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Abstract: Building a biologic model that describes the behavior of a cell in biologic systems is aimed
at understanding the physiology of the cell, predicting the production of enzymes and metabolites,
and providing a suitable data that is valid for bio-products. In addition, building a kinetic model
requires the estimation of the kinetic parameters, but kinetic parameters estimation in kinetic modeling
is a difficult task due to the nonlinearity of the model. As a result, kinetic parameters are mostly
reported or estimated from different laboratories in different conditions and time consumption. Hence,
based on the aforementioned problems, the optimization algorithm methods played an important
role in addressing these problems. In this study, an Enhanced Segment Particle Swarm Optimization
algorithm (ESe-PSO) was proposed for kinetic parameters estimation. This method was proposed to
increase the exploration and the exploitation of the Segment Particle Swarm Optimization algorithm
(Se-PSO). The main metabolic model of E. coli was used as a benchmark which contained 172 kinetic
parameters distributed in five pathways. Seven kinetic parameters were well estimated based on the
distance minimization between the simulation and the experimental results. The results revealed
that the proposed method had the ability to deal with kinetic parameters estimation in terms of time
consumption and distance minimization.

Keywords: metabolic engineering; kinetic model; kinetic parameters estimation; PSO algorithm;
Se-PSO algorithm

1. Introduction

Mathematical modeling is a compelling strategy for predicting and recognizing the biologic
behavior of a cell’s system. The mathematical model can create and predict the results of the empirical
hypotheses that can be used to examine the process. In this regard, the biologic model studies the
chemical metabolism and the pathways to construct a kinetic model that can give a clear understanding
of a cell mechanism [1].
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Therefore, building and developing a kinetic model requires a large number of parameters such
as kinetic parameters, potential of hydrogen (pH) and initial enzymatic and metabolite concentration.
In the same vein, the building and the developing of the kinetics model gives a clear picture of cell
behavior when it is needed in biotechnology applications [2]. In addition, building and developing a
kinetic model is a challenging task because it requires kinetic parameter estimation [3].

Kinetic parameters estimation is the finding of the nearest value that minimizes the distance
between the simulated and the real experimental results [4]. Kinetic parameters estimation is a complex
task because of the nonlinearity of the kinetic model, and it is usually measured in different conditions
and time consumption [5]. Usually, the kinetic parameters stored in the database are insufficient for
building accurate kinetic model due to the cell behavior in different measurements stated by different
laboratories utilizing various in vitro models and conditions [6].

Normally, the model is built depending on time derivative expressions using Ordinary Differential
Equations (ODEs) which describe the changes in a state or quantity of interest over time. Recently,
several kinetic models of cell metabolism are based on ODEs which have been developed to
detect time-dependent changes in metabolic concentration. For example, models of glycolysis
and pentose phosphate (PP) pathways in E. coli [7,8] and the tri-carboxylic acid (TCA) cycle in
Dictyostelium discoideum [9] have been constructed. Furthermore, large scale model integration has been
performed. For example, the model of [7] has been integrated with the model of (TCA) cycle [8,10] and
amino acid biosynthesis [11]. Researchers have studied the glycolysis pathway to clone a new host
and observe its changes and effects [12].

Therefore, because of the difficulty in estimating kinetic parameters, many researchers lately have
used the metaheuristic optimization algorithms’ methods to estimate the kinetics of the E. coli model
and other biologic models. Some of these metaheuristic algorithms were used in order to estimate the
kinetic parameters employed by [13–21] and some of these algorithms have used experimental data
taken from [7,22,23] to investigate their abilities in the kinetic parameters estimation.

In this regards, the biologic kinetic models contain hundreds to thousands of kinetic parameters
which have caused serious challenges in parameter estimation due to the high dimension of search
space that is required to be explored. Thus, in high dimensional kinetic models (containing hundreds
to thousands of kinetic parameters), the procedures are considered to be expensive in terms of
computational cost and the performance of the aforementioned algorithms tend to deteriorate, which
may lead to low accuracy [6].

The Differential Evolution (DE) algorithm is an example that is widely used and studied in
parameter estimation of metabolic model [6,17]. Time consumption is the main weakness of (DE)
algorithm; this makes it difficult for the (DE) algorithm to tune its parameters when it involves a large
number of processors and multiple local searches. In addition, the Genetic Algorithm (GA) belongs
to the class of evolutionary algorithms which almost share the same idea as DE. This algorithm is
a popular method that is used in parameter estimation of metabolic model. The main weakness of
this algorithm is the high computational time which mostly does not perform effectively when it is
compared to DE and Particle Swarm Optimization (PSO) algorithms [24–26].

Since 1995, the PSO algorithm has been making great impact in solving many problems in different
fields such as [14,27–29]. This method was proposed by [30] and it was adopted in simulating flock of
birds and a school of fish in order to locate their food. The algorithm particles during their movement
in the process of searching share the information with each other and then they search for their
destination stochastically and independently. Therefore, the particles’ movements in the search space
move towards the optimum solution by taking different paths and directions.
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Moreover, the method of Se-PSO was proposed and developed based on the PSO algorithm in order
to increase the computational time, and the accuracy of PSO was presented by [31]. This development
is based on the recognition of the local and global point problem of PSO [30]. In this regard,
the segmentation divides the particles into groups so as to move together towards the optimal solution.
This algorithm was adapted for large-scale kinetic parameters of E. coli model [32] and governor–turbine
model identification of single area power plant [28,32] was used in a linear inertia weight. Due to the
nonlinearity of the model which uses linear inertia weight (ω) by [32], this inertia weight affects the
exploration and exploitation of the particles. Consequently, there is need for large exploration at the
beginning and small exploitation at the end of the algorithm execution. The purpose for this is to avoid
the local optima trap so as to increase the efficiency of the kinetic parameters estimation with a view to
minimizing the model distances in reasonable time.

In this study, the method of Se-PSO algorithm was enhanced by adding a damping process which
helped the particles to have a wide exploration at the beginning and small exploitation at the end
during the algorithm execution. The aim was to investigate the amount of each solution to be found at
the search space. Thus, the enhanced Se-PSO was adapted to estimate large-scale kinetic parameters of
E. coli and to increase the efficiency of the Se-PSO algorithm in terms of exploration and exploitation.

The other sections of the study are organized as follows: Section 2 describes the problem
formulation. Section 3 describes the materials and methods. Section 4 describes the obtained results.
Section 5 gives the conclusion of the findings of this study.

2. Problem Formulation

Kinetic parameters estimation of the kinetic model was formulated to find the best set of kinetics
that minimizes the model simulation differences with real experimental data. This formulation was set
as a global optimization problem. In this regard, optimization algorithm methods can be adapted in
order to estimate the kinetic parameters and minimize the differences between the model simulation
and real experimental result. The formulation of this problem mathematically was set as a fitness
function in Equation (1) [13]:

fitness =
R∑

i=1

∣∣∣∣∣∣ys,i − ye,i

ye,i

∣∣∣∣∣∣ (1)

where R is the number of metabolites i experimental data; so R = 12, ys,i is the estimated metabolites
concentration s of metabolite i, ye,i is the real metabolites experimental data e of metabolite i.

3. Materials and Methods

3.1. Kinetic Model Structure

The dynamic model of the main metabolic of E. coli formulated by [10] was used as a benchmark.
This model, which consists of (glycolysis, pentose phosphate, TCA cycle, gluconeogenesis and
glyoxylate) pathways in addition to acetate formation with phosphotransferase system, is described in

This model has 23 metabolites, 28 enzymatic reactions, 10 co-factors (e.g., Adenosine triphosphate
(ATP), Coenzyme A (COA), Nicotinamide adenine dinucleotide phosphate (NADPH)) and 172 kinetic
parameters. The rate at which the concentration of the metabolite in the considered model changes is
given by Equation (2) as follows:

dCi
dt

=
∑
j=1

Si, jv j − µCi (2)

where Ci is the concentration of metabolite i, vi is the rate of reaction j, Si, j is the stoichiometric
coefficient of the metabolite i in the reaction j and µ is the specific growth rate. Thus, the term µCi
represents the dilution effect due to biomass growth. The model mass balance equations and the
kinetic rate equations of the considered model are stated in Appendix A Tables A1 and A2, respectively.
Figure 1.
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Figure 1. Main metabolic model of E. coli.

3.2. Parameter Estimation by (ESe-PSO) Algorithm

In this study, an enhanced (Se-PSO) algorithm was proposed. This method shares the same idea as
Se-PSO, but it is different in terms of exploration and exploitation of the inertia weight [27]. Decreasing
linear inertia weight (ω = 0.9 to 0.4) [27] was used. The inertia weight controlled the effect which the
last iteration speed had on the current speed, and thus allowed the particles to explore wider areas in
the beginning and nearby areas in later stages with reduced speed for exploitation. Here, the main plan
of ESe-PSO was to add a damping process to the inertia weight so as to support the exploration and
exploitation of the particles towards the optimum solution. The development was done by initializing
the inertia weight ω = 1 and damping parameter called ωdamp = 0.99. This damp parameter was
calculated in the iteration process to increase the controlled convergence and to support the particles
for reaching the global solution. In Table 1 below, the (ESe-PSO) algorithm is described:
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Table 1. Pseudo-code of Enhanced Segment Particle Swarm Optimization Algorithm (ESe-PSO).

Algorithm ESe-PSO Adoption

1. Begin
2. Initialize B, S, D, ω, and ωdamp
3. Initialize vi, Xi, c1, c2, r1, r2, number_segment
4. Segment length = initial value/number_segment
5. Adopt the be1 : ben parameters boundaries with respect to D
6. For j = 1 to the number of the segment
7. Determine initial fitness for segment J
8. Assume Best fitness = initial fitness
9. End for
10. For m data account

11. f itness =
R∑

i=1

∣∣∣∣ ysi−yei
yei

∣∣∣∣
12. End for
13. If f itness > Best f itness
14. For each S
15. iter S = 1, S++
16. Updating the velocity Vi towards fitness:
17. vi(t + 1, j) = (ω ∗ωdamp)vi(t, j) + c1r1(pi(t, j) − xi(t, j))c2r2(G(t, j) − x(t, j))
18. Update the position Xi j towards fitness;
19. Xi(t + 1, j) = Xi(t, j) + vi(t + 1, j)
20. End for
21. End if
22. If f itness ≤ Best f itness
23. Print Gi best of each particles
24. Update the be1 : ben based of Gi best of each kinetic parameters
25. If f itness > Best f itness return step 2 till the iteration is finished or discover high-quality solution
26. End if
27. End if
28. Global point(j) = Gi best
29. Next j
30. Optimalsegment = max (Global point) ± segment length/2
31. Repeat algorithm 1 for the new initial values

Table 1 describes the steps of the enhanced segment particle swarm optimization algorithm used
to estimate the kinetic parameters. These algorithms were started by initializing the particles that
had the highest number of generation S = 30. The bird number B = 10 and be1 : ben was the kinetic
parameter boundaries b from e1 to en parameters. The problem dimension D = 7, inertia weight ω = 1
and damping process ωdamp = 0.99 were in step 2. Then step 3 initialized the velocity and position
of particles with the parameters of PSO which are acceleration coefficients towards the best personal
position pi and the global best position of the entire Gi, respectively, where c1& c2 are constants called
cognitive and social scaling parameters, respectively, and a random number between 0 and 1 for (r1, r2).

The calculation of the segment length was obtained by utilizing step 4. Each kinetic parameter of
the boundaries, both of the upper and lower, regarding the dimension of the problem D was created in
step 5. Based on the number of segments, the calculation of the initial fitness of the whole segments
was done with the assumption that the initial fitness was the best fitness step for 6, 7 and 8.

Here, the new fitness was calculated based on the fitness equation stated in step 11. Where the
fitness was greater than the best fitness set, the iteration updated the velocity and the position towards
the new fitness steps of 15, 17 and 19. If the new fitness was smaller than or equal to the best fitness
print, the global best particles position updated the kinetic parameter, based on the global best particles
position which is supposed to be the new initial kinetic parameters step in 22 and 23. If the fitness was
greater than the best fitness, it returned to step 2 until the program highly figured out a solution or
the iteration was met in step 25. The global point of segments is set equal to the global best position
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which was then used to calculate the optimal segment by its Equations (28)–(30). After the optimum
segments were identified, they were used as the new initial kinetic parameter; PSO algorithm in [13]
was searched among them and ended the program in step 31.

4. Results

The estimation of large-scale kinetic parameters in the kinetic model was a difficult task due to
the nonlinearity of the model. For this reason, the kinetic parameters were reported from different
laboratories and time consumption [32]. It was stated that during the application of the local
sensitivity analysis to [14] model result, each kinetic parameter increased up to 200% by step 0.5
to calculate its sensitivity. It was found out that 7 kinetic parameters were highly affected by the
used model’s response for estimating the proposed algorithm. These sensitive kinetic parameters are
vpyk

max,npk,icdh,k f
icdh,kd

icdhnap,km
icdhnap and vicl

max which were involved in this reaction rate of Vpyk, Vicdh, and Vicl.
In addition, the experimental data of [16] were taken. These experimental data are Glc, G6P, F6P, FDP,
PEP, PYR, 6PG, Ru5P, Xu5P, S7P, R5P and E4P.

As a matter of fact, during the ESe-PSO algorithm execution, the segments of the kinetic parameters
of [32] were increased by adding 1 segment to each kinetic to increase the possibility of searching the
wide-area and finding an accurate solution which is depicted in Appendix A Table A3.

The ESe-PSO algorithm parameters such as c1 and c2 was initialized as mentioned in [32], ω = 1
and ωdamp = 0.99. In this regard, the kinetic boundaries with their upper and lower bounds values
were initialized with small increase based on [32] to allow the proposed algorithm search large space.
Here, the mechanism for selecting the boundaries was based on the original kinetic parameters values,
which assumed that these values are ± with each kinetics’ small value, so that the optimum result
may be around it. These kinetic parameters boundaries are depicted in Table 2 with their estimation
as follows:

Table 2. Kinetic parameters boundaries.

Kinetics Original Lower Bound Upper Bound Estimated Kinetics

vpyk
max 1.0850 0.8500 1.5000 1.10000
npk 3.0000 2.3000 3.5000 2.83000
icdh 24.421 23.500 24.9000 24.1020
k f

icdh
289,800 289,799 289,800 289,799.5

kd
icdhnadp 0.0060 0.0030 0.0500 0.00920

km
icdhnadp 0.0170 0.0060 0.0600 0.01920
vicl

max 3.8315 3.300 4.3000 3.64000

After the kinetic parameters were initialized, the kinetic parameters were segmented to find the
optimal segment for each kinetics. Later on, the updating of position, velocity and the fitness function
was done based on the initialization of ESe-PSO parameters such as the inertia weight, damping
process and the acceleration coefficient (c1 and c2). Thus, the optimal segment was determined based
on the fitness function. The optimal segments were sent to the PSO algorithm which provided a local
best solution so that PSO would search around the optimal segments.

In this regard, the ESe-PSO algorithm estimated the kinetic parameters and minimized the model
distance to 28.94%. The model simulation was moved closer to the real experimental data when
compared to the considered model; the Se-PSO, GA and DE algorithms are described in Table 3.
The GA parameters were set as follows: generation gap = 0.8, crossover = 0.85, mutation = 0.05 [33] and
maximum generation = 500. The DE parameters were set as follows: scaling factor F = 0.7, crossover
rate Cr = 0.8, search strategy was DE/rand/1/bin as stated in [6], population size = 100 and a number
of generation = 500 [32].
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Table 3. Comparison of Enhanced Segment Particle Swarm Optimization algorithm (ESe-PSO) algorithm
estimations with Segment Particle Swarm Optimization algorithm (Se-PSO), Differential Evolution
(DE) and Genetic Algorithm (GA) algorithms.

Metabolites Experimental
Data Kadir Data Se-PSO

Estimation
ESe-PSO

Estimation
DE

Estimation
GA

Estimation

Glc 0.0556 0.12203 0.1023 0.0923 0.10250 0.11740
G6P 3.4800 0.12989 0.3120 1.3281 0.19930 0.14120
F6P 0.6000 0.02146 0.0532 0.0872 0.02350 0.02210
FDP 0.2720 1.51860 2.5257 1.3335 2.01250 1.97500
PEP 2.6700 1.50760 1.8320 2.0321 1.84700 1.98320
PYR 2.6700 2.82790 2.9380 2.7256 3.01000 3.00200
6PG 0.8080 0.01785 0.0752 0.2043 0.01947 0.01874

Ru5P 0.1110 0.02140 0.0628 0.0870 0.02324 0.02280
Xu5P 0.1380 0.02652 0.0925 0.0902 0.02847 0.02794
S7P 0.2760 0.00473 0.0524 0.0802 0.04827 0.04803
R5P 0.3980 0.07639 0.0967 0.0985 0.08425 0.07727
E4P 0.0980 0.27837 0.0568 0.0671 0.02835 0.02428

Table 3 shows how the proposed method moved the model simulation towards the experimental
data closely. This simulation increased PEP metabolites and this may be due to the other pathways
engaged during the execution of the algorithm such as anaplerotic, TCA, with acetate formation.
In addition, this increase may be the OAA,PEP and PYR metabolites that were affecting the cell’s
growth [10].

The analysis of the model distance minimization showed that 12 out of the 12 datasets were
moving towards the real experimental data. These metabolites are Glc, G6P, F6P, FDP, PEP, PYR,
6PG, Ru5P, Xu5P, R5P, S7P and E4P; thus, the metabolites were still slightly far from the experiment,
perhaps because of the model complexity, shortage of data and the portion of some metabolites.
Furthermore, the G6P empirical data were 3.48 mM and the simulation outcome of G6P could be
leading to the empirical data rather than the G6P result model under examination when related to
the G6P model. This discrepancy may be because of the model resolution of G6P consistency in the
presence of 5 mM MgSO4 and 0.48 mM NADP+ after the addition of 0.7 U ml−1 of G6PDH as reported
by [10].

Moreover, the FDP model simulation was having a better movement towards the experimental
data rather than the considered model. This may be due to the nonlinearity of the system or the
lumping of GAP and DHAP metabolites in one equation. The changes in FDP may be due to the
lumping of pykII and pykI as stated in [10].

As stated in Table 3 above, the simulation response of the distance model minimization was
moving towards the experimental data in 12 metabolites. Moreover, the model under investigation had
five pathways than the data of only two pathways where only one metabolite was not well minimized
(PEP) due to the lack of experimental data. The estimated kinetic parameters were used in the model
simulation to compare our model responses to [10] model responses. The result of the comparison is
depicted in Figure 2 below:
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Figure 2. Model simulation based on real experimental data.

In order to prove that the result is statistically consistent, the STD, mean and F value were
calculated for the considered model. The result of the simulated model is displayed in Table A3 and
Equations (3)–(6).

In Appendix A Table A4, the mean and STD were calculated for the proposed algorithm results
and the response of the considered model’s result. The proposed algorithm showed 0.6855 mean
compared to the considered model (0.5251), DE (0.6189) and GA (0.6216) which indicated that the
proposed algorithm result moved to the experimental data mean of 0.9647. In addition, DE algorithms
showed a better result than GA in the mean values.

In addition, the proposed algorithm showed 0.9320 STD compared to the considered model’s
0.9198 STD which indicated that the proposed algorithm result moved to the experimental data STD of
1.2271. Thus, the hypothesis of the result in Table 4 is calculated as follows:
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Table 4. Objective function of each algorithm over 10 runs.

Methods Mean STD Best Lower Time-Consuming

ESe-PSO 7.035 ×10−5 2.72 × 10−4 2.3 × 10−6 1.58 × 10−4 19 h
Se-PSO 6.03 × 10−4 3.567 × 10−3 2.24 × 10−5 3.52 × 10−3 19 h

DE 4.9185 × 10−2 2.51213 × 10−1 8.27 × 10−3 1.7643 × 10−1 26 h
GA 1.1476 × 10−1 2.58243 × 10−1 2.579 × 10−3 1.4673 × 10−1 29 h

The hypothesis of Table A4 is calculated and decided below:

H0 : STD2
E ≥ STD2

D (3)

H1 : STD2
E < STD2

D (4)

Ftest =
STD2

E

STD2
D

=
0.8686
0.8286

= 1.0482 (5)

F1−0.05 =
1

F0.05,nE,nD

=
1

F0.05,11,11
=

1
2.7186

= 0.3678 (6)

where STD2
E is the standard deviation of the optimized result E, STD2

D is the standard deviation of the
considered model D and the nE, nD are the number of variables for the optimized and model result.
This hypothesis was locking for minimizing the considered model’s errors. This suggests that we
accepted H0 and rejected H1 as the accepted result. Thus, the F test showed that the proposed method
had moved to the critical F value better than Se-PSO, DE and GA by indicating1.0482, 1.0497, 1.2881
and 1.3156, respectively.

The objective function and time consumption were calculated for the proposed algorithm, DE and
GA as depicted in Table 4 below:

Table 4 demonstrates a comparison between the proposed algorithm with DE and GA algorithms.
Table indicates that the proposed algorithm in this study produced superior results in terms of objective
function values over 10 runs. The mean, STD, best and lowest objective functions were calculated.
ESe-PSO algorithm produced the best mean (7.035E–05) and STD (0.000272) when compared to Se-PSO
(mean 0.000603; STD 0.003567), DE (mean 0.049185; STD 0.251213) and GA, (mean 0.11476; STD
0.258243). The proposed method achieved the best objective function (2.3E-06) while Se-PSO ((0.00352),
DE (0.00827) and GA (0.002579) achieved the best objective function. The consumed time by the
proposed algorithm was achieved in 19 h while Se-PSO, DE and GA achieved the result in 19, 26 and
29 h, respectively.

5. Conclusions

The proposed method of ESe-PSO was used in order to estimate large scale kinetic parameters
based on a large kinetic model. The estimation was carried by minimizing the model response distances
with real experimental data. Seven kinetic parameters were estimated using 12 metabolites and the
method optimized the 12 metabolites. These metabolites are Glc, G6P, F6P, FDP, PEP, PYR, 6PG, Ru5P,
Xu5P, R5P S7P and E4P. The metabolites were well minimized with a slightly small error which
may be due to the lump of GAP/DAHP metabolites or tktb involvement in the pentose phosphate
and glycolysis pathways. However, the proposed method of ESe-PSO algorithm revealed that it had
the ability to perform kinetic parameters estimation. It is hereby suggested that further study can be
carried out on the evaluation of large scale kinetic parameters segmentation of other algorithms like
Firefly and Bat algorithms.
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Appendix A

Mathematical proofs of results not central to the study can be added as an appendix.

Table A1. Mass balance equation.

Metabolites Mass Balance Description

cell (X) d[X]
dt = µ[X]

extra glucose (GLCex) d[GLCex]
dt = −vPTS[X]

glucose-6-phosphate (G6P) d[G6P]
dt = vPTS − vPGI − vG6PDH − µ[G6P]

fructose 6-phospahte (F6P) d[F6P]
dt = vPGI − vPFK + vTKTB + vTAL − µ[F6P]

fructose 1,6-phosphate (FDP) d[FDP]
dt = vPFK − vALDO − µ[FDP]

glyceraldehyde 3-phosphate (GAP) d[GAP]
dt = 2vALDO − vGAPDH + vTKTA + vTKTB − vTAL − µ[GAP]

phosphoenolpyruvate (PEP) d[PEP]
dt = vGAPDH + vPCK − vPTS − vPYK − vPPC − µ[PEP]

pyruvate (PYR) d[PYR]
dt = vPYK + vPTS + vMEZ − vPDH − µ[PYR]

acetyl-CoA (AcCoA) d[AcCoA]
dt = vPDH + vACS + vCS − vPTA − µ[AcCoA]

isocitrate (ICIT) d[ICIT]
dt = vCS − vICDH − vICL − µ[ICIT]

2-keto-d-gluconate (2KG) d[2 kG]
dt = vICDH − v2KGDH − µ[2KG]

succinate (SUC) d[SUC]
dt = v2KGDH + vICL − vSDH − µ[SUC]

fumarate (FUM) d[FUM]
dt = vSDH − vFUM − µ[FUM]

malate (MAL) d[MAL]
dt = vFUM + vMS − vMDH − vMEZ − µ[MAL]

oxaloacetate (OAA) d[OAA]
dt = vMDH + vPPC − vCS − vPCK − µ[OAA]

glyoxylate (GOX) d[GOX]
dt = vICL − vMS − µ[GOX]

acetyl phosphate (ACP) d[ACP]
dt = vPTA − vACK − µ[ACP]

acetate (ACE) d[ACE]
dt = (vACK − vACS)[X]

6-phosphogluconolactone (6PG) d[6PG]
dt = vG6PDH − v6PGDH − µ[6PG]

ribose 5-phosphate (Ru5P) d[Ru5P]
dt = v6PGDH − vRPE − vRPI − µ[Ru5P]

ribulose 5-phosphoenolpyruvate (R5P) d[R5P]
dt = vRPI − vTKTA − µ[R5P]

xylulose 5-phsophate (Xu5P) d[Xu5P]
dt = vRPE − vTKTA − vTKTB − µ[Xu5P]

sedoheptulose 7-phosphate (S7P) d[S7P]
dt = vTKTA − vTAL − µ[S7P]

erythrose 4-phsophate (E4P) d[E4P]
dt = vTAL − vTKTB − µ[E4P]
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Table A2. Reaction rate equations.

Reactions Kinetic Equation

cell growth (X)

 µm

(
1− [X]

Xm

)(
[GLcex]

Ks+[GLcex]

)
kATPvATP(.), ([GLcex] > 0)

µmA[Aceex]

KsA+[Aceex]
kATPvATP(.), ([GLcex] ≤ 1 and[Aceex] > 0)

PTS (phosphotransferase
system)

vmax
PTS[GLcex]

[PEP]
PYR(

Ka1+Ka2
[PEP]
[PYR]+Ka3[GLcex]+[GLcex]

[PEP]
[PYR]

)(
1+ [G6P]nG6P

KG6P

)

PGI
(phosphoglucoseisomerase)

vmax
PGI

(
[G6P]− [F6P]

Keq

)

KG6P

1+ [F6P]

KF6P

1+
[F6P]

KF6P
6pginh


+

[6PG]

KG6P
6pginh

+G6P

PFK
(phospho-fructokinase)

vmax
PFKKATP [F6P]

K(ATP, ADP)

[F6P]+KF6P
z

K
b(ADP,AMP)+ [PEP]

KPEP
Ka(ADP,AMP)



1+

Lp f k1+[F6P]


Ka(ADP,AMP)

KF6P
s

(
Kb(ADP,AMP)+

[PEP]
KPEP

)


nPFK


Aldo (aldolase)

vmax
ALDO

(
[FDP]− [DHAP][GAP]

Keq

)
KFDP +[FDP]+

KGAP [DAHP]

[Keq Vbi f ]
+

KDHAP [GAP]

[Keq Vbi f ]
+

[FDP][GAP]
KPEP

inh
+

[DHAP][GAP]
KeqVbi f


GAPDH (glyceraldehyde
3-phosphate
dehydrogenase)

vmax
GAPDH

(
[GAP]− [PEP][NADH]

Keq [NAD]

)
(
KGAP

(
1+ [PEP]

KPGP

)
+[GAP]

)(
KNAD
NAD

(
1+ [NADH]

KNADH

)
+1

)

PYK (pyruvate kinase)
vmax

PYK [PEP]
(

PEP
KPEP

+1
)npyk−1

[ADP]

KPEP

LPYK

 1+
[ATP]
KATP

[FDP]
KFDP

+
[AMP]
KAMP

+1


npyk

+
(
[PEP]
KPEP

+1
)npyk

 ([ADP]+KADP)

Ppc (PEP carboxylase) K1+K2[AcCOA]+K3[FDP]+K4[AcCOA][FDP]
1+K5[AcCOA]+K6[FDP]

(
[PEP]

Km+[PEP]

)
G6PDH

vmax
G6PDH [G6P][NADP]

([G6P]+Kg6p)
(
1+ [NADPH]

Kndph

)(
Knadp

(
1+ [NADPH]

Knadph

)
+NADP

)
PGDH
(phosphogluconate
dehydrogenase)

vmax
PGDH [6PG][NADP]

([6PG]+K6pg)
(
[NADP]+Knadp

(
1+ [NADPH]

Knadph

)(
1+ [ATP]

Katp

))
Rpe (ribulose-phosphate
3-epimerase) vmax

Rpe

(
[Ru5P] − [R5P]

KRpe
eq

)
Rpi (ribose-5-phosphate
isomerase) vmax

Rpi

(
[Ru5P] − [R5P]

KRpi
eq

)
TktA (transketolase A) vmax

TKtA

(
[R5P][Xu5P] − [S7P][GAP]

KTKtA
eq

)
TktB (transketolase B) vmax

TKtB

(
[Xu5P][E4P] − [F6P][GAP]

KTKtB
eq

)
Tal (tyrosine ammonia
lyase)

vmax
TaL

(
[GAP][S7P] − [E4P][F6P]

KTKtB
eq

)

PcK (PEP carboxykinase) vmax
PcK

 [OAA]
[ATP]
[ADP]

KOAA
m

[ATP]
[ADP]+[OAA]

[ATP]
[ADP]+

KATP
i KOAA

m
KADP

i
+

KATP
i KOAA

m
KPEP

m KADP
i

[PEP]+
KATP

i KOAA
m

KPEP
i KATP

l

[ATP][PEP]
[ADP] +

KATP
i KOAA

m

KADP
i KOAA

l
[OAA]


PDH (pyruvate
dehydrogenase complex)

vmax
PDH

[NAD]

 1

1+Ki
[NADH]
[NAD]

( [PYR]

KPYR
m

)(
1

KNAD
m

)(
[COA]

KCOA
m

)
(
1+ [PYR]

KPYR
m

)(
1

NAD + 1
KNAD

m
+

[NADH]

KNADH
m [NAD]

)(
1+ [COA]

KCOA
m

+
[AcCOA]

KAcCOA
m

)

Pta
(phosphotransacetylase)

vmax
Pta

(
1

KAcCOA
i KP

m

)(
[AcCoA][P]− [AcP][CoA]

Keq

)
(
1+ [AcCoA]

KAcCoA
i

+
[P]
KP

i
+

[ACP]

KACP
i

+
[CoA]

KCoA
i

+

(
[AcCoA][P]

KAcCoA
i KP

m

)
+

(
[AcP][CoA]

KACP
m KCoA

i

))

Ack (acetate kinase)
vmax

Ack

(
1

KADP
m KACP

m

)(
[AcP][ADP]− [ACE][ATP]

Keq

)
(
1+ [Acp]

KAcP
m

+
[ACE]

KACE
m

)(
1+ [ADP]

KADP
m

+
[ATP]

KATP
m

)
Acs (acyl-coenzyme A
synthetase)

vmax
Acs [ACE][NADP]

(Km+[ACE])(Keq+[NADP])

Cs (citrate synthase)
vmax

CS [AcCoA][OAA]

(KAcCoA
d KOAA

m +KAcCoA
m [OAA])+

(
[AcCoA]KOAA

m

(
1+ [NADH]

KNADH
i1

))
+

(
[AcCoA][OAA]

(
1+ [NADH]

KNDAH
i2

))

ICDH (isocitrate
dehydrogenase)

[ICDH]
K f

KICIT
m

KNADP
d

(
[ICIT]− [NADH][2KG]

KICDH
eq [NADP]

)


1
[NADP] +

[ICIT]KNADP
m

KICIT
m KNADP

d [NADP]
+ 1

KNADP
d

+
[ICIT]

KICIT
m KNADP

d
+

[ICIT]
KICIT

d [NADP]
[NADPH]KNADP

m
KICIT

m KNADP
m KNADPH

einh
+

[NADPH]K2KG
eknh

K2KG
m KNADPH

enhe [NADP]
+

[2KG]KNADPH
m

K2KG
m KNADPH

enhe [NADP]
+

[2KG]

K2KG
m

[NADPH]

KNADPH
enhe [NADP]

+
[2KG]KNADPH

m
K2KG

m KNADPH
m

[NADPH]

KNADP
ekn [NADP]
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Table A2. Cont.

Reactions Kinetic Equation

IcL (isocitrate lyase)
vmax

lcl− f
[ICIT]

KICIT
m(

1+ [ICIT]

KICIT
m

+
[SUC]

KSUC
m

+
[PEP]
KPEP

m
+

[2KG]

K2KG
m

+ 1
Kl

)

MS (malate synthase)
vmax

MS
[GOX]

KGOX
m

[AcCoA]

KAcCoA
m

−vmax
MS

[MAL]

KMAL
m(

1+ [GOX]

KGOX
m

+
[MAL]

KMAL
m

+
(
1+ [AcCoA]

KAcCoA
m

))

aKGDH (akg
dehydrogenase)

vmax
2KGDH [aKG][CoA]

KNAD
m [aKG][CoA]

[NAD]
+ KCoA

m [aKG] + K2KG
m [CoA] + [aKG][CoA] +

K2KG
m Kz[aKG][SUC][NADH]

K2KG
1 KSUC

1 [NAD]
K2KG

m Kz[SUC][NADH]

KSUC
1 [NAD]

+
KNAD

m [aKG][CoA][NADH]

KNADH
1 [NAD]

+
KCoA

m [aKG][SUC]
KSUC

1


SDH (succinate
dehydrogenase)

vSDH1vSDH2

(
[SUC]− [FUM]

Keq

)
KSUC

m vSDH2+vSDH2[SUC]+
vSDH1 [FUM]

Keq

Fum (fumarase)
vFum1vFum2

(
[FUM]−

[MAL]
kFum eq

)
KFum

m vFum1+vFum2[FUM]+
VFum1 [MAL]

Keq

Mez (malic enzyme)
vmax

Mez [MAL] [NADP]
(KMAL+[MAL]) (Keq+[NADP])

MDH (malate
dehydrogenase)

vMDH1vMDH2

(
[MAL]− [OAA]

Keq

)


KNAD
1 KMAL

m vMDH2

[NAD]
+ KMAL

m vMDH2 +
KNAD

m vMDH2[MAL]
[NAD]

+ vMDH2[MAL] + KOAA
m vMDH1[NADH]

Keq[NAD]
+

KNADH
m vMDH1[OAA]

Keq[NAD]
+

vMDH1[NADH][OAA]
Keq[NAD]

+
vMDH1KOAA

m [NADH]

KeqKNAD
1

+
vMDH2KNAD

m [MAL][OAA]

KOAA
1 [NAD]

+
vMDH2[MAL][NADH]

KNAD
1

+
vMDH1[MAL][NADH][OAA]

KeqKMAL
1 [NAD]

+
vMDH2[MAL][OAA]

KOAA
II

+
vMDH1[NADH][OAA]

KNAD
II Keq

+
KNAD

1 vMDH2[MAL][NADH][OAA]

KNAD
II KOAA

m KNADH
1



Table A3, describes the kinetic parameters segmentation of the proposed algorithm.

Table A3. Kinetic parameters segmentation.

Kinetics Number of Segments

vpyk
max 2

npk 3
icdh 2
k f

icdh
2

kd
icdhnap 3

km
icdhnap 2

vicl
max 3

Table A4. STD and mean of the simulated results.

Metabolites Experimental
Data

The Model under
Study Data

Se-PSO
Estimation

ESe-PSO
Estimation

DE
Estimation

GA
Estimation

Glc 0.0556 0.1220 0.1023 0.0923 0.1025 0.1174
G6P 3.48 0.1298 0.3120 1.3281 0.1993 0.1412
F6P 0.6 0.0214 0.0532 0.0872 0.0235 0.0221
FDP 0.272 1.5186 2.5257 1.3335 2.0125 1.975
PEP 2.67 1.5076 1.8320 2.0321 1.8470 1.9832
PYR 2.67 2.8279 2.9380 2.7256 3.0100 3.002
6PG 0.808 0.0178 0.0752 0.2043 0.0194 0.0187
Ru5P 0.111 0.0214 0.0628 0.0870 0.0232 0.0228
Xu5P 0.138 0.0265 0.0925 0.0902 0.0284 0.0279
S7P 0.276 0.0047 0.0524 0.0802 0.0482 0.0480
R5P 0.398 0.0763 0.0967 0.0985 0.0842 0.0772
E4P 0.098 0.2783 0.0568 0.0671 0.0283 0.0242
MEAN 0.9647 0.5251 0.6833 0.6855 0.6189 0.6216
STD 1.2271 0.9102 1.0832 0.9320 1.0439 1.0554
Variance 1.5059 0.8286 1.1735 0.8686 1.0898 1.1138
N 12 12 12 12 12 12
Distance model minimization 45.56% 29.16% 28.94% 35.58% 35.55%
F test 1.0497 1.0482 1.2881 1.3165
Critical value of F 0.3678 0.3678 0.3678 0.3678

Table A4 describes the STD, MEAN, Variance and F test of the simulated results.
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The Parameters

In Table A5 the parameters of the proposed method are stated as follows:

Table A5. The parameters used in the algorithm.

Parameters Values

Inertia weight ω 1
Damping process ωdamp 0.99
Cognitive learning rate c1 and c2 ≤4 were c1 = 1.2 and c2 = 1.2
Random number r1 and r2 Between 0 and 1
Optimal segment 10
Bird number B of Se-PSO 10
Iteration of Se-PSO 30
Iteration of PSO 500
Bird step of PSO 100

Where ω is the inertia weight, ω damp is the damping process, c1 and c2 are the cognitive and social scaling
parameters, respectively, and r1 and r2 are random numbers drawn from a uniform distribution. The damping
process was added and the c1 = 1.2 and c2 = 1.2 were equal due to the trial and errors which were performed [32].
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