whether the cv or the type of the daily demand distribution has a significant
effect on the simulated ATC. p-values less than 0.05 indicate model terms are significant.

From Table 7, ANOVA test results revealed a significant effect of cv on ATC since its p-value is 0.00,
less than 0.05. Overall, the results showed that cv has the most significant effect on ATC. Figure 5a,b
illustrate the interaction between the distribution types and cv. From these interaction plots, it is
evident that the ATC results difference between the three distributions is high with higher values of cv
(Figure 5a). In addition, it is clear that the ATC increases with an increase in cv (Figure 5b).

Table 7. ANOVA table for the ATC.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

CV 4 3.76 × 1010 84.60% 3.76 × 1010 9.39 × 109 19.50 0.000
PDF 2 2.98 × 109 6.72% 2.98 × 109 1.49 × 109 3.10 0.101
Error 8 3.85 × 109 8.68% 3.85 × 109 4.82 × 108

Total 14 4.44 × 1010 100.00%
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4. Conclusions

In most inventory models, inventory costs are optimized with the assumption that the lead time
is constant. Unfortunately, this is not the case in many real-world inventory systems. In practice,
inventory systems are complex and difficult to formulate because of the stochastic nature of demand
and lead times. In some cases, the lead time could have a few controllable components, such as lot
size, production time, setup time, waiting and moving times, and lot size inspection time, which
are related to order preparation and production. This study aimed to solve a complex inventory
system that consists of two identical retailers, a distributor, and a supplier. The system is a stochastic
inventory continuous review system (Q, r) with the lead time depending on lot size, unit production
time, setup time, and a shop floor factor that represents moving, waiting, and lot size inspection
times. A simulation-based optimization model was developed using Arena and OptQuest. A special
case of the system was solved analytically to validate the model. Results indicate that the developed
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model was more accurate. Moreover, the model was tested for a more complex inventory system with
different distributions of the system’s daily demand.

The results demonstrated that the optimized solutions (order sizes and reorder points) for different
distributions of daily demand are not the same even if the associated total costs are close to each
other. This explains the difficulty in solving inventory systems with a stochastic daily demand.
Therefore, simulation-based optimization models can be considered as a powerful tool to optimize
complex inventory systems without the need to make restrictive assumptions. Extensions of this
work can be made by using different inventory control policies, taking into account supplier capacity,
multi-products, and finally, cooperation between retailers.
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