
Grand Tour Algorithm: Novel Swarm-Based Optimization for High-
Dimensional Problems

Authors:

Gustavo Meirelles, Bruno Brentan, Joaquín Izquierdo, Edevar Luvizotto Jr

Date Submitted: 2020-12-22

Keywords: benchmarking problems, swarm optimization, Optimization

Abstract:

Agent-based algorithms, based on the collective behavior of natural social groups, exploit innate swarm intelligence to produce
metaheuristic methodologies to explore optimal solutions for diverse processes in systems engineering and other sciences. Especially
for complex problems, the processing time, and the chance to achieve a local optimal solution, are drawbacks of these algorithms, and
to date, none has proved its superiority. In this paper, an improved swarm optimization technique, named Grand Tour Algorithm (GTA),
based on the behavior of a peloton of cyclists, which embodies relevant physical concepts, is introduced and applied to fourteen
benchmarking optimization problems to evaluate its performance in comparison to four other popular classical optimization
metaheuristic algorithms. These problems are tackled initially, for comparison purposes, with 1000 variables. Then, they are confronted
with up to 20,000 variables, a really large number, inspired in the human genome. The obtained results show that GTA clearly
outperforms the other algorithms. To strengthen GTA’s value, various sensitivity analyses are performed to verify the minimal
influence of the initial parameters on efficiency. It is demonstrated that the GTA fulfils the fundamental requirements of an optimization
algorithm such as ease of implementation, speed of convergence, and reliability. Since optimization permeates modeling and
simulation, we finally propose that GTA will be appealing for the agent-based community, and of great help for a wide variety of agent-
based applications.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2020.1255
Citation (this specific file, latest version): LAPSE:2020.1255-1
Citation (this specific file, this version): LAPSE:2020.1255-1v1

DOI of Published Version: https://doi.org/10.3390/pr8080980

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

processes

Article

Grand Tour Algorithm: Novel Swarm-Based
Optimization for High-Dimensional Problems

Gustavo Meirelles 1,*, Bruno Brentan 1, Joaquín Izquierdo 2 and Edevar Luvizotto, Jr. 3

1 Department of Hydraulic Engineering and Water Resources-ERH, Universidade Federal de Minas Gerais,
Belo Horizonte 31270-901, Brazil; brentan@ehr.ufmg.br

2 Fluing-Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain; jizquier@upv.es

3 Department of Water Resources-DRH, Universidade Estadual de Campinas, Campinas 13083-889, Brazil;
edevar@fec.unicamp.br

* Correspondence: gustavo.meirelles@ehr.ufmg.br

Received: 29 June 2020; Accepted: 11 August 2020; Published: 13 August 2020
����������
�������

Abstract: Agent-based algorithms, based on the collective behavior of natural social groups, exploit
innate swarm intelligence to produce metaheuristic methodologies to explore optimal solutions
for diverse processes in systems engineering and other sciences. Especially for complex problems,
the processing time, and the chance to achieve a local optimal solution, are drawbacks of these
algorithms, and to date, none has proved its superiority. In this paper, an improved swarm
optimization technique, named Grand Tour Algorithm (GTA), based on the behavior of a peloton
of cyclists, which embodies relevant physical concepts, is introduced and applied to fourteen
benchmarking optimization problems to evaluate its performance in comparison to four other popular
classical optimization metaheuristic algorithms. These problems are tackled initially, for comparison
purposes, with 1000 variables. Then, they are confronted with up to 20,000 variables, a really large
number, inspired in the human genome. The obtained results show that GTA clearly outperforms
the other algorithms. To strengthen GTA’s value, various sensitivity analyses are performed to verify
the minimal influence of the initial parameters on efficiency. It is demonstrated that the GTA fulfils
the fundamental requirements of an optimization algorithm such as ease of implementation, speed
of convergence, and reliability. Since optimization permeates modeling and simulation, we finally
propose that GTA will be appealing for the agent-based community, and of great help for a wide
variety of agent-based applications.

Keywords: optimization; swarm optimization; benchmarking problems

1. Introduction

Many optimization problems in engineering are of a very complex nature and must be solved
in accordance with various, sometimes complicated constraints. As a consequence, finding an optimal
solution is often hard. In addition, frequently, a large number of mixed variables, and differential and
nonlinear equations, are used to describe the problem. As a result, in many cases, classical optimization
procedures based on differential methods cannot be used. Metaheuristic techniques arise to bridge
this gap, as they can explore the search space for optimal and feasible solutions in a less restrictive
(derivative-free) framework. Since in continuous problems, the set of feasible solutions is infinite,
metaheuristic algorithms use empirical iterative search methods, based on various heuristics, to guide
the search in a way that the solution is expected to always improve.

As described in [1], metaheuristic algorithms are often inspired by nature, and can be classified into
the following groups: (i) evolutionary, inspired from biology, where an initial population evolves over

Processes 2020, 8, 980; doi:10.3390/pr8080980 www.mdpi.com/journal/processes

Processes 2020, 8, 980 2 of 19

generations; (ii) swarm intelligence, inspired from the social behavior of animals; (iii) physics-based,
inspired by natural phenomena; and (iv) human related, inspired from human beings and their physical
and mental activities.

In swarm intelligence techniques, the social features of a group are used to define the behavior
of its individuals, leading to (local) optimal solutions [2]. In general, the position of an individual
represents a potential solution, and has a defined score based on the objective function of interest.
First, initial positions for individuals are defined randomly, and this defines their initial score. Then,
an individual evolves according to: (i) its own preferences, based on its past experience, i.e., on its
best performance ever achieved, and (ii) according to the group experience, i.e., the best solution
ever found by any individual in the group. Each algorithm has its own rules to express this social
behavior. Additional random coefficients are used to guarantee better exploration of the search space,
especially in the initial period, and those coefficients are also modified across iterations [3] to achieve
better exploitation, mainly at the end of the search. In addition, the historical evolutionary information
deployed by swarm algorithms can be efficiently used in dynamic optimization to detect the emergent
behaviors of any involved agent or element. Examples are algorithms based on ants [4] and bees [5]
looking for food, the breeding behavior of cuckoos [6], the behavior of flocking birds [7], among many
others. Extensive lists of algorithms belonging to the four abovementioned categories of metaheuristics
algorithms can be found in [1]. Specifically, Table 2 in [1] compiles 76 swarm intelligence algorithms,
together with some specific details.

Physics-based algorithms mimic the behavior of natural phenomena and use the rules governing
these phenomena to produce optimal solutions. Perhaps the most popular of these algorithms is
simulated annealing [8], based on crystal development in metallurgy. Table 3 in [1] provides a list of
36 physics-based algorithms, together with basic information about them.

One of the major issues of metaheuristic algorithms is the fact that there is no guarantee that
the global optimal solution is obtained. Despite the randomness deployed to build the initial solutions
and during each iteration, the search can be easily biased, and the final result may be just a point
that is close to a local optimum [9]. In addition, to account for possible constraints of the problem,
in a single-objective setting, penalty functions have to be used, adding a value to the objective function
to hinder unfeasible solutions [10]. If the added value is too high, optimal solutions on the boundaries
can be disregarded because of the steep path this represents for the individuals and the strong
deformation of the objective function landscape close to the boundary. On the other hand, if the penalty
is too soft, unfeasible solutions can be considered as optimal [11]. The randomness of the process
and the penalties added can lead to inconsistent results, so that multiple runs of the algorithm are
necessary to verify the quality of the solution.

Another crucial issue of these methods is the computational effort required. Multiple solutions
(individuals) must be evaluated in each iteration. This number varies according to the number of
variables comprising the problem, and can be very large. In general, the number of individuals has
to be at least the same as the number of variables [12]. Thus, in complex problems, the number of
objective function evaluations can be huge. In addition, many engineering problems use external
models to calculate the parameters of the objective function and the constraints, as is the case with
hydraulic [13], thermal [14], and chemical models [15], thus increasing even more the computational
effort required.

Swarm intelligence in general, and the metaheuristic we develop in this paper in particular, may
have a number of benefits for many agent-based models (ABM) and applications. Among the benefits
derived from applying optimization in ABM, we briefly mention the following: (a) simulation
reuse facility, since there is a generalized demand for improved methods for studying many
complex environments as integrated wholes [16–19]; (b) dynamic optimization due to problem
uncertainty, especially in cases of slow changes, i.e., those most commonly occurring in real-world
applications [20–22]; (c) the ability to identify emergent behaviors and conditions for them [23–25];
this provides insights into the landscape of system performance to help identify elements that

Processes 2020, 8, 980 3 of 19

exhibit emergent behavior where the system performance rapidly improves because it moves from
disorganized to organized behavior; (d) simulation cloning to analyze alternative scenarios concurrently
within a simulation execution session [26,27]; this would help optimize the execution time for multiple
evaluations without repeated computation [28].

A final crucial idea is that there is no such a thing as the best metaheuristic algorithm; rather, each
has advantages and disadvantages. In fact, [29,30] propose a multi-agent approach to take the best of
multiple algorithms. Each of them considers separated agents searching for their own goals, and also
competing and cooperating with others to reach a common goal. In general, an optimization algorithm
is evaluated regarding three major aspects [31]: (i) ease of implementation due to the number of
parameters to be adjusted (sometimes costly fine-tuned); (ii) computational complexity, which reflects
in the convergence speed; and (iii) reliability of the results, with consistent optimal values obtained
through a series of tests.

As an attempt to help to solve these problems, a novel, hybrid, swarm-physics-based algorithm
that uses the metaphor of cyclists’ behavior in a peloton, which we have named the Grand Tour
Algorithm (GTA), is proposed in this paper. The main features of the algorithm are: (i) the drag, defined
according to the distance to the leading cyclist (embodying the best solution), and (ii) the speed, defined
using the difference between two consecutive objective function evaluations. These two elements are
used to calculate the coefficients that determine the route of each cyclist. As a result, the peloton will
try to follow the cyclist who is closest to the finish line, i.e., the optimal solution, and also, the cyclist
who is going fastest at a given point. In Section 2, we describe the methodological aspects first. Then,
we set the test conditions. These include the fourteen benchmarking functions used, and the complete
setting of parameters for the four classical metaheuristic algorithms used for comparison: Particle
Swarm Optimization [7], Simulated Annealing [8], Genetic Algorithm [32] and Harmony Search [33].
In Section 3, comparisons are performed under a scenario of 1000 variables, which are used to evaluate
the performance of the algorithms under a generally accepted metric. In addition, the algorithms are
also applied to the same fourteen functions when their dimension is up to 20,000 variables. Finally,
various sensitivity analyses verify the relevance the algorithm parameters have in the optimization
convergence and stability of GTA. To finish, conclusions are presented that provide evidence that GTA
(i) is superior to other classical algorithms in terms of its speed and consistency when functions with
a huge (human genome-like) search space are considered, and (ii) exhibits excellent results regarding
ease of implementation, speed of convergence and reliability.

2. Materials and Methods

In this section, we present a few general ideas about iterative methods. Then, we concisely
describe the classical PSO, which has the basic foundations of any swarm-based algorithm. Finally,
we fully present GTA.

2.1. Iterative Optimization Processes: A General View

Typically, an iterative optimization algorithm can be mathematically described, as in Equation (1):

xt+1 = xt + αdt, (1)

where xt+1 is (the position of) a solution at time step t + 1, α is the step size, and dt is the direction of
the movement.

Since there is no general a priori clue about which direction to take to progress towards the optimal
solution, various mathematical properties are used to define the right track and the step size, better
leading to optimal points.

First-order derivative methods use the opposite direction of the gradient vector with a certain
step size to find minimal points. Despite the fact that first-order methods have fast convergence,

Processes 2020, 8, 980 4 of 19

sometimes, depending of the step size, an oscillatory process can start, and the optimal point is never
found. The well-known gradient method, a first-order method, is shown in Equation (2):

xt+1 = xt − α
∇ f (xt)

‖∇ f (xt)‖
. (2)

Here, ∇ f (xt) is the gradient vector calculated at xt.
To improve the convergence of first-order methods, second-order methods use the opposite

direction of the gradient vector, improved by the information of the Hessian matrix, which provides
second-order information. The Modified Newton method, for example, adopts a unitary step size;
the method is described by Equation (3).

xt+1 = xt −
[
∇

2 f (xt)
]−1

.∇ f (xt). (3)

Even though derivative methods are mathematically efficient, the calculations of the Jacobian
vector and the Hessian matrix are computationally demanding, or simply not possible in many cases.

To cope with this drawback, metaheuristic algorithms, many of which are based on natural
processes, are widely applied in real-world problems. Among them, swarm-based algorithms use
the same search process described by Equation (1). However, in contrast with derivative-based
algorithms, in metaheuristic algorithms, each solution is brought to a new position (solution) based
on a set of rules that replaces the derivative information with another kind of information, while
providing a conceptually similar approach.

2.2. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization algorithm [10] is one of the most popular swarm-optimization
techniques. Each particle represents a candidate solution and has its own position X and velocity
V. Initially, these values are randomly defined according to the boundaries of the problem. As time
(iterations) goes by, the particles move according to their velocity and reach a new position. The velocity
of a particle (see Equation (4)) is a linear combination of the following: the particle’s inertia, through
coefficient ω; its memory, through coefficient c1; and some social interaction with the group, through
coefficient c2. The best position found by the group, G, and the best position ever reached by the particle,
B, are used to update its velocity. In addition, random values, rand1 and rand2, uniformly distributed
between 0 and 1, are used to boost the exploitation abilities of the search space. Equations (4) and (5),
used to update the particle positions, describe the complete iteration process.

Vk+1
i = ω ·Vk

i + c1 · rand1 ·

(
Bk

i − xk
i

)
∆t

+ c2 · rand2 ·

(
Gk
− xk

i

)
∆t

(4)

Xk+1
i = Xk

i + Vk+1
i · ∆t (5)

2.3. Grand Tour Algorithm (GTA)

The principle of the Grand Tour Algorithm (GTA) is similar to that of most swarm-based algorithms:
each cyclist represents a possible solution, with position and velocity being updated with each iteration.

2.3.1. GTA Fundamentals

The difference hinges on how the velocity is updated. Instead of the social and cognitive aspects,
the power spent by cyclists is the main feature of this update. Equation (6) shows how the power, P, of
a cyclist can be calculated according to its speed, S.

P =

(
Fg + F f + Fd

)
S

1− l
(6)

Processes 2020, 8, 980 5 of 19

Three main forces are considered for this calculation: gravitational, Fg; friction, F f ; and drag, Fd.
In GTA, friction is disregarded, as it represents only a small fraction of the power; also, the losses,
l, mainly represented by the friction of the chain and other mechanical components of the bike,
are negligible.

The speed used in this equation has no relationship with the velocity used to update a cyclist’s
position. In cycling, two parameters describe how fast a cyclist is. In flat conditions, the usual concept
of speed can be used, describing the distance traveled over a period of time. However, in a hilly terrain,
the use of VAM (from the Italian “velocità ascensionale media”, i.e., average ascent speed) is useful,
and can better describe the cyclist’s performance. In our metaphor, the VAM represents how fast
the cyclist approaches a better result, while the velocity used to update its position indicates in which
direction and how far the cyclist goes. Thus, speed S is calculated through Equation (7), representing
the cyclist’s ascending or descending (vertical) speed, using two consecutive values of the cyclist’s
objective function (OF).

S =
OFk+1 −OFk

∆t
(7)

So, if the objective function is reduced, the cyclist is closer to the finish line, i.e., to the optimal
solution. A larger difference in the objective function between two successive iterations means that
the cyclist is fast approaching the finish line.

2.3.2. Calculation of Drag Force

The drag force can be calculated by Equation (8).

Fd = 0.5 ·Cd ·A · ρ · (S + W)2. (8)

Here, Cd is the drag coefficient, A is the frontal area of the cyclist, ρ is the air density, S the cyclist
vertical speed, and W the wind speed. Frontal area and air density may be considered the same for
every cyclist, both taken herein as 1 m2. The wind speed is considered to be null.

The drag coefficient, Cd, is the major component of this equation. As shown in an aerodynamic
model for a cycling peloton using the CFD simulation [34], in a cycling peloton, the front cyclists have
to pedal with much more power than those in the back due to drag. Thus, the cyclist who achieves
the best solution is the leader and, according to how far the others are behind, they benefit more or less
from the leader’s drag. In this sense, cyclists far from the leader find it easy (and are bound) to follow
him or her because their paths require less power, while the cyclists closest to the leader are freer
because the power difference in following the leader or not is less relevant. Using the physical results
obtained by [34], the drag coefficient may be estimated by creating a ranking of the cyclists according
to their OF values. The leader has no benefit from the peloton, and has a drag coefficient equal to one.
The rear cyclist benefits the most and has a drag coefficient of only 5% of that of the leader. The drag
coefficient of the remaining cyclists is obtained by means of a linear interpolation between the first and
the last cyclists (Equation (9)).

Cd = 1− 0.95
OF−OFbest

OFworst −OFbest
. (9)

In this expression, OF is the cyclist objective function value, OFbest is the leader objective function,
and OFworst is the value of the objective function of the last cyclist in the peloton.

2.3.3. Calculation of Gravitational Force

Gravitational force has a great impact on the speed of convergence of the algorithm. It is calculated
using Equation (10).

Fg = g · sin
(
tan−1(I)

)
·m (10)

Here, g is the acceleration of gravity, I is the slope, defined as the difference between the values for
the objective function in two successive iterations, and m is the cyclist’s mass.

Processes 2020, 8, 980 6 of 19

As previously described, the objective function represents the (vertical) distance to the finish line.
And, as the race is downhill, towards the minimum, the objective function is also the elevation of
the cyclist’s place on the terrain with respect to the minimum. Thus, when cyclists are going downhill
(negative slope), they need to apply less power, because gravity is aiding them. In contrast, a cyclist’s
weight causes an opposite force to movement. This procedure prevents cyclists from going uphill
(positive slope), towards the worst solution, as they would expend too much power in this case.

The value of the gravitational acceleration is constant, as the cyclists’ masses are randomly
defined at the beginning, in a range from 50 to 80 kg. This procedure allows lightweight cyclists,
known as climbers, to be least affected by going uphill, i.e., with a direction towards a worse solution.
This guarantees better search capabilities.

2.3.4. Velocity and Position Updating

The power component corresponding to each force is calculated separately and will be used to
update the cyclist velocity according to Equation (11), which is used, in turn, to define its new position,
as in Equation (5).

Vk+1
i = kg ·Vk

i + kd · rand1 ·

(
Xd −Xk

i

)
∆t

+ kg · rand2 ·

(
Xg −Xk

i

)
∆t

(11)

The elements of this formula are calculated as follows. First, the values of the power spent by
the cyclists, according to Equation (6), are ranked. Then, the two weight coefficients for drag and
gravitational power, kd and kg, shown in Equation (11), are calculated by normalizing Fd and Fg

between 0.5 and 1.0, where 1.0 represents the cyclist with the lowest power.
Regarding the drag component, kd, this procedure reduces the step taken by the leading cyclists

which are closer to an optimal solution, thus resulting in a more specific local search around
the leader’s position, Xd, while subsequent cyclists are rapidly pushed towards this point to benefit
from the leader’s drag.

With the gravitational component, kg, the purpose is to encourage the cyclists that are rapidly
converging upon a better solution, Xg, to keep going in this direction, while cyclists going uphill or
slowly improving are kept to explore with a more local search focus around their respective positions.

Finally, instead of an inertia coefficient, as used in PSO, the gravity coefficient kg is also used to
give a weight to a cyclist’s current direction. Random values are also used to avoid a biased search.

The flowchart in Figure 1 summarizes the GTA optimization process.

Processes 2020, 8, 980 7 of 19

Processes 2020, 8, x FOR PEER REVIEW 7 of 18

Figure 1. Flowchart of the Grand Tour Algorithm.

2.4. Test Conditions

The GTA algorithm is implemented in Matlab [35], and its source code is available at
https://www.mathworks.com/matlabcentral/fileexchange/78922-grand-tour-algorithm-gta.

Figure 1. Flowchart of the Grand Tour Algorithm.

2.4. Test Conditions

The GTA algorithm is implemented in Matlab [35], and its source code is available at https:
//www.mathworks.com/matlabcentral/fileexchange/78922-grand-tour-algorithm-gta.

Four classical metaheuristic algorithms are used for comparison: (i) Particle Swarm Optimization
(PSO) [7]; (ii) Simulated Annealing (SA) [8]; (iii) Genetic Algorithm (GA) [32]; and (iv) Harmony Search
(HS) [33]. The characteristic parameters of each algorithm, and their general settings used in this study,
are presented in Table 1. We chose these algorithms because each belongs to one of the categories
in which metaheuristic algorithms are classified [1], because they are, perhaps, the most used algorithms
within their categories, and because the authors have used them for several engineering applications
in Urban Hydraulics with good results, and have their codes ready.

Processes 2020, 8, 980 8 of 19

Table 1. Optimization algorithms’ settings.

Algorithm Settings

GTA Drag and Gravitational Coefficients = range from 0.5 to 1.0

PSO Cognitive and Social Coefficients = 1.49
Inertia coefficient = varying from 0.1 to 1.1, linearly,

SA Initial Temperature = 100 ◦C
Reanneling Interval = 100

GA
Crossover Fraction = 0.8

Elite Count = 0.05
Mutation rate = 0.01

HS Harmony Memory Considering Rate = 0.8
Pitching Adjust Rate = 0.1

General

Maximum iterations = 500
Population Size = 100

Tolerance = 10−12

Maximum Stall Iteration = 20

To evaluate the performance of the five algorithms, each was applied 100 times to fourteen
well-known benchmark functions from the literature [36,37] and collections of online of test functions,
such as the library GAMS World [38], CUTE [39], and GO Test Problems [40]. In addition, [41] provides
an exhaustive list of up to 175 functions. We chose the 14 benchmark fitness functions as a random
sample among those used by the optimization community, while having formulas involving an arbitrary
number of variables, since we were targeting very high-dimensional problems.

Table 2 shows the name and the equation of each function, the domain considered for the variables,
and the minimum value they attained. Let us note here that dimension n was firstly set to 1000
variables, and then to 20,000, a value inspired by human DNA, which may be represented by 20,000
genes [42,43].

Table 2. Benchmarking Functions.

Function Equation Search Space [xmin,xmax]n Global Minimum

Sphere f (x) =
n∑

i=1
x2

i
[−100, 100]n 0

Rosenbrock f (x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
[−30, 30]n 0

Rastrigin f (x) =
n∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]n 0

Griewank f (x) = 1
4000

n∑
i=1

[
x2

i −
n∏

i=1
cos

(
xi√

i
+ 1

)]
[−600, 600]n 0

Alpine f (x) =
n∑

i=1
[xi sin(xi) + 0.1xi] [−10, 10]n 0

Brown f (x) =
n−1∑
i=1

[(
x2

i

)x2
i+1+1

+
(
x2

i+1

)x2
i +1

]
[−1, 1]n 0

Chung Reynolds f (x) =
(

n∑
i=1

[
x2

i

])2
[−100, 100]n 0

Dixon Price f (x) = (x1 − 1)2 +
n∑

i=2

[
i
(
2x2

i − xi−1
)2

]
[−10, 10]n 0

Exponential f (x) = −exp
(
−0.5

n∑
i=1

[
x2

i

])
+ 1 [−1, 1]n 0

Processes 2020, 8, 980 9 of 19

Table 2. Cont.

Function Equation Search Space [xmin,xmax]n Global Minimum

Salomon f (x) = 1− cos

2π

√
n∑

i=1

[
x2

i

]+ 0.1

√
n∑

i=1

[
x2

i

] [−100, 100]n 0

Schumer Steiglitz f (x) =
n∑

i=1

[
x4

i

]
[−100, 100]n 0

Sum of Powers f (x) =
n∑

i=1

[
|xi|

i+1
]

[−1, 1]n 0

Sum of Squares f (x) =
n∑

i=1

[
ix2

i

]
[−1, 1]n 0

Zakharov f (x) =
n∑

i=1

[
x2

i

]
+

(
n∑

i=1
[0.5ixi]

)2

+

(
n∑

i=1
[0.5ixi]

)4
[−10, 10]n 0

Finally, the computer used to run these optimizations had the following characteristics: Acer
Aspire A515, Jundiaí/SP – Brazil, Intel Core i5-8265U (8th generation), 1.8 GHz, 8 GB Ram.

3. Results

3.1. Performance

Table 3 summarizes the results of 100 runs for all five algorithms, considering a dimension of 1000
variables. The following parameters are presented: (i) best value found; (ii) mean value; (iii) standard
deviation; (iv) success rate, defined as an error less than 10−8 [34]; (v) mean of objective function (OF)
evaluations; and (vi) score. Figure 2a,b graphically presents values (ii) and (v), respectively. This score
is a parameter considered for the CEC 2017 competition in [44] to compare different optimization
algorithms, and is expressed by Equations (12) and (13).

SE =
100∑
i=1

OFi −OFbest (12)

Score =
(
1−

SE− SEmin
SE

)
(13)

Here, OF is the optimized value of the run i, OFbest is the global minimum, and SEmin is the minimum
value among the five algorithms for SE.

Processes 2020, 8, 980 10 of 19

Table 3. Results of 100 runs with 1000 variables.

Function Sphere Rosenbrock Rastrigin Griewank Alpine Brown Chung
Reynolds

Dixon
Price Exponential Salomon Schumer

Steiglitz
Sum of
Powers

Sum of
squares Zakharov

Best

GTA 4.4 × 10–18 9.9 × 102 0.0 × 100 0.0 × 100 1.6 × 10–15 8.9 × 10–18 5.0 × 10–23 1.0 × 100 0.0E × 100 6.7 × 10–10 1.4 × 10–23 1.3 × 10–22 2.4 × 10–18 1.3 × 10–17

PSO 6.4 × 105 1.3 × 109 8.4 × 103 5.8 × 103 9.0 × 102 1.1 × 102 3.9 × 1011 2.5 × 108 1.0 × 100 2.5 × 10–12 1.5 × 109 1.1 × 100 2.6 × 104 2.4 × 104

SA 2.9 × 106 1.1 × 1010 1.5 × 104 2.7 × 104 2.4 × 103 2.1 × 102 8.7 × 1012 2.2 × 109 1.0 × 100 1.0 × 10–10 1.6 × 1010 6.4 × 10–2 4.5 × 104 3.1 × 104

GA 8.2 × 102 2.6 × 105 8.3 × 103 1.1 × 100 5.2 × 102 2.9 × 102 6.8 × 105 3.8 × 106 1.0 × 100 0.0 × 100 2.0 × 103 5.3 × 10–3 7.7 × 104 1.0 × 103

HS 2.1 × 106 7.9 × 109 1.4 × 104 1.8 × 104 2.0 × 103 3.6 × 102 4.2 × 1012 1.8 × 109 1.0 × 100 1.4 × 10–13 1.0 × 1010 2.4 × 10–3 9.5 × 104 3.0 × 104

Mean OF

GTA 2.3 × 10–15 1.0 × 103 0.0 × 100 1.6 × 10–15 6.9 × 10–14 3.3 × 10–15 8.1 × 10–18 1.0 × 100 0.0 × 100 1.3 × 10–6 1.3 × 10–17 1.5 × 10–16 3.4 × 10–15 1.7 × 10–15

PSO 7.5 × 105 1.7 × 109 9.1 × 103 6.9 × 103 1.0 × 103 1.4 × 102 5.9 × 1011 3.6 × 108 1.0 × 100 6.4 × 10–7 2.1 × 109 2.4 × 100 3.3 × 104 1.9 × 105

SA 3.2 × 106 1.3 × 1010 1.6 × 104 3.0 × 104 2.6 × 103 2.6 × 102 1.0 × 1013 2.6 × 109 1.0 × 100 4.5 × 10–7 1.8 × 1010 6.5 × 10–1 5.7 × 104 3.4 × 104

GA 9.2 × 102 3.1 × 105 8.9 × 103 1.2 × 100 5.6 × 102 3.2 × 102 8.5 × 105 5.0 × 106 1.0 × 100 7.7 × 10–13 2.5 × 103 4.0 × 10–2 8.8 × 104 3.5 × 104

HS 2.2 × 106 8.6 × 109 1.4 × 104 1.9 × 104 2.1 × 103 3.7 × 102 4.7 × 1012 2.0 × 109 1.0 × 100 1.9 × 10–7 1.1 × 1010 1.2 × 10–2 1.0 × 105 1.1 × 105

Standard deviation

GTA 5.3 × 10–15 9.1 × 10–1 0.0 × 100 3.4 × 10–15 9.3 × 10–14 1.3 × 10–14 2.9 × 10–17 4.3 × 10–6 0.0 × 100 3.2 × 10–6 6.5 × 10–17 5.3 × 10–16 8.7 × 10–15 4.4 × 10–15

PSO 5.1 × 104 1.9 × 108 3.2 × 102 5.1 × 102 4.5 × 101 9.7 × 100 9.4 × 1010 4.7 × 107 3.0 × 10–38 1.7 × 10–6 2.8 × 108 4.6 × 10–1 2.7 × 103 1.2 × 106

SA 8.9 × 104 5.4 × 108 4.4 × 102 8.1 × 102 8.6 × 101 2.3 × 101 5.8 × 1011 1.5 × 108 1.4 × 10–36 2.6 × 10–6 7.7 × 108 3.9 × 10–1 5.2 × 103 1.3 × 103

GA 4.4 × 101 2.6 × 104 2.6 × 102 3.8 × 10–2 1.7 × 101 1.2 × 101 7.4 × 104 5.7 × 105 2.1 × 10–39 5.3 × 10–12 2.9 × 102 3.7 × 10–2 4.5 × 103 3.3 × 104

HS 3.7 × 104 2.4 × 108 1.6 × 102 4.1 × 102 3.2 × 101 7.2 × 100 1.9 × 1011 6.2 × 107 3.0 × 10–49 6.8 × 10–7 2.7 × 108 6.2 × 10–3 2.5 × 103 3.8 × 105

Success rate

GTA 100 0 100 100 100 100 100 0 100 12 100 100 100 100
PSO 0 0 0 0 0 0 0 0 0 18 0 0 0 0
SA 0 0 0 0 0 0 0 0 0 20 0 0 0 0
GA 0 0 0 0 0 0 0 0 0 100 0 0 0 0
HS 0 0 0 0 0 0 0 0 0 31 0 0 0 0

OF evaluations

GTA 13,401 11,605 10,920 12,686 19,352 11,234 9983 14,314 10,764 1701 9273 6757 12,573 11,933
PSO 50,100 50,100 50,100 50,100 50,100 50,100 50,100 50,100 2200 3874 50,100 14,016 50,100 8064
SA 5562 5132 4272 8002 5142 5632 5532 5002 8342 7622 5352 6972 4002 3032
GA 50,100 50,100 50,100 50,100 50,100 50,100 50,100 50,100 50,100 50,100 50,100 50,100 50,100 48,817
HS 19,956 18,340 20,824 20,365 19,457 19,251 20,315 17,935 5010 8965 19,430 19,385 18,770 8976

Score

GTA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000
PSO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GA 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
HS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Processes 2020, 8, 980 11 of 19Processes 2020, 8, x FOR PEER REVIEW 11 of 18

(a)

(b)

Figure 2. Results of 100 runs with 1,000 variables: (a) OF value average; (b) OF evaluations average.Figure 2. Results of 100 runs with 1000 variables: (a) OF value average; (b) OF evaluations average.

The GTA was the only algorithm to reach the minimum value in eleven of the fourteen
benchmarking functions. In addition, in all of the 100 runs, the optimization was a success, yielding
an error lower than 10−8. For the Rosenbrock and Dixon Price functions, none of the algorithms
achieved the global minimum. However, the GTA was the closest, with a low standard deviation,
which indicates the determination of a local minimum. These two functions are well-known examples
of very challenging benchmark optimization functions, which have presented many difficulties for
all metaheuristics; see, for example [45–47], which use different algorithms and report the same

Processes 2020, 8, 980 12 of 19

difficulty in reaching the global minimum for these functions despite using less than 100 variables.
Finally, for the Salomon function, the GTA presents the worst success rate, while GA presents the best
one. However, the mean value reached is very close to the global minimum, and the use of more
cyclists, or an increase in the maximum number of iterations, could solve this problem. For the other
algorithms, only for the function Sum of Powers, this change of settings could lead to a better success
rate, since for the other functions, the value found is too far from the global minimum. The reliability of
the GTA is also confirmed by its score, which is not the best only for the Salomon function. To evaluate
the convergence speed, Figure 3 shows the OF evolution for each of the benchmarking functions using
GTA. It can be seen that a minimum is rapidly achieved, with a finetuning in the following iterations.
Comparing the values of the number of OF evaluations in Table 3 for the Salomon and Sum of Powers
functions, where the results of all five algorithms are close, the GTA was the one with the lowest
number of evaluations, thus requiring less computational effort.

Processes 2020, 8, x FOR PEER REVIEW 12 of 18

The GTA was the only algorithm to reach the minimum value in eleven of the fourteen
benchmarking functions. In addition, in all of the 100 runs, the optimization was a success, yielding
an error lower than 10−8. For the Rosenbrock and Dixon Price functions, none of the algorithms
achieved the global minimum. However, the GTA was the closest, with a low standard deviation,
which indicates the determination of a local minimum. These two functions are well-known examples
of very challenging benchmark optimization functions, which have presented many difficulties for
all metaheuristics; see, for example [45–47], which use different algorithms and report the same
difficulty in reaching the global minimum for these functions despite using less than 100 variables.
Finally, for the Salomon function, the GTA presents the worst success rate, while GA presents the
best one. However, the mean value reached is very close to the global minimum, and the use of more
cyclists, or an increase in the maximum number of iterations, could solve this problem. For the other
algorithms, only for the function Sum of Powers, this change of settings could lead to a better success
rate, since for the other functions, the value found is too far from the global minimum. The reliability
of the GTA is also confirmed by its score, which is not the best only for the Salomon function. To
evaluate the convergence speed, Figure 3 shows the 𝑂𝐹 evolution for each of the benchmarking
functions using GTA. It can be seen that a minimum is rapidly achieved, with a finetuning in the
following iterations. Comparing the values of the number of 𝑂𝐹 evaluations in Table 3 for the
Salomon and Sum of Powers functions, where the results of all five algorithms are close, the GTA
was the one with the lowest number of evaluations, thus requiring less computational effort.

Figure 3. GTA Objective function evolution for the fourteen benchmark functions.

To finalize the comparison with the classical metaheuristic algorithms, a statistical analysis is
performed to evaluate the quality of the solutions, using the Wilcoxon signed-rank test [48] with a
0.05 significance value. Table 4 shows the results of the comparison of GTA with the algorithms. In
more than 90% of the solutions, GTA outperformed or equaled the algorithms. The 𝑝 values found
for all the comparisons were null. Thus, the performance difference between GTA and those
algorithms is significant.

Table 4. Comparison of results between GTA and classical algorithms.

Comparison GTA vs PSO GTA vs SA GTA vs AG GTA vs HS

Figure 3. GTA Objective function evolution for the fourteen benchmark functions.

To finalize the comparison with the classical metaheuristic algorithms, a statistical analysis is
performed to evaluate the quality of the solutions, using the Wilcoxon signed-rank test [48] with a 0.05
significance value. Table 4 shows the results of the comparison of GTA with the algorithms. In more
than 90% of the solutions, GTA outperformed or equaled the algorithms. The p values found for all
the comparisons were null. Thus, the performance difference between GTA and those algorithms
is significant.

Table 4. Comparison of results between GTA and classical algorithms.

Comparison GTA vs PSO GTA vs SA GTA vs AG GTA vs HS

GTA [%] 95.65 94.96 92.86 94.54

Algorithm [%] 4.12 4.74 6.29 5.06

Equal [%] 0.24 0.31 0.86 0.39

p-value 0 0 0 0

Processes 2020, 8, 980 13 of 19

For a final test, GTA was applied once more to the fourteen benchmarking functions, but this time,
the dimension was increased to 20,000 variables. As can be seen in Table 5, the results remain similar
to those obtained with 1000 variables. The success rates are lower for the Exponential and Sum of
Powers functions, but both are still close to the global minimum. The Rosenbrock and Dixon-Price
functions again achieve a local minimum, and the Salomon function again yields a low success rate.
An additional test for these five functions using 500 cyclists was made to try to reach the global
minimum. This procedure was effective for the Exponential, Sum of Powers, and Salomon functions,
reaching a 100% success rate, albeit with a significant increase in the number of OF evaluations
(+100–500%). Nevertheless, the GTA was still robust and fast for this highly dimensional analysis.
Figure 4 shows the results for GTA and the other metaheuristics for the 20,000-variable problems. It can
be observed that SA significantly increased the number of OF evaluations, while all of them reached
a higher average OF value in all cases, except for the Salomon function. Let us note that the GA could
not be tested in this scenario due to a lack of memory on the computer used.

Table 5. Results of 100 runs with 20,000 variables using GTA.

Function Best Mean OF Standard Deviation Sucess Rate OF Evaluations

Sphere 2.14 × 10–18 1.88 × 10–15 3.73 × 10–15 100 14,328

Rosenbrock 1.99 × 104 2.00 × 104 2.53 × 101 0 11,195

Rastrigin 0.00 × 100 0.00 × 100 0.00 × 100 100 10,488

Griewank 0.00 × 100 1.34 × 10–15 2.51 × 10–15 100 13,080

Alpine 2.44 × 10–15 7.19 × 10–14 7.22 × 10–14 100 20,593

Brown 1.84 × 10–18 2.29 × 10–15 5.34 × 10–15 100 12,007

Chung Reynolds 1.69 × 10–24 2.52 × 10–17 1.32 × 10–16 100 10,947

Dixon Price 1.00 × 100 1.00 × 100 1.20 × 10–8 0 16,782

Exponential 0.00 × 100 7.40 × 10–1 4.41 × 10–1 26 4132

Salomon 2.96 × 10–10 7.95 × 10–7 1.76 × 10–6 12 1518

Schumer Steiglitz 1.20 × 10–22 1.00 × 10–17 3.86 × 10–17 100 9657

Sum of Powers 3.09 × 10–21 1.16 × 10–3 1.02 × 10–2 97 8052

Sum of Squares 1.83 × 10–18 2.46 × 10–15 6.20 × 10–15 100 14,238

Zakharov 5.92 × 10–19 2.11 × 10–15 4.47 × 10–15 100 13,075

Processes 2020, 8, 980 14 of 19
Processes 2020, 8, x FOR PEER REVIEW 14 of 18

(a)

(b)

Figure 4. Results of 100 runs with 20,000 variables: (a) OF value average; (b) OF evaluations
average.

3.2. Sensitivity Analysis

Here, we report three tests, always using 20,000 variables as the functions dimension. The first
test is performed to evaluate the relevance of the number of cyclists and the maximum number of
iterations in the optimization process. Figure 5a shows that the increase in the numbers of cyclists
and maximum number of iterations has no significant influence on the reduction of the objective
function. Only a combination of low numbers of cyclists and iterations yielded poor results. As
expected, Figure 5b shows an increase of the number of objective function evaluations when both
parameters are increased. Therefore, the algorithm yields the best results after extensive searching,

Figure 4. Results of 100 runs with 20,000 variables: (a) OF value average; (b) OF evaluations average.

3.2. Sensitivity Analysis

Here, we report three tests, always using 20,000 variables as the functions dimension. The first test
is performed to evaluate the relevance of the number of cyclists and the maximum number of iterations
in the optimization process. Figure 5a shows that the increase in the numbers of cyclists and maximum
number of iterations has no significant influence on the reduction of the objective function. Only
a combination of low numbers of cyclists and iterations yielded poor results. As expected, Figure 5b
shows an increase of the number of objective function evaluations when both parameters are increased.

Processes 2020, 8, 980 15 of 19

Therefore, the algorithm yields the best results after extensive searching, but, as observed in Figure 3,
with no significant changes. These results agree with those obtained previously, showing that GTA
has a fast convergence to a feasible and high-quality solution.

Processes 2020, 8, x FOR PEER REVIEW 15 of 18

but, as observed in Figure 3, with no significant changes. These results agree with those obtained
previously, showing that GTA has a fast convergence to a feasible and high-quality solution.

(a)

(b)

Figure 5. Sensitivity analysis for the number of cyclists and the maximum number of iterations: (a)
Objective function variation; (b) Number of objective function evaluations.

The second sensitivity analysis focused on variations of cyclists’ masses. For this purpose, the
minimum and maximum values considered were changed to a range from 25 to 125 kg. The results
showed no significant difference. Only when all the cyclists had the same weight, regardless of the
value, the optimization became slower and yielded worse results. This lack of randomness hampers
the exploration of points near the boundaries, since there are no lightweight cyclists, who are less
affected by the gravitational force, to venture closer to the boundaries because of the penalties.

Finally, the score used to calculate the 𝑘 and 𝑘 coefficients of the ranked cyclists according
to the power spent in each iteration was evaluated. The best cyclist, or the one who expends the least
energy, receives the highest score, while the worst receives the minimum. Figure 6 shows that only

Figure 5. Sensitivity analysis for the number of cyclists and the maximum number of iterations:
(a) Objective function variation; (b) Number of objective function evaluations.

The second sensitivity analysis focused on variations of cyclists’ masses. For this purpose,
the minimum and maximum values considered were changed to a range from 25 to 125 kg. The results
showed no significant difference. Only when all the cyclists had the same weight, regardless of
the value, the optimization became slower and yielded worse results. This lack of randomness hampers

Processes 2020, 8, 980 16 of 19

the exploration of points near the boundaries, since there are no lightweight cyclists, who are less
affected by the gravitational force, to venture closer to the boundaries because of the penalties.

Finally, the score used to calculate the kg and kd coefficients of the ranked cyclists according to
the power spent in each iteration was evaluated. The best cyclist, or the one who expends the least
energy, receives the highest score, while the worst receives the minimum. Figure 6 shows that only with
a combination of high values, the results of the objective function got worse. In terms of the number
of evaluations of the objective function, no significant difference was observed. In all the analyses
made, the GTA presented consistent results despite changes in its parameters. This robustness is very
interesting for the user, since there is no need for heavy fine-tuning to adjust the default parameters to
obtain the best optimization.

Processes 2020, 8, x FOR PEER REVIEW 16 of 18

with a combination of high values, the results of the objective function got worse. In terms of the
number of evaluations of the objective function, no significant difference was observed. In all the
analyses made, the GTA presented consistent results despite changes in its parameters. This
robustness is very interesting for the user, since there is no need for heavy fine-tuning to adjust the
default parameters to obtain the best optimization.

Figure 6. Sensitivity analysis for the score of parameters 𝒌𝒈 and 𝒌𝒅

4. Conclusions

As a swarm-based algorithm, GTA exhibits good results in terms of consistency and speed to
find the optimal solution for the benchmarking problems considered. GTA performance is clearly
superior to that of the classical algorithms used in this paper for comparison, in terms of speed and
consistency when functions with a huge (human genome-like) search space (up to 20,000 decision
variables) were tested. The great advantage of GTA is its ability to direct the cyclists to search for the
fastest path to improve the objective function. At the same time, points with worst objective function
values are explored locally, since they may be just a barrier for big improvements. The search for the
fastest path has a similar goal as the first derivative, hence its fast convergence, despite the number
of cyclists and iterations used. Finally, a sensitivity analysis shows the robustness of GTA, since a
change in the main parameters has little impact on the final result. This feature results in a user-
friendly algorithm, as there is no need to adjust the default parameters to achieve a good
optimization. Therefore, the three most desirable aspects for an optimization algorithm, i.e., ease of
implementation, speed of convergence, and reliability, had good results, confirming the expected
improvements of GTA. Having presented the GTA, our target is now to develop it further in several
directions so that it may also become efficient with real-world problems; this development will
include constrained optimization, multi-objective optimization, and the development of mechanisms
for GTA to dynamically accommodate to changing fitness functions.

Author Contributions: Conceptualization, G.M. and B.B.; methodology, G.M., B.B. and J.I.; software, G.M.;
investigation, G.M., B.B., J.I. and E.L.J.; writing, G.M., B.B.; review and editing, G.M., B.B., J.I. and E.L.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest

Figure 6. Sensitivity analysis for the score of parameters kg and kd.

4. Conclusions

As a swarm-based algorithm, GTA exhibits good results in terms of consistency and speed to find
the optimal solution for the benchmarking problems considered. GTA performance is clearly superior
to that of the classical algorithms used in this paper for comparison, in terms of speed and consistency
when functions with a huge (human genome-like) search space (up to 20,000 decision variables) were
tested. The great advantage of GTA is its ability to direct the cyclists to search for the fastest path
to improve the objective function. At the same time, points with worst objective function values are
explored locally, since they may be just a barrier for big improvements. The search for the fastest path
has a similar goal as the first derivative, hence its fast convergence, despite the number of cyclists and
iterations used. Finally, a sensitivity analysis shows the robustness of GTA, since a change in the main
parameters has little impact on the final result. This feature results in a user-friendly algorithm, as there
is no need to adjust the default parameters to achieve a good optimization. Therefore, the three most
desirable aspects for an optimization algorithm, i.e., ease of implementation, speed of convergence,
and reliability, had good results, confirming the expected improvements of GTA. Having presented
the GTA, our target is now to develop it further in several directions so that it may also become efficient
with real-world problems; this development will include constrained optimization, multi-objective
optimization, and the development of mechanisms for GTA to dynamically accommodate to changing
fitness functions.

Processes 2020, 8, 980 17 of 19

Author Contributions: Conceptualization, G.M. and B.B.; methodology, G.M., B.B. and J.I.; software, G.M.;
investigation, G.M., B.B., J.I. and E.L.J.; writing, G.M., B.B.; review and editing, G.M., B.B., J.I. and E.L.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest

References

1. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving
optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cyb. 2019, 11, 1501–1529.

2. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Soft. 2016, 95, 51–67. [CrossRef]
3. Chatterjee, A.; Siarry, P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm

optimization. Comput. Oper. Res. 2006, 33, 859–871. [CrossRef]
4. Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278. [CrossRef]
5. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial

bee colony (ABC) algorithm. J. Global Optim. 2007, 39, 459–471. [CrossRef]
6. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve

structural optimization problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]
7. Kennedy, J.; Eberhart, R. Particle swarm optimization (PSO). In Proceedings of the IEEE Intern Conf Neural

Net, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
8. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680.

[CrossRef]
9. Gonzalez-Fernandez, Y.; Chen, S. Leaders and followers—A new metaheuristic to avoid the bias of

accumulated information. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC),
Sendai, Japan, 25–28 May 2015; pp. 776–783.

10. Parsopoulos, K.E.; Vrahatis, M.N. Particle swarm optimization method for constrained optimization problems.
Intell. Tech. Theory Appl. New Trends Intell. Tech. 2002, 76, 214–220.

11. Wu, Z.Y.; Simpson, A.R. A self-adaptive boundary search genetic algorithm and its application to water
distribution systems. J. Hydr. Res. 2002, 40, 191–203. [CrossRef]

12. Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection.
Inf. Process Lett. 2003, 85, 317–325. [CrossRef]

13. Brentan, B.; Meirelles, G.; Luvizotto, E., Jr.; Izquierdo, J. Joint operation of pressure-reducing valves and
pumps for improving the efficiency of water distribution systems. J. Water Res. Plan. Manag. 2018, 144,
04018055. [CrossRef]

14. Freire, R.Z.; Oliveira, G.H.; Mendes, N. Predictive controllers for thermal comfort optimization and energy
savings. Ener. Build. 2008, 40, 1353–1365. [CrossRef]

15. Banga, J.R.; Seider, W.D. Global optimization of chemical processes using stochastic algorithms. In State of
the Art in Global Optimization; Springer: Boston, MA, USA, 1996; pp. 563–583.

16. Waziruddin, S.; Brogan, D.C.; Reynolds, P.F. The process for coercing simulations. In Proceedings of the 2003
Fall Simulation Interoperability Workshop, Orlando, FL, USA, 14–19 September 2003.

17. Carnaham, J.C.; Reynolds, P.F.; Brogan, D.C. Visualizing coercible simulations. In Proceedings of the 2004
Winter Simulation Conference, Washington, DC, USA, 5–8 December 2004; Volume 1.

18. Bollinger, A.; Evins, R. Facilitating model reuse and integration in an urban energy simulation platform.
Proc. Comput. Sci. 2015, 51, 2127–2136. [CrossRef]

19. Yang, Y.; Chui, T.F.M. Developing a Flexible Simulation-Optimization Framework to Facilitate Sustainable
Urban Drainage Systems Designs through Software Reuse. In Proceedings of the International Conference
on Software and Systems Reuse, Cincinnati, OH, USA, 26–28 June 2019. [CrossRef]

20. Yazdani, C.; Nasiri, B.; Azizi, R.; Sepas-Moghaddam, A.; Meybodi, M.R. Optimization in Dynamic Environments
Utilizing a Novel Method Based on Particle Swarm Optimization. Int. J. Artif. Intel. 2013, 11, A13.

21. Wang, Z.-J.; Zhan, Z.-H.; Du, K.-J.; Yu, Z.-W.; Zhang, J. Orthogonal learning particle swarm optimization with
variable relocation for dynamic optimization. In Proceedings of the 2016 IEEE Congress on Evolutionary
Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016. [CrossRef]

Processes 2020, 8, 980 18 of 19

22. Mavrovouniotis, M.; Lib, C.; Yang, S. A survey of swarm intelligence for dynamic optimization: Algorithms
and applications. Swarm Evol. Comput. 2017, 33, 1–17. [CrossRef]

23. Gore, R.; Reynolds, P.F.; Tang, L.; Brogan, D.C. Explanation exploration: Exploring emergent behavior.
In Proceedings of the 21st International Workshop on Principles of Advanced and Distributed Simulation
(PADS’07), San Diego, CA, USA, 12–15 June 2007; IEEE: Washington, DC, USA, June 2007. [CrossRef]

24. Gore, R.; Reynolds, P.F. Applying causal inference to understand emergent behavior. In Proceedings of
the 2008 Winter Simulation Conference, Miami, FL, USA, 7–10 December 2008; IEEE: Washington, DC, USA,
December 2008. [CrossRef]

25. Kim, V. A Design Space Exploration Method for Identifying Emergent Behavior in Complex Systems. Ph.D.
Thesis, Georgia Institute of Technology, Atlanta, GA, USA, December 2016.

26. Hybinette, M.; Fujimoto, R.M. Cloning parallel simulations. ACM Trans. Model. Comput. Simul. (TOMACS)
2001, 11, 378–407. [CrossRef]

27. Hybinette, M.; Fujimoto, R. Cloning: A novel method for interactive parallel simulation. In Proceedings
of the WSC97: 29th Winter Simulation Conference, Atlanta, GA, USA, 7–10 December 1997; pp. 444–451.
[CrossRef]

28. Chen, D.; Turner, S.J.; Cai, W.; Gan, B.P. Low MYH Incremental HLA-Based Distributed Simulation Cloning.
In Proceedings of the 2004 Winter Simulation Conference, Washington, DC, USA, 5–8 December 2004; IEEE:
Washington, DC, USA, December 2004. [CrossRef]

29. Li, Z.; Wang, W.; Yan, Y.; Li, Z. PS–ABC: A hybrid algorithm based on particle swarm and artificial bee colony
for high-dimensional optimization problems. Exp. Syst. Appl. 2015, 42, 8881–8895. [CrossRef]

30. Montalvo, I.; Izquierdo, J.; Pérez-García, R.; Herrera, M. Water distribution system computer-aided design
by agent swarm optimization. Comput. Aided Civil Infrastr. Eng. 2014, 29, 433–448. [CrossRef]

31. Maringer, D.G. Portfolio Management with Heuristic Optimization; Springer Science & Business Media: Boston,
MA, USA, 2006. [CrossRef]

32. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992.

33. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation
2001, 76, 60–68. [CrossRef]

34. Blocken, B.; van Druenen, T.; Toparlar, Y.; Malizia, F.; Mannion, P.; Andrianne, T.; Marchal, T.; Maas, G.J.;
Diepens, J. Aerodynamic drag in cycling pelotons: New insights by CFD simulation and wind tunnel testing.
J. Wind Eng. Ind. Aerod. 2018, 179, 319–337. [CrossRef]

35. MATLAB 2018; The MathWorks, Inc.: Natick, MA, USA, 2018.
36. Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional

complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]
37. Eberhart, R.C.; Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization.

In Proceedings of the 2000 Congress on Evolutionary Computation—CEC00 (Cat. No.00TH8512), La Jolla,
CA, USA, 16–19 July 2000; Volume 1, pp. 84–88.

38. GAMS World, GLOBAL Library. Available online: http://www.gamsworld.org/global/globallib.html
(accessed on 29 April 2020).

39. Gould, N.I.M.; Orban, D.; Toint, P.L. CUTEr, A Constrained and Un-Constrained Testing Environment,
Revisited. Available online: http://cuter.rl.ac.uk/cuter-www/problems.html (accessed on 29 April 2020).

40. GO Test Problems. Available online: http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_
files/TestGO.htm (accessed on 29 April 2020).

41. Jamil, M.; Yang, X.S. A literature survey of benchmark functions for global optimisation problems. Int. J.
Math. Model. Num. Optim. 2013, 4, 150–194. [CrossRef]

42. Sharma, G. The Human Genome Project and its promise. J. Indian College Cardiol. 2012, 2, 1–3. [CrossRef]
43. Li, W. On parameters of the human genome. J. Theor. Biol. 2011, 288, 92–104. [CrossRef]
44. Awad, N.H.; Ali, M.Z.; Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for

the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical
Optimization; Technical Report; Nanyang Technological University: Singapore, November 2016.

45. Hughes, M.; Goerigk, M.; Wright, M. A largest empty hypersphere metaheuristic for robust optimisation
with implementation uncertainty. Comput. Oper. Res. 2019, 103, 64–80. [CrossRef]

Processes 2020, 8, 980 19 of 19

46. Zaeimi, M.; Ghoddosian, A. Color harmony algorithm: An art-inspired metaheuristic for mathematical
function optimization. Soft Comput. 2020, 24, 12027–12066. [CrossRef]

47. Singh, G.P.; Singh, A. Comparative Study of Krill Herd, Firefly and Cuckoo Search Algorithms for Unimodal
and Multimodal Optimization. J. Intel. Syst. App. 2014, 2, 26–37. [CrossRef]

48. Taheri, S.M.; Hesamian, G. A generalization of the Wilcoxon signed-rank test and its applications. Stat. Papers
2013, 54, 457–470. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

