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Abstract: Nowadays, distributed power generation is highly valued and fully developed since
the energy crisis is worsening. At the same time, the distribution system operator is becoming a
new stakeholder to take part in the dispatch of the active distribution network (ADN) with the
power market being further reformed. Some new challenges to the dispatching of the ADN are
brought by these distribution system operators (DSO), which break the traditional requirement of
the lowest operating cost. In this paper, the relationship between the maximum revenue and the
minimum operating cost of the ADN is fully considered, and the model of the bi-level distributed
ADN considering the benefits and privacy protection of multi-stakeholder is established precisely.
Further, the model is solved by using the alternating direction method of multipliers (ADMM) in
which the safety and economy of the ADN are fully considered. Finally, the validity of the model and
the feasibility of the algorithm are verified by using the adjusted IEEE 33 bus.

Keywords: active distribution network; multi-stakeholder; alternating direction method of multipliers;
distributed dispatching; bi-level model

1. Introduction

The energy crisis and environmental pollution are factors that promote distributed power
generation technology development. Since the gradual increase of distributed power supply penetration
and distributed power sources are often placed near the load, the distribution network has the
characteristics of dispersion, which brings new challenges to the safe and economic operation of the
traditional distribution network. In order to solve the problem of safe operation and active management
of high-permeability distributed power supply in distribution networks, active distribution network
(ADN) technology has emerged as the time’s requirement. ADN is the power distribution system
that actively manages the power supply to the distribution network by actively controlling and
dispatching according to the operating state of the power system [1]. In fact, it is inevitable that
new technologies link different parts of the power system, such as the ubiquitous power internet of
things (UPIOT) and artificial intelligence [2,3]. After the sale of the electricity market is liberalized,
the electricity sales company with the right to operate the distribution network not only provides
distribution services to collect distribution fees, but also participates in transactions as an independent
market entity [4]. In other words, it has both distribution network operation attributes and transaction
attributes. As a result, we call it a distribution system operator (DSO). As an independent benefit
participant participates in the dispatching of the active distribution network, the distribution operator
has independent power generation units and is no longer subject to the unified dispatching of the
power grid, which makes the traditional centralized operation economic dispatch no longer suitable
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for the power grid dispatching [5]. Consequently, a method suitable for handling the dispatching of
multi-stakeholders with high degrees of freedom needs to be found [6].

At present, research on active distribution network dispatching has been carried out to a certain
extent around the globe. The transactive energy concept proposes seven functional layers of architecture
that have been developed to reduce transmission losses and to minimize customers’ electricity bills [7].
A bi-level framework has been developed with the analytical target cascading method to ensure
stakeholder’s optimal economy [8], but this paper failed to comprehensively consider environmental
factors and the role of electric vehicle charging stations on the optimal scheduling results. A linearized
stochastic programming framework has been proposed to model the uncertainties of renewable energy
sources, energy prices, load demands, and the integrated renewable energy sources and battery
systems that are of higher importance to enhance management efficiency [9]. A study focuses on the
spirit open, equal, cooperate, and share’ the initiative distribution network establishes the optimal
dispatch model of the multi-stakeholder game has been developed to promote the consumption of
renewable power [10]. An online energy management based on the ADMM algorithm has been
developed to address the high uncertainty issue in the networked microgrids dispatching, and the
algorithm provides a less conservative schedule than the robust optimization-based approach [11]. At a
deeper level, a distributed optimization method for reactive power optimization control is proposed,
which shows the good information privacy of its distributed method [12]. A decomposition method
based on the ADMM has been proposed to guarantee the gas system’s data privacy while achieving the
benefits of the co-planning work, ADMM algorithm has a significant role in ensuring data privacy [13].
Therefore, considering the protection of data privacy under the fair competition of various stakeholders
has also become a factor that cannot be ignored in the dispatching process [14].

However, the above research considers ADN’s objective of the lowest overall operating cost,
but it fails to comprehensively consider the requirements of multi-stakeholders for maximum benefits
and data privacy protection. As a consequence, it is difficult to mobilize the initiative of DSO in the
dispatching process. For the new situation that the various stakeholders of the DSO participate in
the economic dispatching of the ADN, this paper proposes a distributed coordination optimization
dispatching model for ADN in order to coordinate the benefits of the DSO and the ADN and ensure
the power quality. In detail, the model considers the benefits of various stakeholders, and the objective
is to optimize the economics of each stakeholder and ADN to achieve a win-win situation between
ADN and DSO, and each part is solved independently to meet the privacy protection requirements
of each stakeholder. Coordinating the power exchange between the independent entities and the
active distribution network by ensuring the quality of the power. Finally, the model is solved by using
the alternating direction multiplier method to verify the validity of the model and the feasibility of
the algorithm.

The remainder of the paper is organized as follows, Section 2 models the considering the benefits
of multi-stakeholder dispatching strategy of ADN not only by considering the optimization for ADN,
but also by coordinating the benefits of multi-stakeholder. Section 3 discusses the bi-level distributed
optimization model for ADN. Section 4 provides the strategy of the ADN bi-level dispatching model
by using ADMM. Section 5 provides the detailed results of the simulation for the validity of the model,
and the feasibility of the algorithm is verified by using the adjusted IEEE 33 bus. Section 6 concludes
the paper.

2. Considering the Benefits of Multi-Stakeholder Dispatching Strategy of ADN

2.1. Electric System and Virtual Micro-Grid

In this paper, the source-load resources of the active distribution network are integrated into
two categories: distribution system operator (DSO) and virtual micro-grid (VMG). Among them,
the DSO is defined as an independent power distribution area operated by the distributed power source
owner, and is an independent benefit group with distributed power generation units and regional load
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components. Its main role is to coordinate the distributed power supply and the purchase and sale of
electricity with the upper power grid to maximize the benefits of electricity sales. The VMG is defined
as an area operated by a non-distribution operator and is divided into specific VMG according to the
radiation distance of the power supply. Its main package includes some distributed power supplies,
flexible loads, energy storage power stations, electric vehicle charging and discharging stations, etc.
The division of VMG breaks the geographical restrictions of distributed power. Its essence is the
reorganization of the remaining distributed power that does not belong to DSO scheduling. The VMG
also pursues the largest benefit from the power supply area it contains.

2.2. Dispatching Overall Framework of Active Distribution Networks

Considering the game relationship of multi-stakeholders, the lower-level DSO and the VMG
pursue their own benefits, and the upper-level ADN dispatching center pursues network loss and
power quality. After the DSO and VMG independently optimize their own revenues, the ADN
dispatch center coordinates the power exchange between the various stakeholders and the active
distribution network to ensure the power quality and the economics of the overall operation of the
ADN. The ADN dispatching system framework that considers the benefits of multi-stakeholders is
illustrated in Figure 1.
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Figure 1. Schematic diagram of active distribution system framework considering the benefits
of multi-stakeholder.

3. Active Dispatching Distribution Network Bi-Level Optimization Dispatching Model

In the ADN bi-level distributed optimization model, the upper-level takes the ADN as the
processing object in order to reduce the network loss and ensure the power quality. The lower-level is
targeted at DSO and VMG, with the goal of maximizing the benefits of all stakeholders.
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3.1. The Upper-Level Model

3.1.1. The Objective Function of Upper-Level Model

The objective function of the upper-level model includes the lowest overall operating cost of the
ADN and the minimum network power loss [15]. The objective function is described as follows.

minF = f (Ploss) + g(Pwant) (1)

f (Ploss) = α
T∑

t=0

L∑
l=0

[Ploss,l(t)∆t] (2)

g(Pwant) = β
T∑

t=0

n∑
i=0

(P∗want,i(t) − Pwant,i(t))
2 (3)

where the F is the upper optimization overall goal, f (Ploss) is total network loss function of ADN,
g(Pwant) is expected difference between exchange power and actual power, T is dispatch period, L is
the total number of ADN lines, l is the number of lines, t is the number of dispatching period, Ploss,l is
power loss of line l, n is the total amount of all ADN and VMG, i is the number of ADN and VMG,
Pwant is the lower-level power actually obtained from the upper level, P∗want is expected exchange power
uploaded by the lower-level, α is the weight in the objective function f1, β is the weight in the objective
function f2 and the specific values of α and β are shown in reference [16].

3.1.2. The Constraints of Upper-Level Model

For the upper-level, the constraint equations are as follows.{
PDSO,k(t) + PVMG,k(t) − PL,i(t) − Pd(t) = 0
QDSO,k(t) + QVMG,k(t) −QL,i(t) −Qd(t) = 0

(4)

where Pd(t) = Ui(t)
N∑

j=1
U j(t)(Gi j cosθi j(t) + Bi j sinθi j(t))Qd(t) = Ui(t)

N∑
j=1

U j(t)(Gi j sinθi j(t) +

Bi j cosθi j(t)). Where the DSO is distribution system operator (DSO) power, VMG is virtual microgrid
(VMG) power, L is load power, P is the active power, Q is the reactive power, Ui(t) is bus voltage of
bus i, Gi j is conductance between bus i and j, Bi j is senator between bus i and j, i, j is the bus number
in the AND, θ is phase angle difference between bus i and j, N is the total amount of bus.

Si j(t) ≤ Si j,max,∀i ∈ [1, N],∀ j ∈ [1, N] (5)

Ui,min ≤ Ui(t) ≤ Ui,max,∀i ∈ [1, N],∀i ∈ [1, N] (6)

Ppcc,min ≤ Ppcc(t) ≤ Ppcc,max (7)

where the Si j is transmission power between i and j bus, Si j,max is the maximum of transmission power
between bus i and j, Ui(t) is bus voltage of bus i, Ui,min, Ui,max is the lower and upper limit of Ui(t),
Ppcc is real-time transmission power between upper-level and lower level, Ppcc,min, Ppcc,max is the lower
and upper limit of Ppcc.

The above constraints ensure the safe and reliable operation of the ADN, and the voltage offset is
within a reasonable range. As a result, the power system operates within the static stability requirements.
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3.2. The Lower-Level Model

3.2.1. The Objective Function of Upper-Level Model

The optimization dispatching model of the DSO considers the purchase and sale of electricity
revenue. For instance, E1 represents the upper grid power price of each part. E2 represents the sales
revenue of the user, C1 represents the operation, maintenance of the controllable power generation
and the start-up and depreciation costs, C2 represents the operation and degradation cost of the
energy storage system [17,18], C3 represents the operation and maintenance cost, C4 represents the
environmental cost of the controllable power supply [19]. C5 represents the optimization of the VMG
also considers the cost of the electric vehicle charging and discharging station, C6 represents the flexible
load dispatching cost.

The objective function considering the above factors is as follows.

maxM = E1 + E2 −C1 −C2 −C3 −C4 −C5 −C6 (8)

In (8), the specific formulas are as shown in (9)–(17):

E1 =
H∑

t=0

CGS(t)PGS(t)∆t (9)

where the H is the number of time slots in a dispatching period, CGS is the buy and sell electricity
prices to the main grid, PGS is the power to buy and sell electricity from the upper grid.

E2 =
H∑

t=1

CS(t)PS(t)∆t (10)

where the CS is the electricity prices sold to users, PS is the power sold to users.

C1 =
H∑

t=0

n∑
i=0

(C f uel,i + Ko,iPDG,i(t) + C11 (11)

where C11 = SiUstart,i(t) +
Ca,i

8760kini
PDG,i(t))∆t.

Where the n is the total amount of controllable power supply, i is the number of controllable
power supply, C f uel is fuel cost coefficient of controllable power supply, Ko is unit power operation and
maintenance cost coefficient of controllable power supply, PDG is controllable unit output, Si is starting
cost coefficient of the controllable unit, Ustart is start-up decision variable of the controllable unit (0–1),
Ca is the present value of controllable unit installation costs, ki is the capacity factor of controllable
power supply, ni is the age of the controllable power supply.

C2 =
H∑

t=0

(Cinv −Csel f ) ∗ Lb(t, d))∆t (12)

where the Lb =
∑
i

Nc,i
η100

d
kp

i , i = 1, 2, 3 · · · .

Where the Cins is energy storage equipment unit installation and maintenance cost of the battery,
Lb(t, d) is the life loss of the battery over the time period, Nc,i is the number of cycles with depth di,
di is the ith depth of a cycle’s amplitude, kp is the slop value of the battery degradation curve taken
from the battery sheets, and η100 is the total number of given cycles for the battery.

C3 =
H∑

t=0

G−n∑
i=0

CUDG,iPUDG,i(t)∆t (13)



Processes 2020, 8, 987 6 of 18

where the G is the total amount of distributed power supplies, n is the number of controllable distributed
power supplies, i is the number of uncontrollable power supply, CUDG is operation and maintenance
cost coefficient of uncontrollable power unit power, PUDG is the power output of uncontrollable
power supply.

C4 =
H∑

t=0

n∑
i=0

L∑
r=0

ArRi,rPDG,i(t)∆t (14)

where the n is the total amount of distributed power supplies, i is the number of controllable power
supply, Ar is pollution gas emission penalty coefficient, Ri,r is the amount of exhaust gas generated
when a distributed power source emits unit power, PDG is controllable unit output.

C5 =
H∑

t=0

W∑
w=0

Cw(t)Pw,s(t)∆t (15)

where the W total amount of centralized controllers for electric vehicles, w is the number of centralized
controllers for electric vehicles, Cw is the electric vehicle charging and discharging cost coefficient,
Pw,s is the electric vehicle charging and discharging power.

C6 = Cr[
D∑

d=0

xd(t)P2
d(t) +

V∑
v=0

P2
v(t)]∆t (16)

ΦSO = [PDG,i(t), PGS(t), xch
c,s(t), xdch

c,s (t), pch
c,s(t), pdch

c,s (t), Ec,s(t)] (17)

where the Cr is flexible load dispatching cost coefficient, D is the total amount intermittent loads in the
flexible load, V is the total amount of non-intermittent loads in the flexible load, d is the number of
intermittent loads in the flexible load, v is the number of non-intermittent loads in the flexible load,
xd is intermittent load switch variable (0–1), P2

d is continuous load power, P2
v is power consumption

of intermittent load, ΦSO is a vector consisting of electric vehicle decision variable (0–1), xch
c,s is the

electric vehicle charging decision variable, xdch
c,s is electric vehicle discharging decision variable (0–1),

pch
c,s is electric vehicle battery charging power, pdch

c,s is electric vehicle battery discharging power, Ec,s is
remaining power in electric car battery.

3.2.2. The Constraints of Lower-Level Model

In order to ensure a safe and stable operation, the lower layer optimization should also meet
power balance constraints, purchase and sale power constraint constraints, controllable power supply
constraints, uncontrollable power supply constraints, energy storage system constraints, electric vehicle
constraints, flexible load constraints, and tie-line constraints. The specific constraints are shown in
(18)–(42).

The safe and stable operation of the whole system first of all needs to generate the active power is
equal to the active power consumption, the constraint is shown in (18).

G∑
i=0

PDG,i(t) +
m∑

j=0

Pst, j(t) + PP(t) + PW(t) − PGS(t) − PS(t) = 0 (18)

where the PP is photovoltaics power, PW is wind power.
The lower layer purchase and sale electric power should be lower than the upper and lower limits

of the purchase and sale of electric power, the specific formulas are given as (19).

PGS,min(t) ≤ PGS(t) ≤ PGS,max(t) (19)
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To ensure the safe and stable operation of the controllable power supply, controllable power
constraints include output power upper and lower limits, minimum start and stop time constraints,
and climbing constraints, the specific formulas are illustrated in (20)–(22):{

Pi,minUi(t) ≤ Pi(t) ≤ Pi,maxUi(t)
Qi,minUi(t) ≤ Qi(t) ≤ Qi,maxUi(t)

(20)

where the Ui is 0–1 state of controllable unit operation, Pi,min, Pi,max is lower and upper limits of
the active power of controllable units, Qi,min, Qi,max is lower and upper limits of reactive power of
controllable units, 

Ustart,i(t) +
min(T,t−1+MOTi)∑

t+1
Ushut,i ≤ 1

Ustut,i(t) +
min(T,t−1+MOTi)∑

t+1
Ushart,i ≤ 1

(21)

where the MOT is the minimum opening time of the controllable unit, MDT is the minimum closing
time of the controllable unit.

− ∆down ≤ Pi(t) − Pi(t− 1) ≤ ∆up,i (22)

where the −∆down, ∆up,i is lower and upper limits of climbing power.
The output of wind power and photovoltaics should not exceed the predicted output, the specific

formulas are given as (23): {
0 ≤ pw(t) ≤ pw, f (t)
0 ≤ pp(t) ≤ pp, f (t)

(23)

where the pw, f (t) is predicted value of wind power, pp, f (t) is predicted value of photovoltaic power.
The energy storage system (ESS) should satisfy the charging power and discharge power limit of

the battery during the dispatching period, and also satisfy the limitation of the energy and power of
the energy storage system, and balance the charge and discharge, the specific formulas are described
as (24)–(26):  Pch

st,min(t)U
ch
st (t) ≤ Pch

st (t) ≤ Pch
st,maxUch

st (t)
Pdch

st,min(t)U
dch
st (t) ≤ Pdch

st (t) ≤ Qdch
st,maxUdch

st (t)
(24)

where the Uch
st is battery charge status, Udch

st is battery discharge status, Pch
st,min, Pch

st,max is lower and

upper limits of charging the ESS, Pdch
st,min(t), Qdch

st,max is lower and upper limits of discharging the ESS.

Sst,min ≤ Sst ≤ Sst,max (25)

where the Sst,min, Sst,max is lower and upper limits of the charging state of the ESS.

ST = S0 (26)

where the S0 is the beginning of the dispatching period cycle of the ESS, ST is the ending of the
dispatching period of the ESS.

Since the battery’s charge and discharge status is mutually exclusive, the Uch
st (t) + Udch

st ≤ 1.
In this paper, the charging and discharging constraints of electric vehicles are considered through

the charging and discharging station mode of electric vehicles, and the equivalent electric vehicles
of electric vehicle centralized controllers are used as well [20]. The specific formulas are as shown in
(27)–(34):

xch
c,s(t) + xdch

c,s (t) ≤ 1 (27)

pch
c,s(t) ≤ pch,max

c,s (t)xch
c,s(t) (28)

pch
c,s(t) ≤ pdch

c,s (t)x
dch
c,s (t) (29)
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Pc,s(t) = pch
c,s(t)x

ch
c,s(t) + pdch

c,s (t)x
dch
c,s (t) (30)

SOCc,s(t) = SOCc,s(t− 1) + SOCC,G(t) (31)

where SOCC,G(t) =
ηchpch

c,s(t)xch
c,s(t)−

pdch
c,s (t)xdch

c,s (t)
ηdch

Emax
c

Smin
OCc ≤ SOCc,s(t) ≤ Smax

OCc (32)

pch
c,s(t)ηch ≤ Emax

c − Ec,s(t) (33)

1
ηdch

pdch
c,s (t) ≤ Ec,s(t) (34)

where the xch
c,s is whether the electric vehicle is charged (0–1), xdch

c,s is whether the electric vehicle is
discharged (0–1), pch

c,s is electric vehicle battery charging power, pdch
c,s is electric vehicle battery discharging

power, pt
c,s is electric vehicle battery power at time t, SOCc is the electric vehicle battery state of charge,

Smin
OCc, Smax

OCc is the lower and upper limits of electric vehicle battery state of charge, ηch is electric vehicle
battery charging efficiency, ηdch is electric vehicle battery discharging efficiency, Emax

c is electric vehicle
battery capacity, Ec,s is remaining power of electric vehicle battery.

Flexible load constraints include flexible load balancing constraints and flexible load upper and
lower limits [21]. The specific formulas are as shown in (35)–(37):

24∑
t=0

Pα(t) = Pα,sum (35)

Pα,min(t) ≤ Pα(t) ≤ Pα,max(t) (36)

− ∆Pα,max(t) ≤ ∆Pα(t) ≤ ∆Pα,max (37)

where the α is flexible load type and α = n, m, ∆Pα,sum is the total amount of flexible load in one cycle,
∆Pα,max is flexible load maximum variation limit, ∆Pα,min is flexible load minimum variation limit.

The lower-level and upper-level power are transmitted through a power common connection line
(PCC), and the transmitted power should satisfy the upper and lower limits of the PCC transmission
power [22]. Consequently, the specific formulas are described as (38).

PGS,max ≤ PGS(t) ≤ PGS,max (38)

4. Distributed Solution Strategy of ADN Bi-Level Dispatching Model

For the established bi-level model, the ADMM algorithm with a simple form, good convergence
and robustness is applied to solve the upper-level model [23]. The lower-level is linearized and solved
by YALMIP. The upper and lower levels exchange power through PPC. After the optimization of the
lower-level is completed, the expected exchange power is uploaded to the upper-level. The upper-level
optimizes the global optimization and transmits the reference exchange power according to the
minimum ADN overall operating cost and guaranteed power quality. The lower-level chooses to
receive the reference power when the revenue result after re-solving according to the reference switching
power transmitted from the upper-level falls within the acceptable interval.

4.1. Method Based on ADMM

Make the decision variable be P = [PDv Pnet]
T, then the standard objective function based on

ADMM can be expressed as follows.

minF(x) = f (PDv) + g(Pnet) (39)
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where the PDv is the absolute value of the expected exchange power and reference exchange power
difference and the Pnet is network loss power.

The augmented Lagrange function constructed for this problem is as follows [24]:

Lρ(PDv, Pnet,λ) = f (PDv) + g(Pnet) + λT(APDv + BPnet − c) +
ρ

2

∣∣∣∣∣∣∣∣APDv + BPnet − c
∣∣∣∣|22 (40)

where ρ represents penalty parameter and ρ > 0.
The basic iterative process of ADMM is as follows [25]:

Pk+1
Dv = argmin

pDv
Lρ

(
PDv, Pk

net,λ
k
)

Pk+1
net = argmin

pnet
Lρ

(
Pk

Dv, Pnet,λk
)

λk+1 = λk + ρ
(
APk+1

Dv + BPk+1
net − c

) (41)

where the λ is dual variable and k is iteration step, when the original problems f and g are
respectively real-valued intrinsic closed convex functions, ADMM can effectively converge to the
optimal solution [26], iterating through equation (41) to approximating the optimal solution gradually.

According to the ADMM convergence principle, the iterative process terminates the iteration until
the original residual, and the dual residual satisfy the convergence precision. The specific formula is
as follows: 

∣∣∣∣∣∣APk+1
Dv + BPk+1

net − c
∣∣∣∣∣∣2 ≤ εprimal∣∣∣∣∣∣∣∣ρATB

(
Pk+1

net − Pk
net

)∣∣∣∣∣∣∣∣2 ≤ εdual (42)

where the εprimal is raw residual convergence accuracy, and the εdual is dual residual convergence accuracy.

4.2. The Distributed Solution Process for Active Distribution Network Bi-Level Dispatching Model

The solution flow for the active distribution network using ADMM for the upper level and linear
programming for the lower level is as follows, the flow chart of model solving is shown in Figure 2.
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Figure 2. Flow chart of model solving.

Step 1: Start, load data, initialize ρ, εprimal, εprimal, the maximum number of iterations K1, K2 and
other algorithm parameters.
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Step 2: Set k1 = 1, k2 = 1.
Step 3: Calculate the expected exchange power, and upload.
Step 4: Start the upper layer optimization dispatching, and solve the problem Pk+1

Dv , Pk+1
net by the

formula (41).
Step 5: The upper-level judges whether to converge according to the equation (46), and if it

converges, it transmits the upper layer reference switching power; if it does not converge, it returns
k1 = k1 + 1, and returns to step 2.

Step 6: The lower-level optimization dispatching recalculates the revenue according to the upper
layer reference switching power, and determines whether the calculation result satisfies the confidence
interval requirement. If the requirements are met, the exchange power request is accepted. If the
requirement is not met, let k2 = k2 + 1 the process returns to step 2.

Step 7: Substituting the power transmitted from the upper-level into the lower-level to solve the
problem of optimizing the operation of the lower microgrid, and obtaining the distributed power
output of each of the various stakeholders.

Step 8: Bi-level optimization termination judgment: If k1 = K1 or k2 = K2, stop iteration, otherwise,
let k1 = k1 + 1 and k1 = k1 + 1, and return to step 2.

The upper-level optimization dispatching and the lower-level optimization dispatching are only
connected through the PCC. The upper-level control center only needs to collect the expected exchange
power of each stakeholder, and each stakeholder independently solves the optimal distribution
according to the received transmission power. Finally, the distributed economic dispatching of ADN
is realized.

5. Discussion

5.1. Introduction to the System

The adjusted IEEE 33 bus ADN is taken as an example for analysis. All resources are reintegrated
according to different ownership, and the adjusted active distribution network structure is shown in
Figure 3. The details date statistics of the ADN structure framework is illustrated in Appendix A.

The time-of-use electricity prices for the active distribution network to purchase and sell electricity
to virtual microgrids and distribution operators are shown in Table 1.

Table 1. Time-sharing electrovalence.

Period
Price/(kW·h)

Purchase Electricity Sale of Electricity

Peak time 18:00–21:00 0.83 0.65

Usual time 7:00–18:00
22:00–0:00 0.49 0.38

Valley time 0:00–7:00 0.17 0.13

The pollutant discharge standards are shown in Table 2, and the detailed reference parameters
of environmental costs are mentioned in reference [27], and will not be repeated here. The sources
integration of VMG and DSO are shown in Table 3.

Table 2. Penalty for pollutant emission.

Type of Pollutant SO2 NOx CO2 CO Dust

Levy fee/USD·Kg−1 1 1.95 0.00975 0.16 0.125
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Table 3. Sources integration of VMG and DSO.

Stakeholder MT WT PV ESS EVS FD

VMG1
√ √ √ √ √ √

VMG2
√ √ √ √

×
√

DSO1
√ √ √ √

× ×

DSO2
√

×
√ √

× ×

5.2. Dispatching Results and Analysis

The maximum benefits obtained by VMG and DSO independent optimization based on the
MATLAB/YALMIP solution tool are shown in Table 4. The load and the power distribution contribution
of each of the lower-level entities are shown in Figures 4–7.

Table 4. Maximum benefits when each stakeholder is independently optimized.

Stakeholder Profit(Ten Thousand USD)

VMG1 0.9830
VMG2 1.2211
DSO1 1.1054
DSO2 1.0494
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It can be seen from the simulation results that the load among the various stakeholders is mainly
satisfied by the controllable unit, wind power and photovoltaic, At the same time, the power balance is
maintained by charging and discharging of the upper-level purchase and sale of electricity and storage
batteries, flexible loads, and electric vehicle charging and discharging stations. Under the optimal
dispatching method, wind and photovoltaic power utilization have been improved. The optimal
dispatching method has played an important role in promoting the consumption of renewable energy
and has played a positive role in solving environmental problems.
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5.3. Analysis of Bi-Level Distributed Dispatching Optimization Results

The maximum benefit of each entity of the bi-level distributed dispatching solved by the ADMM
and the acceptance of the calculation results of each subject are shown in Table 5. Among them, it is
assumed that the power when VMG and DSO purchase power to the grid is positive, and the power
when selling power to the grid is negative, and the exchange power in two different optimization
modes are shown in Figures 8–11. At the same time, the comparison of the total operating cost, network
loss and information transmission cost of the entire ADN under two optimization modes are shown in
Figure 12.

Table 5. Maximum benefit of different stakeholders in different dispatching models.

Region Profit (Ten Thousand USD) Acceptance

VMG1 0.9354 0.952
VMG2 1.1270 0.931
DSO1 0.9974 0.903
DSO2 0.9452 0.901
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It can be concluded from the simulation results that the bi-level distributed optimization
dispatching results can reach more than 90% acceptance. Under bi-level distributed optimal dispatching
mode, the VMG and DSO purchase power from the grid as a load to relieve the power supply pressure
of AND, when the load is higher, and sell electricity to the grid to increase VMG and DSO revenue,
when the load is lower. It can effectively balance the power conflict between ADN and multi-stakeholder.
In addition, the ADN network loss is large, and the average system voltage is lower when ADN
operates in an independently optimized dispatching mode. The overall power supply pressure and
the network losses of the ADN can be effectively reduced when operating in the bi-level distributed
optimal dispatching mode. This makes the voltage quality of ADN performs better. At the same
time, the difference between the power generation cost of distributed dispatching and the centralized
optimization data transmission cost is about 0.1%, which is basically negligible, but only the need to
upload the expected switching power due to distributed dispatching, when the various stakeholders
have the maximum benefit. Further, When the information security and privacy requirements are
higher, the bi-level distributed dispatching reduces the amount of information in the uploading and



Processes 2020, 8, 987 15 of 18

dispatching center, and can better satisfy the requirements of security and privacy protection of
each subject.
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In Figure 13, it can be concluded from the simulation results that the VMG and DSO gradually
met the desired acceptability of each region with iterations progressed. Finally, the ADMM algorithm
achieves convergence at the 27th iteration, which indicates that the ADMM algorithm is feasible in
solving the distributed problem and can find a better global optimal solution.
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6. Conclusions

In this paper, the ADN is rationally partitioned, and a bi-level distributed optimization model of
ADN including wind power, photovoltaic, gas turbine, energy storage system, flexible load, electric
vehicle charging and discharging station is established to solve the new problem that the DSO and VMG
participate in the grid economic dispatching as a new stakeholder. Further, the ADMM is applied to
solve the distributed model. In the distributed dispatching process, only the expected power needs to be
exchanged, which makes the communication burden be greatly reduced, and each multi-stakeholder’s
privacy security increased. Finally, the adjusted IEEE 33 bus is taken as an example, and the advantages
of the proposed bi-level distributed optimization model are verified by comparing the bi-level
distributed optimization dispatching with independent optimization dispatching. The simulation
results show the effectiveness and stability of the model in dealing with multi-stakeholder participation
in grid dispatching, it can effectively balance the power conflict between ADN and multi-stakeholder.
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Appendix A

Table A1. The resistance parameters of the IEEE33 network.

Branch
Number

Starting
Bus

Arrival
Bus R/pu X/pu Branch

Bumber
Starting

Bus
Arrival

Bus R/pu X/pu

1 0 1 0.0922 0.047 17 23 24 0.786 0.564

2 1 13 0.493 0.2511 18 5 6 1.509 0.9337

3 13 14 0.164 0.1565 19 6 7 1.03 0.74

4 14 15 0.4521 0.3083 20 7 8 0.8042 0.7006

5 15 16 0.366 0.1864 21 8 9 1.044 0.74

6 16 17 1.504 1.3554 22 9 10 0.5075 0.2585

7 17 18 0.3811 0.1941 23 10 11 0.1966 0.065

8 18 19 0.4095 0.4784 24 11 12 0.9744 0.963

9 1 2 0.896 0.7011 25 5 25 0.3744 0.1238

10 2 3 0.819 0.707 26 25 26 0.3105 0.3619

11 3 4 0.7089 0.9373 27 26 27 1.468 1.115

12 4 5 0.203 0.1034 28 25 28 0.341 0.5320

13 2 20 0.1872 0.6188 29 28 29 0.5412 0.7129

14 20 21 0.2842 0.1477 30 28 30 0.591 0.526

15 21 22 0.7144 0.2351 31 30 31 0.7463 0.545

16 22 23 0.732 0.574 32 31 32 1.289 1.721
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