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Abstract: In this study, the effect of fracturing fluid on the permeability of tight oil reservoirs is
analyzed through oil absorption. The mechanism of permeation and absorption in tight oil reservoirs
was studied using the molecular dynamics simulation of fluid flow through fractures in porous
media containing crude oil. The influence of surfactants on the adsorption characteristics of crude oil
formations on rock walls was also examined. The research results show that the introduction of the
appropriate surfactant to the fracturing fluid could accelerate the rate of percolation and recovery as
well as improve the recovery rate of absorption. The optimal concentration of polyoxyethylene octyl
phenol ether-10 (OP-10) surfactant in the fracturing fluid was 0.9%. When the percolation reached
a certain stage, the capillary forces in the crude oil and percolation medium in the pore stabilized;
accordingly, the crude oil from the pore roar should be discharged at the earliest. The fluid flow
through the fracture effectively carries the oil seeping out near the fractured wall to avoid the stability
of the seepage and absorption systems. The surfactant can change the rock absorbability for crude
oil, the result of which is that the percolating liquid can adsorb on the rock wall, thus improving
the discharge of crude oil. The results of this study are anticipated to significantly contribute to the
advancement of oil and gas recovery from tight oil reservoirs.

Keywords: imbibition; tight oil; enhanced oil recovery; adsorption; surfactant

1. Introduction

For tight reservoirs, fracturing is one of the most effective stimulation methods to improve
oil recovery and increase oil and gas production. Combined with mass volume fracturing and
permeability absorption, the production of tight oil can be greatly increased. The process of infiltration
and absorption is the exchange of oil, water and gas between the formation matrix and the fractures.
In a hydrophilic reservoir, water will enter the matrix blocks through the smaller holes, the suction
water will displace the crude oil from the matrix blocks through the larger holes in the low-permeability
matrix blocks, and the displacement of the oil in the fractures will be compensated for by the injected
water. Due to capillary absorption, water can displace more crude oil from the matrix block into the
fracture system.

In 2004, Algharbi [1] proposed a dynamic capillary self-imbibition model. However, the capillary
structure in porous media is complex, so it could not be used in the calculation of permeability
and absorption. As the wettability of rock in the process of infiltration and absorption has a great
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influence on the effect of infiltration and absorption, Mason et al. [2,3] improved the theoretical model
of self-absorption based on rock wettability and pore characteristics. Smirnov et al. [4–7] studied the
self-imbibition mechanism under different wettability conditions and confirmed that crude oil viscosity
has a greater influence on oil production through oil absorption, but they could not describe the
specific characteristics of oil and water distribution and oil absorption during the oil absorption process.
M.A. Fern et al. [8–12] used nuclear magnetic resonance imaging (MRI) to monitor the self-absorption
process of the rock, studied the evolution process of percolation and oil recovery in core samples
and found that reverse percolation and absorption only occurred in the first time [13]. Chapman [14]
studied the influence of pore shape and throat width on fluid displacement through a microetching
model and observed the distribution characteristics of oil and water in pores in the process of infiltration
and absorption. However, the microetching model and the nuclear magnetic technology could only
study the mechanism of percolation and absorption; hence, the variation characteristics of percolation
and absorption could not be quantitatively described.

Consequently, the evaluation of the permeability absorption effect could only be measured
using a conventional permeability absorption detector. O. Pitois et al. [15–19] obtained formation
parameters, interfacial tension, viscosity of different fracturing fluids and self-priming rules through
self-priming experiments. The permeability and oil recovery greatly affected the mechanical properties
of the rock. Self-absorption of oil improved the strength of rock, while hydroscopicity reduced
it [20,21]. Yang [22] proposed the initial expansion rate, later expansion rate and expansion capacity to
describe expansion characteristics. Li [23] introduced the concept of modal parameters to describe
the competitive relationship between capillary forces and viscous forces in the infiltration process.
Ahmadi [24] believed that the recovery rate of naturally fractured carbonate reservoirs was affected
by wettability and developed SDS and C12TAB surfactants to change the wettability of carbonate
reservoirs. For percolation and recovery of tight oil, the fracture characteristics exhibited a major
influence on the permeability and absorption development effects. Haugen [25–29] et al. established
a coupling model of water movement in fractures through the study of porous media and fractures.
In subsequent studies, Paiaman [30] and Amadu [31] both considered the influence of the interfacial
tension between gravity and oil and of water on permeability and absorption through theoretical
studies. When water and surfactant solutions entered the shale during hydraulic fracturing, the flow
entered the formation under the action of capillary force, causing the loss of fracturing fluid [32].

On the whole, there are few theoretical studies on oil absorption through tight oil reservoirs, and it
is believed that oil absorption is influenced by the interfacial tension between oil and water, the viscosity
of crude oil, the capillary force of fluids in porous media and the fracture system. Because of the slow
permeability and absorption, the oil adsorption on the rock surface also has a major influence on the
permeability and absorption effect. Adsorption is the phenomenon when one or more components of
the fluid accumulate on the solid surface when the fluid is in contact with a porous solid. Therefore,
the original fluid (oil) in the porous medium will be adsorbed on the rock surface before the external
percolating medium enters the porous medium, and the inflow of foreign fluid will change the original
adsorption state, rendering the crude oil more easily percolatable and extractable. Hence, it is of
great significance to study the adsorption characteristics of formation fluids on rock surfaces through
molecular simulation.

Currently, nuclear MRI or measurement using a conventional imbibition meter is generally utilized
to study spontaneous imbibition. However, nuclear MRI cannot accurately describe the change in
the infiltration rate of the entire core sample. Moreover, the measurement accuracy of conventional
absorptiometry is insufficient. Therefore, based on the characteristics and drainage of the oil absorption
paper, the effects of surfactant content on the permeability and absorption of a guanidine rubber
fracturing fluid system was more rigorously studied. This research measures the change in permeability
and absorption rate. It also studies the effect of surfactant content in the guanidine rubber fracturing
fluid system as well as the effect of fluid flow on the permeation and absorption at the fracture wall.
Finally, the effects of different surfactants on the adsorption characteristics of crude oil were studied
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using the molecular dynamics method, the stripping effect of surfactants on crude oil components
was studied from a molecular interaction perspective, and the mechanism of percolation and recovery
in tight horizontal wells was further analyzed. The results of this study are expected to contribute
significantly to the improvement of oil and gas recovery from tight oil reservoirs.

2. Materials and Methods

2.1. Experimental Materials

In this study, crude oil mixed with kerosene (viscosity: 3 mPa·s) was used as the experimental oil;
the experimental temperature was 50 ◦C, and the percolating liquid was guanidine fracturing fluid
filtrate and formation water with a salinity of 6700 ppm. The formula of the experimental fracturing
fluid is summarized in Table 1.

Table 1. Formula of fracturing fluid used in experiment.

Name Concentration (%) Name Concentration (%)

Melon glue 0.60 Potassium persulfate 0.50
NaCl 0.03 OP-10 0.50, 0.90
KCl 0.03 Borax (crosslinking liquid) 0.80

2.2. Experimental Methods and Procedures

To date, either nuclear MRI or a conventional osmometer is generally used for spontaneous
osmotic absorption experiments. Nuclear MRI technology offers very high-resolution imaging at
the microscopic level and is generally used to study the distribution characteristics of the remaining
oil in pore roar channels inside rocks. However, it is not possible to accurately describe the entire
permeability process and absorption velocity of the core sample, and the measurement accuracy of
conventional absorptiometry is insufficient. In the later stages, only part of the oil film seeps out due
to the low tight core porosity permeability, low oil saturation, slow permeability and low absorption
rate, hence requiring a higher test accuracy. Accordingly, in this study, to determine the effect of
different surfactant contents of the fracturing fluid on the imbibition rate, the oil absorption capacity
was measured using oil absorption paper. The oil absorption and drainage characteristics of this paper
are shown in Figure 1.
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The oil absorption paper was composed of modified polypropylene that can absorb oil and
non-water-based elements. According to the oil and water absorption characteristics of the oil
absorption paper, as well as the fracture development process and absorption in tight horizontal wells,
the following specific experimental steps were implemented.

(1) Fracturing fluids with different surfactant concentrations were filtered to obtain the fracturing
fluid filtrate after gel breaking;
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(2) After the saturated formation, water was evacuated from the core and the fracturing fluid filtrate
was displaced, simulating the invasion of fracturing fluid;

(3) The displacement of oil was used to simulate the oil permeation and absorption in the core,
after fracturing in the deep formation. Considering the low permeability and long measurement time,
the jars were sealed after each set of measurements to prevent the volatilization of crude oil and
fracturing fluids;

(4) During the measurements, the quality of the oil absorbent paper was first assessed and the
quantity of oil absorbed was thereafter determined based on the paper’s characteristics;

(5) The amounts of oil absorbed by different percolating and absorbing media at different periods
were recorded and changes in the percolating and absorbing speeds as well as the recovery
efficiency were calculated.

3. Results

This section is divided into three subsections and provides a concise description of the experimental
results, their interpretation and the experimental conclusions that can be drawn.

3.1. Variation in Permeability Characteristics and Absorption Rate of Fracturing Fluid System

Based on the experimental scheme, the effect of the fracturing fluid system on permeability and
absorption rate was determined. The core permeability, absorption process and oil absorption effect of
the paper during the permeability and absorption experiments are shown in Figure 2.
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Figure 2. Experimental infiltration phenomenon.

It can be seen that during the percolation process, small crude oil droplets were formed. Some of
the oil droplets adsorbed on the rock surface, whereas the others desorbed from the core and rose to
the surface due to gravity and buoyancy. When an oil absorption paper was utilized to collect crude
oil at the liquid level, no residual water was observed on the paper surface, demonstrating that better
experimental results had been achieved. The recovery rate and permeability of the core under different
percolation and absorption liquid systems were further measured, as shown in Figures 3 and 4.

Figure 3 shows that the addition of a certain amount of surfactant to the fracturing fluid enabled
the relatively rapid development and ultimate recovery of percolation and absorption, as follows:
fracturing fluid with 0.9% surfactant > fracturing fluid with 2% surfactant > fracturing fluid with
0.5% surfactant > formation water. The degree of enhancement afforded by the formation of water to
the core’s permeability and absorption capacity was less than that provided by the fracturing fluid
with surfactant. This suggests that the development effect of the former was weak. By comparing the
studies of Yang (3000-min infiltration time) and M.A. Fern (1668 min infiltration time), it was found
that adding an op-10 surfactant could effectively extend the infiltration time. Therefore, a certain
amount of surfactant must be used to enhance the infiltration and absorption effect of the core for the
pervious and oil recovery in tight reservoirs.
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Figure 3. Changes in degree of percolation and recovery from tight core over time in different percolation
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Figure 4. Changes in infiltration and absorption velocity of tight core with time in different infiltration
and absorption liquid systems.

Figure 4 shows that with the increase in permeability and absorption time, the infiltration
and absorption velocity sharply dropped and stabilized at approximately 10,000 min. However,
the percolation and absorption rates with formation water dropped to zero over a short period,
indicating that the percolation and absorption system had reached stability. Consequently,
the surfactants aided in increasing the absorption rate and prolonging the stabilization time of the
absorption system. When the surfactant concentration in the fracturing fluid was 0.5%, the infiltration
time was longer (i.e., the infiltration rate was slow)—up to 60,000 min—that was much higher
than that of other groups. The analysis showed that percolation and absorption were slow when
low-concentration surfactants were used; nevertheless, these processes continued until the system
stabilized. Therefore, for permeability oil absorption, the stabilization time of the absorption system
could be prolonged by adding an appropriate amount of surfactant. In addition, when the surfactant
concentration was 0.5% and the infiltration time was 20,000–60,000 min, the infiltration rate is very low,
but still exhibited a gradually decreasing trend, demonstrating that the infiltration and oil recovery
would exhibit an exponential decline before the infiltration and absorption system reached stability.
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Based on the list in Table 2, the surfactant content in the absorbent medium considerably influenced
the interfacial tension between oil and water as well as the contact angle between the core and absorbent
medium. As the surfactant content in the fracturing fluid increased, the interfacial tension and contact
angle gradually decreased to a minimum of 6.24◦. The percolation medium also considerably influenced
percolation recovery. The surfactant in the absorbent medium reduced the interfacial tension between
oil and water; in turn, the lower interfacial tension reduced the seepage resistance of crude oil in the
porous medium. Moreover, the large oil droplets were dispersed as smaller droplets, thus facilitating
their passage through the fine rock pores. The contact angle between the core and percolation
medium indicated the adsorption characteristics of the pore wall. The contact angle decreased with
increasing surfactant content in the porous media, indicating that increasing amounts of surfactant in
the fracturing fluid promoted the stripping of crude oil from the rock wall. However, the percolation
recovery rate did not increase with the surfactant content in the fracturing fluid. As the concentration
of surfactant OP-10 first increased and then decreased, the maximum perspiration-recovery rate
was 48.93%, i.e., similar to Wang’s study (where the perspiration-recovery rate was 40%). Based on
Figures 3 and 4, the recovery rate of infiltration was affected by the duration and velocity of infiltration.
When the surfactant concentration was extremely high, the absorption system prematurely stabilized,
reducing the absorption time. Therefore, an optimal surfactant concentration is necessary to maximize
the absorption rate and stabilization time.

Table 2. Effects of different surfactant concentrations on percolation recovery.

Experimental
Schemes

Core Length
(cm) Porosity (%) Permeability

(10−3 µm2)
Interfacial

Tension (mN/m)
Core Contact

Angle (◦) Recovery (%)

Formation water 7.8 11.32 0.1550 10.52 54.26 1.46
Fracturing fluid1

(0.5% OP-10) 8.5 9.67 0.3479 0.67 16.87 17.56

Fracturing fluid2
(0.9% OP-10) 9.7 10.76 0.1297 0.43 10.23 48.93

Fracturing fluid3
(2% OP-10) 9.4 9.54 0.2671 0.28 6.24 19.31

3.2. Carrying Effect of Fluid Flow with Crude Oil Particles through Pores

Percolation stops when the system reaches equilibrium. The capillary force in the pores is the
main driving force of crude oil in porous media (Figure 5a). When the capillary force of oil droplets
in the pores reaches equilibrium, the driving force of permeation and absorption is zero and both
permeation and absorption stop (Figure 5b).
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Therefore, to increase the absorption time, the oil droplets should be discharged at the earliest
to avoid the capillary force balance, which can change the fluid flow condition through the fracture.
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The oil droplets should be produced immediately upon permeation and suction. The fluid flow through
the fracture can be expressed as follows:

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ ·
[
−pI + µ(∇µ+ (∇µ)T

]
+ F + ρg (1)

where ρ is the density of fluid passing through the crack (kg/m3); u is the flow rate of fracture fluid (m/s);
t is dimensionless time; pI is the pressure of the fluid passing through the fracture (Pa); µ is the viscosity
of fluid passing through the fracture (Pa·s); F is the force per unit volume of fluid (N/m3); T is the
temperature (K):

ρ∇ · (u) = 0 (2)

As fluid flows through the fracture, crude oil droplets are formed by the drag force acting on
the fluid:

FD =
1
τP

mP(u− v) (3)

where FD is the fluid carrying force acting on the oil droplets (N) and v is the flow rate of the fracturing
fluid through the fracture (m/s). The droplet velocity response time, τp (m/s), is given by:

τP =
ρPdP

2

18µ
(4)

where dP is the oil droplet diameter (m) and ρp is the oil droplet density (kg/m3).
Using COMSOL software, the influence of fluid flow through the wall fracture on the fluid in the

pores is shown (Figure 6); the red and blue phases represent oil and water, respectively.
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Figure 6. Carrying effect of fluid flow through fractures on crude oil in porous media, the pores with
more invasion are marked with red circle.

It can be seen that the fluid in the fracture carried the stable oil in the pore roar duct near the
fracture wall during the flow process. Only the crude oil near the fracture wall was carried because
of the small size of the pore roar channel. The results show that the combination of permeability
fracturing and stimulation may be used to increase the fluid flow frequency and velocity in tight
oil reservoirs.

As a result of dispersion, the crude oil can easily seep out as small droplets, thus increasing the
rate and degree of seepage and recovery. By contrast, small crude oil particles can be extracted under
the traction force action to avoid the capillary force balance in the pore duct, thus prolonging the
permeation and absorption time (Figure 7).
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3.3. Influence of Surfactant on Rock Adsorption Characteristics during Infiltration Process

Rock has strong lipophilic properties under primitive conditions. In such cases, the irregular
movement of crude oil tends to cause the oil to percolate. However, once per foreign fluid enters
the pore growth and disrupts the original balance, the oil-wet property of rock gradually changes to
water-wet. At this point, the permeability and absorption are enhanced. Moreover, the introduction
of surfactants can further change the hydrophilic properties of the rock surface. At the same time,
surfactants can promote the separation of crude oil components from rock walls under the action
of intermolecular forces. Therefore, molecular simulation is necessary to study the influence of
surfactants on the adsorption characteristics of rocks. To study the influence of surfactant molecules
on the adsorption characteristics of formation fluids on rock walls during infiltration and absorption,
a molecular model was formulated using Material Studio software, as shown in Figure 8.
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Figure 8. Adsorbed surfactant on rock wall surface.

Formation fluids include crude oil and water, with C6–14 representing the crude oil component.
The structure of the initial model was optimized using a compass force field through rock adsorption,
and the polymer consistent force field was used to simulate the interlayer structure. The simulated
temperature was 355 K, the truncation radius was set to 12.5 Å, and the simulated NVT was used in
fully mechanized mining mode. To determine the effects of non-surfactant, anionic surfactant sodium
dodecyl benzenesulfonate (SDBS), cationic surfactant dodecyl trimethyl ammonium bromide (DTAB)
and nonionic surfactant polyoxyethylene octyl phenol ether-10 (OP-10) on the molecular adsorption of
formation fluids on rock walls, the density distributions of formation fluids at different positions from
the rock wall under different conditions are shown in Figure 9.
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Figure 9. Density distribution of formation fluids at different positions from rock wall. (a) No surfactant;
(b) with sodium dodecyl benzenesulfonate (SDBS); (c) with dodecyl trimethyl ammonium
bromide (DTAB) (d) with polyoxyethylene octyl phenol ether-10 (OP-10).

In Figure 9, the X-axis is the distance from the silica rock wall and the Y-axis is the density
distribution of different fluids in the formation. Figure further suggests that the degree of adsorption on
the rock wall surface with different percolating liquid systems considerably differs. When no surfactant
was added, the oil strongly adsorbed on the silica surface; under the action of water, the density of
crude oil first increased, then decreased and finally increased with the distance from the rock wall.
Permeation and absorption were achieved by the interaction between the capillary forces of oil and
water. Consequently, without the addition of surfactant, percolation and absorption drove only the oil
droplets away from the rock wall, whereas the oil droplets adsorbed on the rock wall could not be
percolated and absorbed. However, after the incorporation of different surfactants, the rock adsorption
characteristics considerably changed. After the addition of the SDBS surfactant, the density difference
between oil and water located 0–150 Å away from the rock surface was insignificant. In the range
150–200 Å from the rock surface, some of the crude oil components exhibited a high peak value.
When the DTAB surfactant was added, the density of crude oil at a distance of 0–50 Å above the
rock surface significantly decreased, indicating that the adsorption capacity of rock for crude oil had
significantly decreased. Moreover, the density of crude oil molecules was higher at a distance 100–150 Å
from the rock surface, indicating that the crude oil content at this location was also higher. The increase
of the crude oil content meant that the DTAB surfactant could promote the separation of crude oil
on the surface of the rock, which was conducive to the percolation, absorption and drainage of oil.
Furthermore, when the OP-10 surfactant was added, the adsorption characteristics of the silica rock
wall considerably changed. The adsorption tendency of water on the rock was greater than that of oil.
The wettability of the rock fundamentally changed from oil-wet to water-wet, leading to a considerable
increase in the production degree and absorption and infiltration rates.

Given the complex composition of crude oil, the crude oil density was characterized by the
average density of different types of crude oil molecules, and the various densities of oil and water on
the rock surface under different conditions were obtained, as shown in Figure 10. Figure 10 suggests
that the rock had a strong ability to absorb crude oil even without the addition of the surfactant.
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The introduction of surfactants considerably changed the wettability of the rocks. When OP-10 and
DTAB surfactants were added, the wettability of the rocks fundamentally changed, i.e., from an oil-wet
surface to a water-wet surface. The crude oil originally adsorbed on the rock surface was gradually
separated from the rock surface under the action of van der Waals force, and the separated oil droplets
drove into the surface cracks under the action of capillary forces, thus enhancing rock permeability
and absorption capacity. However, the infiltration capacity was also affected by the interfacial tension
between oil and water. Accordingly, the development of a surfactant system in the percolation and
absorption medium will be an important future research direction.
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4. Conclusions

(1) The main principle of fracturing fluid percolation and oil absorption in tight oil reservoirs is
that the surfactant in the fracturing fluid system changes the wettability of rock and gradually
disperses the crude oil particles to avoid the rapid stabilization of the percolation and absorption
system. The fluid carrying through the fracture wall can enhance the imbibition velocity and
prolong the imbibition time;

(2) The percolation and absorption times of surfactants with different concentrations in the percolation
and absorption medium vary. Therefore, a reasonable surfactant concentration should be used
to maximize the degree of infiltration and recovery; the optimum OP-10 concentration in the
fracturing fluid was found to be 0.9%;

(3) During the fracturing and permeability development of tight oil reservoirs, the combination of
fracturing permeability and stimulation can be used to increase the flow frequency and velocity
of fluids in fractures. Dispersing the crude oil into small droplets makes it easier for the crude
oil to seep out, avoiding the equilibrium of capillary force in the pore duct and prolonging the
stability time of seeping and absorbing;

(4) The wettability of rocks fundamentally changed when OP-10 surfactants and DTAB surfactants
were added. From the wet surface of the oil to the wet surface of water, the crude oil adsorbed on
the rock surface gradually separates from the rock surface under the action of van der Waals force
and the separated oil droplets drive into the surface cracks under the action of capillary forces.
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