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Abstract: Many calculating methods have been already developed for solving contact problems
of parts such as gears, cams, and followers under fluid film lubrication conditions considering the
temperature and pressure dependence. Similarly, the determination of the elasto-hydrodynamic
pressure distribution the processes taking place in the lubricant and the contacting bodies, as well as
in their environment, have to be dealt with simultaneously for the determination of the temperature
field. A system of equation for the modelling of thermo-elastohydrodynamic lubrication between
two contacting bodies containing hydrodynamic, thermodynamic, and strength problems is a highly
non-linear system which becomes even more so if the temperature and pressure dependence of
the material properties are considered. To solve this system, scientists started to use the finite
element formulation in the 1960s and it was found to be a promising and reliable method. Earlier,
the lubrication analysts used only the h-version finite element method (h-FEM) till 1991, when the
first usage of the p-version finite element method (p-FEM) was published in the literature. In order to
reduce the problem, in case of point or line contact, the contact bodies can be handled as semi-infinite
ones. Following this simplification that had been successfully applied for the gap size determination,
a substructure model was defined using analytical solution of the moving heat source. Instead of an
iterative way between the solid and fluid problem, in this paper we present an efficient solution when
thermal model for lubricant and surfaces were coupled and solved by a direct numerical method in
one step.

Keywords: TEHD; lubrication; FEM; temperature; variation; thin; film; simulation

1. Introduction

For rolling sliding parts such as cams and followers, gears, and bearings often operate under high
loads, high speed, and high slip; the local or global temperature rise caused by the heat dissipation
generated by the pressure distribution acting on the surfaces and the tangential stresses developing in
the lubricant, respectively, may reach a level resulting in a non-negligible deformation of the surfaces
as well as influencing the lubricant properties. Sternlicht et al. [1] (1961) investigated thermal effects
in elasto-hydrodynamic lubricated (EHL) contacts. Cheng and Sternlicht [2] (1965) assumed that the
viscosity is constant through the oil film and solved the thermal EHL model. Later, Cheng [3] (1965)
obtained a refined solution in which the TEHL model got variable viscosity through the film thickness.
Murch and Wilson [4] (1975) proved the significant effect of thermal conditions on minimum film
thickness applying high rolling speeds.

Sadeghi [5] (1990) published a complete numerical solution for TEHD (thermal
elasto-hydrodynamic) problem using different slip effects on the contact area with the same conclusions
as Murch and Wilson.
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Similarly to the determination of the elasto-hydrodynamic pressure distribution, the processes
taking place in the lubricant and the contacting bodies, as well as in their environment, have to be dealt
with simultaneously for the determination of the temperature field. Based on the research mentioned
above, in our work only the inertia forces and turbulences are neglected from the general Reynolds
equation. The thermodynamic model of the fluid–film contact has got non-constant temperature
condition inside the film.

The scientists used finite difference method to obtain the solution of the generalized Reynolds
equation. In case of these solving systems, a very high number of points of grid is needed. The finite
element formulation is researched by Reddi [6] (1969), Reddi and Chu [7] (1970), Rohde [8] (1974),
Rohde and Oh [9] (1975), Garcia-Suarez et al. [10] (1984), and Freund and Tieu (1993) [11].

These lubrication analysts used only the h-version finite element method (h-FEM) for solving
Reynolds and generalized Reynolds equation till 1991, when the first usage of the p-version finite
element method (p-FEM) was published in the literature (Nguyen [12]). In this work, the geometry and
the lubricant properties were assumed to be constant and even today the p-FEM method is typically
used in solid mechanics and heat transfer problems.

As is generally the case of the finite element method, the weak convergence of the approximation
is searched which means that the Reynolds and energy equation was transformed to weighted-residual
integral form. For the approximation Legendre polynomials were used to obtain the unknown
pressure and temperature distribution. In our work, a simulation procedure was developed based
on a finite element method to model thermo-hydrodynamic processes. This method is based on our
EHD (elasto-hydrodynamic) simulation procedure, which was supplemented by the incorporation of
discretized equations describing the thermal conditions. Using p-FEM (p-version of finite element
method) for solving TEHD (thermo elasto-hydrodynamic) problems allows the replacement of the fine
mesh with a coarse one. In case of p-FEM, a discretization strategy is used in which the finite element
mesh is fixed and the degrees of approximating polynomials are increased.

As for additional development, it is shown that boundary condition can be redefined as all inlet
and outlet can be adiabatic boundaries, therefore, they can be treated uniformly and there is no need to
distinguish between them.

In order to reduce the problem, in case of point or line contact, the contact bodies can be handled as
semi-infinite ones. In the interest of possessing the compatible form to finite element tensor expression,
the gap size has been calculated as a sum of the sizes of the original geometry and deformation of a
half-space in discretized form to which the displacement of a rigid surface has been added. The least
square method can be used to obtain the coefficients of discretized form in order to approximate the
analytical solution of deformation for half-space. Following this simplification that was successfully
applied for the gap size determination, a substructure model was defined using an analytical solution
of the moving heat source where the input temperature data were obtained from p-FEM calculation
(Carslaw and Jaeger (1959) [13]).

Instead of an iterative way between the solid and fluid problem, in this paper we present an
efficient solution when a thermal model for lubricant and surfaces were coupled and solved by a direct
numerical method in one step.

Due to the coarse mesh which is usually used in the case of p-FEM, cavitation has to be managed
inside elements in order to obtain an accurate solution of the cavitation. Typically in the literature,
deactivating those elements where the cavitation appears is enough for the authors; however, only a
lower level of accuracy of calculation can be obtained. For the above reasons, a new penalty parameter
method was developed in which a density–pressure function is described based on work by Kumar and
Booker. The error of approximation can be decreased using higher penalty values and the method is
adaptable if cavitation pressure pc , 0, as well. Unlike previous penalty parameter methods, continuity
can be ensured here, so this method can be easily incorporated into the p-FEM model of TEHD.
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2. Theoretical Description of the Elastohydrodynamic Lubrication

A general case of contacting surface pairs in the status of TEHL (thermal elastohydrodynamic
lubrication) can be seen in Figure 1. The gap between the mating bodies is filled with lubricant
because of to the relative velocity of the bodies. The developed hydrodynamic pressure is affected by
the motion of the lubricant. The relative velocity difference between the mating surfaces results in
tangential (shear) stress in the lubricant which cause the flow of the fluid material. Thus, at the proper
kinematic condition of the contacting bodies and the pressure distribution in the lubricant can maintain
balance with the clamping force on the contacting bodies and with this prevent a body-to-body contact.
Pressure distribution acting on the surfaces may reach a level resulting in a non-negligible deformation
of the surfaces. The pressure and the tangential stresses developing in the lubricant generate heat
dissipation which cause local temperature rise influencing the lubricant properties. If the circumstances
of contact developing underneath thermal elasto-hydrodynamic conditions of lubrication are needed
to be modelled, then hydrodynamic, thermodynamic, and solid-structural problems must be solved
simultaneously with a modelling system which is highly non-linear, even by itself, but also because
of material properties. However, these three main areas may be separated clearly from each other in
respect of their basic equations.
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Figure 1. Contacting bodies.

For the contact problem of lubrication theory—due to its nature—it is convenient to employ in
general a Gauss coordinate system with axis z perpendicular to the center contact surface.

Because of the nature of the contact problem of lubrication theory, it is generally advisable to use
a Gauss coordinate system of which the z axis is perpendicular to the ideal center of the contact area.
However, in the case of point or spot contact the center contact surface may be considered as a plane
with its normal being parallel with the line of action of the force pressing the surfaces to each other, i.e.,
of the contact pressure. Consequently, it is most convenient to use for the investigation and description
of the phenomenon an orthogonal coordinate system with its axis z being coincident with the line of
action of the contact pressure developed by the compressive force.
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2.1. Contact Pressure and Film Shape

The generalized Reynolds equation of Dowson (1961) [14] is highly non-linear partial differential
equation with variable viscosity and density extents through the film thickness which is used to
calculate the contact pressure generated by fluid film lubrication.

The gap height can be calculated as a sum of the sizes of the original geometry and deformation
of a half-space to which the displacement of a rigid surface has been added [15]:

h = h1 + h2 = hg1 + ∆rigid1 + δ11 + hg2 + ∆rigid2 + δ2 = hg + ∆rigid + δ (1)

where ∆rigid is the displacement of rigid surface, hg is the original gap height, the δi deformation of the
contacting solid bodies.

The exact details of the generalized Reynolds and displacement field equations and calculation
with them can be found in literature [15,16] in order to determine the pressure and flow field of the
liquid lubricant.

2.2. Penalty Cavitation

During the description of lubrication problems both the boundary conditions defined
hypothetically and the limitations applicable to the free edge forming the boundary of the actual
lubrication zone which developed due to the cavitation, respectively, were encountered simultaneously.

In the cavitation zone the lubricant flows adhered to the surfaces and were broken up into
strips. For this reason, the magnitude of the gas filling factor must be taken into account also for the
thermodynamical equation.

At the hypothetically assumed edge the primary equation definable for the pressure field:

p = pa x, y ∈ Γp
c (2)

can be identified on the one hand and the secondary boundary conditions defining the flow rate of
lubricant exiting at the edge, on the other hand:

⇀
q h·

⇀
n Γc = qnΓc

h = qa x, y ∈ Γq
c (3)

where pa is the external pressure and qa the flow rate of lubricant exiting at the edge.
However, the lubrication region with the hypothetically assumed Γc edge does not coincide in a

significant portion of the cases with the region filled with unbroken lubricant film to 100%. The location
of edge (Γc

cav) of the actual lubrication region is not known beforehand but can be determined on the
basis of the properties applicable to it.

In case the lubricant film breaks down due to the effect of cavitation and the sub-cavitation pressure
is neglected then the cavitational boundary condition introduced by Swift-Stieber [17], commonly
called the Swift-Stieber boundary condition in the literature, should be satisfied at the primary and
secondary boundary conditions inside the cavitation region and at its boundary:

p = pc
∣∣∣∇xyp

∣∣∣ = 0 x, y ∈ Γq
c (4)

where pc is the cavitational or saturation pressure.
While the satisfaction of the primary and secondary boundary conditions (2)–(3) does not entail

any special difficulty, numerous problems are raised by the cavitational boundary condition (4).
The difficulty in the resolution process is constituted primarily by the fact that the boundaries of the
lubricating film broken down by cavitation are unknown. Consequently, the boundaries of the initially
assumed region do not coincide with the real boundaries (Γc—Figure 2) of the lubricating film. Thus,
the relationships written previously for a homogeneous phase continuous lubricating film cannot be
applied in the entirety of the presumed region bounded by Γc.
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The Elrod-Adams algorithm is widely used for extending the Reynolds equation inside the
cavitation zone which includes the θ = ρ/ρc fractional film content [18]. Kumar and Booker [19,20]
published the method which is fitted for the FEM procedure. This method separates the density and
pressure determination. Using of linear correlation between the density and the viscosity was also
suggested by Kumar and Booker [19,20]:

η

ηL
=

ρ

ρL
ρ ≤ ρc (5)

Instead of the separation of the variables for the contact and cavitation zone, penalty cavitation
method has been proposed by Szávai [16] where the pressure dependent density in the cavitation zone
is approximated by a high gradient slope in case of sufficiently low pressure (i.e., under saturation
pressure). With these conditions the density can be described as follows [16]:

ρ∗: =
ρL(p,ϑ)

γ(p)·(pc − p) + 1
(6)

where γ(p) is the penalty function which is γ(p) = c if p < pc otherwise 0, where c is a sufficiently
high number.

The pressure dependency of the density exists both in the lubrication region and cavitation zone.
Thus, ρ* range contains the cavitation zone and the lubrication region as well. The volume fraction
based on (6) can be obtained as [16]:

θ(p) =
ρ∗

ρL
=

1
γ(p)(pc − p) + 1

(7)

Applying assumption of Kumar and Booker of the density and viscosity correlation the viscosity
can be obtained as [16]:

η∗: = ηL(p,ϑ)
ρ∗

ρL(p,ϑ)
= θ(p)ηL(p,ϑ) (8)

2.3. Kinematic Properties of Lubricant in the Gap

The F(τeq) is a characteristic function of a specific type of a lubricant model and τeq is the equivalent

shear stress in τeq =
√

1
2σ
′
· · ·σ′ where σ′ is the stress deviator tensor.

In the case of various types of lubricant models, the function F(τeq) can be equal to the forms
below [17]:

F
(
τeq

)
Newton

=
τeq
η ; F

(
τeq

)
Eyring

= τE
η sinh

( τeq
τE

)
; F

(
τeq

)
viscoplastic

= − τL
η ln

(
1−

τeq
τL

)
;

F
(
τeq

)
simple_viscoplastic

= −
τeq
η

(
1−

∣∣∣∣ τeq
τL

∣∣∣∣)−1
; F

(
τeq

)
circular

=
τeq
η

[
1−

( τeq
τL

)2
]− 1

2
(9)

where τE is the Eyring shear stress and τL is the limit shear stress.
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τL can be taking account as a linear function of pressure of which coefficients τl0 and χ:

τL = τl0 + χp (10)

Since boundary conditions for the velocity field on the surfaces—as shown in Figure 1—are:

z = −h1 :
→
u =

→
u1 = [u1, v1, w1] =

[⇀
uxy1 , w1

]
z = h2 :

→
u =

→
u2 = [u2, v2, w2] =

[⇀
uxy2 , w2

] (11)

∂→uxy

∂z


∗

=
1
θ

F(τe)

τe


(
∇xyp

)(
z−

F1

F0

)
+ θ

(
→
uxy1 −

→
uxy1 −

⇀
K0xy

)
F0

+ A
d
⇀
σ
′

z
dt

(12)

(
→
uxy

)∗
=
→
uxy1 +

1
θ∇xyp

 z∫
−h1

F(τeq)
τe

zdz− F1
F0
·

z∫
−h1

F(τeq)
τe

dz

+
+
→
u xy2−

→
u xy1−

⇀
K0xy

F0
·

z∫
−h1

F(τqe)
τeq

dz +
z∫
−h1

A d
⇀
σ
′

z
dt dz

(13)

w∗ = w = w1 +
w2 −w1

F0

z∫
−h1

F
(
τeq

)
τe

dz (14)

where F0 =
h2∫
−h1

F(τeq)
τeq

dz F1 =
h2∫
−h1

F(τeq)
τeq

zdz
⇀
K0xy =

h2∫
−h1

A d
⇀
σ
′

z
dt dz =


h2∫
−h1

Adτxz
dt dz

h2∫
−h1

Adτyz
dt dz

 according to [15], and

⇀
σ
′

z = σ
′

·
⇀
e z =

[
τxz

τyz

]
and A is compressibility (=1/K where K is bulk modulus).

The velocity component in z direction can be decomposed as [15]:

w1 = −
⇀
uxy1

(
∇xyh1

)
+ W1(t, x, y)

w2 =
⇀
uxy2

(
∇xyh2

)
+ W2(t, x, y)

(15)

where Wi is rigid body motion of the contacting body in z direction, while the first member comes
from movement of non-plane surface in x and y direction.

The filling parameter taken into consideration the derivative of velocity along the gap and the
stress in this direction may be written in the following form considering that the value of the filling
parameter in the contact region is 1 and the pressure in the cavitation zone is negligibly low, respectively:

∂→uxy

∂z


∗

≈
F(τe)

τe


(
∇xyp

)(
z−

F1

F0

)
+

(
→
uxy2 −

→
uxy1 −

⇀
K0xy

)
F0

+ A
d
⇀
σ
′

z
dt

=
∂
→
uxy

∂z
(16)

(
→
uxy

)∗
≈
→
uxy1 +∇xyp

 z∫
−h1

F(τeq)
τe

zdz− F1
F0
·

z∫
−h1

F(τeq)
τe

dz

+
+
→
u xy2−

→
u xy1−

⇀
K0xy

F0
·

z∫
−h1

F(τqe)
τeq

dz +
z∫
−h1

A d
⇀
σ
′

z
dt dz =

→
uxy

(17)

⇀
σ
′

z =
τeq

F
(
τeq

) ∂→uxy

∂z
−A

d
⇀
σ
′

z

dt

 (18)
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⇀
σ
′

z
∗ =

(∇xyp
)(

z− F1
F0

)
+ θ

(
→
u xy2−

→
u xy1 1−

⇀
K0xy

)
F0

 ≈
≈ θ

(∇xyp
)(

z− F1
F0

)
+

(
→
u xy2−

→
u xy1−

⇀
K0xy

)
F0

 = θ
⇀
σ
′

z

(19)

The stress deviator tensor takes the simplified form below for Newtonian fluids:

⇀
σ
′

z = η
∂
→
uxy

∂z
(20)

3. Theoretical Description of Thermodynamical Part of the TEHD

The next equation expresses the conservation of energy stating that the change in total energy
during unit time is equal to the sum [16]:

d(cvϑ)

dt
+ p

(
∇·
→
u
)
=

1
ρ
∇·(λ∇ϑ) +

Ξ
ρ

(21)

where Ξ is the dissipation originating in the internal friction of the lubricant:

Ξ = σ
′

··D (22)

ϑ—the temperature, and
cv—specific heat referred to constant volume.
D—strain rate
σ’—deviator stress tensor
If the thermal properties of the continuum are presumed to be constant, then:

cv
dϑ
dt

+ p
(
∇·
→
u
)
=

1
ρ
∇·(λ∇ϑ) +

Ξ
ρ

(23)

for an uncompressible liquid (∇·
→
u = 0)

cv

(
∂ϑ
∂t

+
→
u ·(∇ϑ)

)
=

1
ρ
∇(λ∇ϑ) +

Ξ
ρ

(24)

Similarly to the determination of the elasto-hydrodynamic pressure distribution the processes
taking place in the lubricant and the contacting bodies as well as in their environment have to be dealt
with simultaneously for the determination of the temperature field. The details of the processes taking
place in the contacting bodies will not be discussed here, but the assumption employed according to
which the temperature fields developing in the bodies can be determined analytically or numerically
on the basis of the boundary conditions applicable to the bodies, primarily in respect of temperature,
and secondarily in respect of heat transfer.

Because of the nature of the problem the following simplification may be employed similarly to
the simplifications seen at the derivation of the Reynolds equation according to [17]:

∇·(λ∇ϑ) ≈
∂
∂z

(
λ
∂ϑ
∂z

)
(25)

However, this does not mean a significant easement for the solution since the temperature variation
along the z axis cannot be eliminated. For the calculation of the temperature field the temperature
variation along the gap also has to be determined unless the approach assuming parabolic temperature
distribution along the cross-section is employed. In this latter case it is sufficient to determine a typical
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temperature distribution (mean or average temperature) independent of the gap thickness coordinate
(z) if the temperatures of the contacting bodies are known or determined by other equations.

Under the conditions of elasto-hydrodynamic lubrication—as also outlined before—the flow may
be considered to be laminar as the gap size is very small, barely a few µm. Thus—with turbulence
neglected—the terms averaged in time may be considered to constitute the parameters usable for
describing the fluid motion.

The dissipation in the lubricant is:

Ξ = τxz·

(
∂u
∂z

+
∂w
∂x

)
+ τyz·

(
∂v
∂z

+
∂w
∂y

)
(26)

Taking into consideration that the derivatives along the gap of the u and v fields are significantly
larger than the derivative of the w field along the contact plane the dissipation will be the following
with negligible error [21]:

Ξ ≈ τxz·
∂u
∂z

+ τyz·
∂v
∂z

=
⇀
σ
′

z·
∂
→
uxy

∂z
(27)

Thus, the dissipation can be written in the following form for Newtonian fluids:

Ξ ≈ η

(∂u
∂z

)2

+

(
∂v
∂z

)2 = η

∂→uxy

∂z


2

(28)

3.1. Thermal Boundary Conditions

At variance with the boundary condition for pressure boundary conditions have to be defined for
the temperature field both at the contact surfaces (S1, S2) and for the entire cross-section of the oil film
at the boundary of the contact zone.

Both surfaces S1 and S2 can be divided into two sections (Siϑ, SiQ) enabling thereby to specify a
primary boundary condition for the temperature field, on the one hand, and a secondary boundary
condition defining the convection of heat through the surfaces:

ϑ(x, y, hi) = ϑsi(x, y) (x, y) ∈ Siϑ (29)

∂ϑ
∂nSi

= ∇ϑ·
→
nS =

1
λ

⇀
q Si

(x, y)·
→
nS = −

1
λ

qSi(x, y)(x, y) ∈ SiQ (30)

where ϑsi(x,y) is the temperature of surface Siϑ while qsi is the convection of heat through surface SiQ
which are either pre-defined or determined during the solution of the associated thermal problem
(relationship between the lubricant and the contacting body).

Oil inlet and outlet boundaries have free temperature condition (qn = 0).
In the case of pure sliding the contact region moves together with one of the surfaces or—worded

in another way—this surface is stationary in relation to the contact region. In this case the heat exchange
taking place through the surface stationary in relation to the contact zone can be neglected in most
cases since it is more intensive by several orders of magnitude through the surface of the body moving
in relation to the contact zone. At this time the adiabatic boundary condition proposed by Rohde and
Oh [8] can also be applied to the surface moving with contact region:

∂ϑ
∂ns

= ∇ϑ·
→
n s ≈

∂ϑ
∂z

= 0 (31)

The adiabatic modelling of this surface makes problem solving significantly easier, for example in
the case of the quasi-stationary line contact of bodies regarded as infinite semi-spaces as the temperature
distribution of the body moving with the contact region cannot be determined analytically or only in a
very complex manner beyond the initial transient phase.
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While generally accepted boundary conditions (30) and (31) have been developed for contacting
surfaces S1 and S2 during the evolution of this field of science different boundary conditions may be
encountered at the inlet and outlet cross-section of the lubricating film. An applicable approximation
could involve the consideration of the derivatives of the temperature of the lubricant films carried on
the surfaces taken in parallel with the plane of the surface to be negligibly small and the free surface of
the lubricant in contact with air to be adiabatic with good approximation as it was presented in [16]

∂ϑ(x, y, z)
∂nΓc

= 0; r(x, y) ∈ Γc, −h1 ≤ z ≤ h2 (32)

A boundary condition similar to this was seen also in previous calculations [17] as well since no
other reliable and practically applicable boundary condition could be defined because of the problems
associated with backflow and the determination of the thickness of the lubricant film carried on the
surfaces and of the initial position of the contact region in connection with this.

3.2. Consideration of Cavitation

In the cavitation zone the lubricant flows adhering to the surfaces and broken up into strips.
For this reason, the magnitude of the gas filling factor must be taken into account also for the
thermodynamical equation. Thus, similarly to (6) and (8)—assuming that condition (4) is satisfied in
the hydrodynamic problem—the dissipation according to (26)–(28) will be with a negligible error [16]:

Ξ∗ ≈
⇀
σ
′

z
∗

∂→uxy

∂z


∗

≈ θ
⇀
σ
′

z
∂
→
uxy

∂z
= θΞ (33)

The coefficient of thermal conductivity varies as the function of density like the viscosity, thus [16]:

λ∗: = θλL (34)

but, at the same time, the coefficient of specific heat does not change because of its specific nature:

cv
∗: = cvL = cv. (35)

On the basis of the above, the differential equation of thermal conductivity (23)–(24) takes the
modified form shown below:

d(cvϑ)

dt
+ p∇·

→
u =

1
θρL
∇(θλL·∇ϑ) +

ΞL

ρL
. (36)

If the thermal parameters of the continuum are considered to be constant:

cv
dϑ
dt

+ p∇·
→
u =

λL

θρL
∇(θ·∇ϑ) +

ΞL

ρL
. (37)

Since, according to the law of the conversion of mass:

dρ∗

dt
+ ρ∗∇·

⇀
u = 0. (38)

Taking (7) into consideration term div(u) in Equation (37) of thermal conductivity may be written
in the following form:

∇·
⇀
u = −

1
ρ•

dρ∗

dt
= −

∂ρ∗

∂t +∇ρ∗·
⇀
u

ρ∗
= −

∂ρL
∂t +∇ρL·

⇀
u

ρL
−

∂
∂tθ+∇θ·

⇀
u

θ
(39)
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On this basis:

d(cvϑ)

dt
+ p

−
∂ρL
∂t +∇ρL·

⇀
u

ρL
−

∂
∂tθ+∇θ·

⇀
u

θ

 = 1
θρL
∇(θλL·∇ϑ) +

ΞL

ρL
(40)

or in another form, expanding the substantial derivative:

∂(cvϑ)

∂t
+∇(cvϑ)·

⇀
u + p

−
∂ρL
∂t +∇ρL·

⇀
u

ρL
−

∂
∂tθ+∇θ·

⇀
u

θ

 = 1
θρL
∇(θλL·∇ϑ) +

ΞL

ρL
(41)

Let us multiply the above equation with θρL in order to obtain symmetric matrixes in the finite
element model:

θρL

(
∂(cvϑ)
∂t +∇(cvϑ)·

⇀
u
)
+ p

(
−

∂ρL
∂t +∇ρL·

⇀
u

ρL
−

∂
∂tθ+∇θ·

⇀
u

θ

)
θρL =

= ∇(θλL·∇ϑ) + θΞL

(42)

The above equation may be simplified as follows in some basic cases.
If the lubricant density is constant (ρL = const, dρL/dt = 0), then:

−

∂ρL
∂t +∇ρL·

⇀
u

ρL
−

∂
∂tθ+∇θ·

⇀
u

θ
= −

∂
∂tθ+∇θ·

⇀
u

θ
. (43)

In the case of stationary contact:

−

∂ρL
∂t +∇ρL·

⇀
u

ρL
−

∂
∂tθ+∇θ·

⇀
u

θ
= −
∇ρL·

⇀
u

ρL
−
∇θ·

⇀
u

θ
. (44)

At stationary contact with constant lubricant density:

−

∂ρL
∂t +∇ρL·

⇀
u

ρL
−

∂
∂tθ+∇θ·

⇀
u

θ
= −
∇θ·

⇀
u

θ
. (45)

Returning to original Equation (42) ρL = ρc may be considered to be approximately constant in
the cavitation zone. Above the lubrication region, however, the value of the filling parameter is θ = 1.

Thus, in the lubrication zone:

−

∂ρL
∂t +∇ρL·

⇀
u

ρL
−

∂
∂tθ+∇θ·

⇀
u

θ
= −

∂ρL
∂t +∇ρL·

⇀
u

ρL
(46)

while in the cavitation zone

−

∂ρL
∂t +∇ρL·

⇀
u

ρL
−

∂
∂tθ+∇θ·

⇀
u

θ
= −

∂
∂tθ+∇θ·

⇀
u

θ
. (47)

Let us notice that ρL may vary only in the lubrication zone where θ = 1 but, at the same time, may
vary only in the cavitation zone where, however, ρL = ρc with good approximation.

On this basis, the new thermal conductivity equation derived with the use of the filling parameter
will be [16]:

θρL

(
∂(cvϑ)
∂t +∇(cvϑ)·

⇀
u
)
+ p

(
−
∂ρL
∂t −∇ρL·

⇀
u −

(
∂
∂tθ+∇θ·

⇀
u
)
ρc

)
=

= ∇(θλL·∇ϑ) + θΞL

(48)
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The following simplified differential equation is obtained with constant density and thermal
parameters:

θρLcv

(
∂ϑ
∂t

+∇ϑ·
⇀
u
)
− p

(
∂
∂t
θ+∇θ·

⇀
u
)
ρL = λL∇(θ·∇ϑ) + θΞL. (49)

3.3. Temperature Variation of Contacting Bodies as the Result of Heat Sources Distributed on Their Surfaces

As presented in Section 3.1, determining the temperatures of the contacting bodies and their
surfaces is a high priority task during the solution of the thermo-dynamical problem. As obvious
also from boundary condition (29) the temperature of the lubricant adhering to the surfaces in the
contact region is identical with the surface temperature and, furthermore, heat defined by (30) affects
the bodies through the surfaces:

qS1(x, y) = θλL·
−∂ϑ(x,y,−h1)

∂z ;
→
nS1 ≈ −

→
e

qS2(x, y) = θλL·
∂ϑ(x,y,h2)

∂z ;
→
nS2 ≈

→
e z

; (x, y) ∈ Ac. (50)

Similarly to the determination of surface deformation, modelling the contacting bodies as
semi-infinitive bodies is applicable frequently also for the calculation of the thermal part of
thermo–elasto–hydrodynamic problems. If this can be done, then the relationships according to [13]
elaborated for the case of heat sources moving in and infinite half-space (at a point in infinite space [13])
in the determination of the temperature distribution of the bodies:

ϑs(x, y, z) − ϑ0
Si
=

1
2π

∫
A(x̂,ŷ)

qSi(x̂, ŷ)
ρSicSiκSi

e
⇀
r ·
⇀
u xy,Si

−USi
R

2·κ

R
dA(x̂, ŷ) (51)

R2 = (x̂− x)2 + (ŷ− y)2 + z2

r2 = (x̂− x)2 + (ŷ− y)2

U2
xy,Si

=
→
uxy,Si ·

⇀
uxy,Si

(52)

while for line loads [16]:

ϑSi(x, z) − ϑ0
Si
=

1
π

∫
s(x̂)

qSi(x̂)
ρSicSiκSi

e
USi

(x̂−x)

2·κ K0


USi

√
(x̂− x)2 + z2

2κ

ds(x̂) (53)

where K0 is a second type, zero order modified Bessel function.
Let us introduce the symbol shown below:

ΛSi =
1

2π
λLSi

ρSicSiκSi

e

⇀
r ·
⇀
u Si
−USi

r

2·κSi

r
·

(
→
nSi ·

→
e z

)
(54)

ϑs(x, y, z) − ϑ0
Si
=

∫
A(x̂,ŷ)

∂ϑ
∂z

∣∣∣∣∣
Si

θΛSidA(x̂, ŷ) (55)

which will take the following form in the same sense for line contact with (53) taken into
consideration [16]:

ΛSi =
1
π

λLSi

ρSicSiκSi

e
USi
·(x̂−x)

2·κSi K0

[
USi(x̂− x)

2κSi

]
·

(
→
nSi ·

→
e z

)
(56)
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ϑSi(x, z) − ϑ0
Si
=

∫
s(x̂)

∂ϑ
∂z

∣∣∣∣∣
Si

θΛSids(x̂) (57)

If the above approximation cannot be permitted, then the substructure approach well-known in
the finite element practice may be employed in which case the thermal problem of contacting bodies is
handled as a substructure of tribology problem. This is less efficient but the combined determination
of the temperature field applicable to both the structure and the contact region can also be carried out if
the construction of the cause-and-effect matrix necessary for the sub-structural model cannot be solved
or only difficultly.

3.4. Weak Integral form of the Thermodynamic Equation

The weak integral form of thermodynamic Equation (42) can be set up with the use of a weight
function wQ [16]:∫

Vc

wQ

(
θρL

(
∂(cvϑ)
∂t +∇(cvϑ)·

⇀
u
)
− p

(
∂ρL
∂t + ρc

∂
∂tθ+∇ρL·

⇀
u +∇θ·

⇀
uρc

)
− θΞL

)
+ θλ·∇wQ·∇ϑ

)
dV −

∮
Ωc
θλLwQ∇ϑ·

⇀
n ΩdA = 0

(58)

on the basis of (30) equivalent to:∫
Vc

wQ

(
θρL

(
∂(cvϑ)
∂t +∇(cvϑ)·

⇀
u
)
− p

(
∂ρL
∂t + ρc

∂
∂tθ+∇ρL·

⇀
u +∇θ·

⇀
uρc

)
− θΞL

)
+ θλL·∇wQ·∇ϑ

)
dV −

∮
Ωc

wQ
⇀
q Q·

⇀
n ΩdA = 0

(59)

if vector u is introduced as a finite element symbol from wQ = Nϑ and vector u, then:∫
Vc

θρL
∂cv
∂t NϑNT

ϑdVT +
∫
Vc

θρLcvNϑNT
ϑdV ∂T

∂t +
∫
Vc

θρLcvNϑ

(
uT

(
∇NT

ϑ

))
dVT+∫

Vc

θρLNϑ

(
uT(∇cv)NT

ϑ

)
dVT−

∫
Vc

p
(
∂ρL
∂t + ρc

∂
∂tθ+ uT(∇ρL + ρc∇θ)

)
NϑdV−

−

∫
Vc

θΞLNϑdV +
∫
Vc

θλL
(
Nϑ∇

T
)(
∇NT

ϑ

)
dVT +

∮
Ωc

qnΩ
Q NϑdA = 0

(60)

Let us introduce the following symbol [16]:

∇NT
ϑ = Bϑ (61)

Thus, the discretized thermal equation will be [16]:∫
Vc

θρL
∂cv
∂t NϑNT

ϑdVT +
∫
Vc

θρLcvNϑNT
ϑdV ∂T

∂t +
∫
Vc

θρLcvNϑ

(
uTBϑ

)
dVT+∫

Vc

θρLNϑ

(
uT(∇cv)NT

ϑ

)
dVT−

∫
Vc

p
(
∂ρL
∂t + ρc

∂
∂tθ+ uT(∇ρL + ρc(∇θ))

)
NϑdV−

−

∫
Vc

θΞLNϑdV +
∫
Vc

θλLBT
ϑBϑdVT +

∮
Ωc

qnΩ
Q NϑdA = 0

(62)
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taking the form below with constant density and thermal parameters:

ρLcv
∫
Vc

θNϑNT
ϑdV ∂T

∂t + ρLcv
∫
Vc

θNϑ

(
uTBϑ

)
dVT+

−ρc
∫
Vc

p
(
∂
∂tθ+ uT(∇θ)

)
NϑdV−

∫
Vc

θΞLNϑdV+

+λL
∫
Vc

θBT
ϑBϑdVT +

∮
Ωc

qnΩ
Q NϑdA = 0

(63)

3.5. Coupling of the Temperature Fields Developing in the Contacting Bodies and the Lubricant

Not only the lubricant but also the contacting bodies have to be investigated for the solution of the
thermodynamical problem if the boundary conditions according to (30) and (33) are not predefined but
have to be determined in the course of solving the thermal problem for coupled (lubricant–contacting
body) fields. Two possible routes are available for such coupling. The traditional technique applicable
to sub-structures is employed in one of the solutions, retaining the equations set up for both the
lubricant and the contacting body at the boundary. This route can be followed easily if the variation
solution based on the weak integral of the energy equation is used also for the contacting bodies.
According to the other possible route the equation applying to the contacting bodies at the edge is
considered to be valid and the variation of the differential equation applying to the lubricant is set up
only for the region inside the lubricant. This later possibility is advantageous mainly if an analytical
solution is desired to be employed with regard to the temperature of the contacting bodies.

In the finite element method, the unknown fields are attempted to be defined as a linear
combination (

∑
j c jϕ j) of expediently chosen approximating functions (ϕj) and unknown constants (cj)

in the course of solutions based on variation theory. Constants cj are defined so as to satisfy the weak
form of the original equation. Following the finite element practice, symbol N will be used for the
column vector of the spatial shape functions. While the T is the column vector of the time dependent cj
“constant” values.

The approximation of the temperature distribution inside the lubricant is [16]:

ϑ = NT
ϑT (64)

In this case Legendre type elements were used of which shape functions can be grouped as shown
below:

• The nodal functions taking the value of 1 at one node of the lattice dividing the region and 0 at the
others and varying linearly over the region:

Ńi

• The edge functions reaching their maximum at a given edge and having the value of 0 at the
others:

~
N

c
i

• The surface or side functions having no values at the edges and nodes:

^
N

s

i

• Plus the internal volumetric bubble function taking any value only inside the element:

N̆i

• Compiled from these the vector of the approximation functions is obtained in the form below for
a 3D element:
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NT =

ŃT,
~
N

T
,

^
N

T

, N̆T
 (65)

Let us note that on Si surfaces only the surface node-, edge-, and side shape functions of the
elements of Nϑ have got nonzero values. The shape functions have got three groups: the group of the
shape function operating inside the lubricant and groups of those related to surfaces S1 and S2.

NT
ϑ =

[
NT
ϑS1 , NT

ϑV, NT
ϑS2

]
=

[
NT
ϑS1 , NT

ϑV,S2

]
=

[
NT
ϑV,S1 , NT

ϑS2

]
(66)

T can also be grouped similarly:

TT
ϑ =

[
TT

S1
, TT

V, TT
S2

]
=

[
TT

S1
, TT

V,S2

]
=

[
TT

V,S1
, TT

S2

]
(67)

Let us introduce the following symbols:

NT
ϑV,S j =

[
NT
ϑV, NT

ϑS j

]
; TT

V,S j
=

[
TT

V, TT
S j

]
(68)

While the internal shape functions assume 0 value at the contact surfaces, their derivatives will
not be equal to 0 at the same locations. On this basis (50) may be written in the following the ith surface
at z = zSi:

qsi = θλLsi
∂NT

ϑSi

∂z
TSi + θλLsi

∂NT
ϑV,S j

∂z
TV,S j

i = 1, j = 2
i = 2, j = 1

(69)

Consequently, the surface temperature per (51) in consideration of (69) is:

qsi = θλLsi
∂NT

ϑSi

∂z
TSi + θλLsi

∂NT
ϑV,S j

∂z
TV,S j

i = 1, j = 2
i = 2, j = 1

(70)

Let us follow the same approximation method based on least squares:

min
∫
Ac

1
2

(
NT
ϑSiTSi − ϑsi

)2
dA (71)

Let us find the minimum of (71) as:∫
Ac

∂
∂TSi

(1
2

(
NT
ϑSiTSi − ϑsi

)2
)
dA =

∫
Ac

(
NϑSi −

∂(ϑsi)

∂TSi

)(
NT

h SiTSi − ϑsi
)
dA = 0 (72)

Thus [16]:

∫
Ac

NϑSi −
∫

A(x̂,ŷ)

∂NϑSi
∂z θΛS jdA(x̂, ŷ)

NT
ϑSiTSi −

∫
A(x̂,ŷ)

∂NT
ϑSi
∂z θΛS jdA(x̂, ŷ)TSi −

∫
A(x̂,ŷ)

∂NT
ϑV,Sj
∂z θΛS jdA(x̂, ŷ)TV,S j − ϑ0s

dA = 0

(73)
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The arrangement of this results in:

∫
Ac

NϑSi −
∫

A(x̂,ŷ)

∂NϑSi
∂z θΛS jdA(x̂, ŷ)


NT

ϑSi −
∫

A(x̂,ŷ)

∂NT
ϑSi
∂z θΛS jdA(x̂, ŷ)

dATSi−

−

∫
Ac

NϑSi −
∫

A(x̂,ŷ)

∂NϑSi
∂z θΛS jdA(x̂, ŷ)

 ∫
A(x̂,ŷ)

∂NT
ϑV,Sj
∂z θΛS jdA(x̂, ŷ)dATV,S j−

−

∫
Ac

NϑSi −
∫

A(x̂,ŷ)

∂NϑSi
∂z θΛS jdA(x̂, ŷ)

dAϑ0s = 0

(74)

Let the equations below apply:

KϑSii =

∫
Ac

NϑSi −

∫
A(x̂,ŷ)

∂NϑSi

∂z
θΛS jdA(x̂, ŷ)


NT

ϑSi −

∫
A(x̂,ŷ)

∂NT
ϑSi

∂z
θΛS jdA(x̂, ŷ)

dA (75)

and, furthermore:

KϑSij = −

∫
Ac

NϑSi −

∫
A(x̂,ŷ)

∂NϑSi

∂z
θΛS jdA(x̂, ŷ)


∫

A(x̂,ŷ)

∂NT
ϑV,S j

∂z
θΛS jdA(x̂, ŷ)dA (76)

while:

fϑSi = −

∫
Ac

NϑSi −

∫
A(x̂,ŷ)

∂NϑSi

∂z
θΛS jdA(x̂, ŷ)

dA (77)

On the basis of these, the equation originating from the thermal boundary conditions applicable
to surfaces S1, S2 may be written as:

KϑSiiTSi + KϑSijTV,S j + fϑSiϑ0s = 0
i = 1, j = 2
i = 2, j = 1

. (78)

That is: [
KϑSii, KϑSij

]
T + fϑSiϑ0s = 0

i = 1, j = 2
i = 2, j = 1

. (79)

These equations—together with the thermal equation per (62)—have to be solved by iteration or
in parallel with the modification that there wQ = NϑV since the conditions expressed by (78) are given
at the S1, S2 edges. If the above boundary condition per (78) holds only for the contact surface marked
i then wQ = NϑVSj. In case Equations (62) and (78) are solved in a single iteration cycle, the systems of
equations to be solved remain symmetric. In this case only parameters TV or TV,Si are calculated from
Equation (62)—depending on whether the above boundary condition model holds for both contact
surfaces or only for one of them—and parameters Tsj from Equation (78). If, choosing the parallel
solution mode, both equations are desired to be solved in a single step, the thermal equation takes the
form below. ∫

Vc

θρL
∂cv
∂t NϑVNT

ϑdVT +
∫
Vc

θρLcvNϑVNT
ϑdV ∂T

∂t +
∫
Vc

θρLcvNϑV
(
uTBϑ

)
dVT+∫

Vc

θρLNϑV
(
uT(∇cv)NT

ϑ

)
dVT−

∫
Vc

p
(
∂ρL
∂t + ρc

∂
∂tθ+ uT(∇ρL + ρc(∇θ))

)
NϑVdV−

−

∫
Vc

θΞLNϑVdV −
∫
Vc

θλLBT
ϑVBϑdVT +

∮
Ωc

qnΩ
Q NϑVdA = 0

(80)
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Or, if adiabatic boundary condition is employed for surface Sj:∫
Vc

θρL
∂cv
∂t NϑV,S jN

T
ϑdVT +

∫
Vc

θρLcvNϑV,S jN
T
ϑdV ∂T

∂t +
∫
Vc

θρLcvNϑV,S j

(
uTBϑ

)
dVT+∫

Vc

θρLNϑV,S j

(
uT(∇cv)NT

ϑ

)
dVT−

∫
Vc

p
(
∂ρL
∂t + ρc

∂
∂tθ+ uT(∇ρL + ρc(∇θ))

)
NϑV,S jdV−

−

∫
Vc

θΞLNϑV,S jdV −
∫
Vc

θλLBT
ϑV,S jBϑdVT +

∮
Ωc

qnΩ
Q NϑV,S jdA = 0

(81)

Studying the equations obtained if can be found that they are not symmetric thus their solution
requires more resources but only one step.

At variation with surface deformations, here the temperature distribution applicable to the
surface cannot be incorporated into the thermodynamic equation of the fluid through the use of
a cause-and-effect matrix but appears as a direct boundary condition and is determined either by
iteration or as a coupled problem in a single step.

Together with the discretized Reynolds equation [15] and with the discretized form of gap size
constitute [15] and with the relationship applicable to the parameters of displacement caused by
pressure [15] the discretized thermal equation a closely coupled system but the thermal and contact
problems must be manageable also separately at the same time.

4. Numerical Solution of the System of Equations

Example for solved TEHD problem by the p-version finite element method can be found in the
article of Wolff, R., Nonaka, T., Kubo, A. and Matsuo, K., [22] in 1992 since Wolff et al. used the
elasto-hydrodynamic problem published by Houpert, L. G. and Hamrock, B. J., [23].

Parameters of the problem:

• Reduced contact radius: rred = 0.0175 mm
• Dimensionless velocity: U = 2·10−11

• Herzt pressure: ph = 400 MPa
• Parameters of contacting bodies:
• Modulus of elasticity: E = 200 GPa
• Poisson number: µ = 0.3
• Density: ρ = 7850 kg/m3

• Coefficient of thermal conductivity: λs = 52 W/(m·K)
• Specific heat: cv = 460 J/(kg·K)
• Lubricant properties:
• Lubricant type: Paraffinic oil P-150
• Inlet temperature of lubricant: T0 = 323 K
• Lubricant viscosity at entry: η = 1.539·10−2 Pa·s
• Lubricant density at entry: ρ = 864 kg/m3

• Viscosity-pressure-temperature relationship: modified WLF formula [22]

lg(ηWLF) = lg(ηs) −
C1

1 + C2
[1−B1· ln(1+B2·p)]·[ϑ−Ts0−A1· ln(1+A2·p)]

(82)

• Coefficient of thermal expansion: ε = 6.5·10−4 K−1

• Coefficient of thermal conductivity: λ = 0.12 W/(m·K)
• Specific heat: cv = 2000 J/(kg·K)
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As it can be seen above, modified WLF formula is used to describe the pressure-temperature
relationship of the viscosity. For this task, the specific values of coefficients of modified WLF formula
in Equation (82) can be seen in Table 1.

Table 1. Coefficients of the WLF formula describing the pressure and temperature dependence of
lubricant viscosity [16].

WLF
Coefficient

TS0
◦C

A1
◦C

A2
GPa−1 B1

B2
GPa−1 C0 C1

C2
◦C

−71.41 122.32 1.025 0.206 22.00 7.0 11.04 30.94

There were 15 elements in the gap geometry divided along length of contact area. While only a
single element was assumed along the thickness for the calculation of temperature.

The elasto-hydrodynamic part of the problem was solved using of optimized damped
Newton–Raphson method [16]. The thermodynamical part of the problem was solved by damped
Newton–Raphson [16]. The calculated pressure distribution is shown in Figures 3–6. as well as the
temperature distribution and the gap size.

Subsequent to the problem of pure rolling contact, the calculations were carried out with 1,
1.9, 2 sliding ratios. Heat generation is much higher in this case, thus the mode of modelling the
temperature distribution along the gap strongly influences the results as demonstrated well in the
results published by Wolff and his co-authors. In our solution the temperature distribution along the
gap was taken fully into consideration by employing fourth degree approximation.

The change in pressure distribution in comparison to the case of pure rolling contact is clearly
apparent although a lower effect can be seen in comparison to the pressure distribution calculated by
Wolff et al. with the temperature varying along the gap.

The pressure distribution indicated develops at the gap shape and temperature distribution shown
in Figures 3–6 demonstrating well the definite temperature rise near the pressure peak shifting towards
the upper surface moving more slowly.

The sliding ratio is:

S = 2
ux2 − ux1

ux2 + ux1
(83)

Processes 2020, 8, x FOR PEER REVIEW 18 of 21 

 

(a) (b) 

Figure 3. (a) Pressure distribution in the case of pure rolling contact S = 0. (b) Temperature distribution 
in the case of pure rolling contact S = 0. 

  

(a) (b) 

Figure 4. (a) Pressure distribution in the case of rolling-sliding contact S = 1. (b) Temperature 
distribution in the case of rolling-sliding contact S = 1. 

Figure 3. (a) Pressure distribution in the case of pure rolling contact S = 0. (b) Temperature distribution
in the case of pure rolling contact S = 0.



Processes 2020, 8, 922 18 of 21

Processes 2020, 8, x FOR PEER REVIEW 18 of 21 

 

(a) (b) 

Figure 3. (a) Pressure distribution in the case of pure rolling contact S = 0. (b) Temperature distribution 
in the case of pure rolling contact S = 0. 

  

(a) (b) 

Figure 4. (a) Pressure distribution in the case of rolling-sliding contact S = 1. (b) Temperature 
distribution in the case of rolling-sliding contact S = 1. 

Figure 4. (a) Pressure distribution in the case of rolling-sliding contact S = 1. (b) Temperature
distribution in the case of rolling-sliding contact S = 1.

Processes 2020, 8, x FOR PEER REVIEW 19 of 21 

 

  
(a) (b) 

Figure 5. (a) Pressure distribution in the case of rolling-sliding contact S = 1.9. (b) Temperature 
distribution in the case of rolling-sliding contact S = 1.9. 

  
(a) (b) 

Figure 6. (a) Pressure distribution in the case of pure-sliding contact S = 2. (b) Temperature 
distribution in the case of pure-sliding contact S = 2. 

5. Discussion 

The weak integral form of the Reynolds and energy equation have defined and used as a basis 
of the finite element method. For approximating the pressure and temperature field, Legendre 
polynomials have been applied as shape functions. Solving the TEHD problems with a p-FEM based 
procedure allowed us to replace the smooth mesh with a coarse one. On the p-FEM procedure of thermal 
part of the TEHD problem necessary improvements have been made. This developed method and its 
application possibility is introduced in this paper. The developed method works in case of Newtonian 

Figure 5. (a) Pressure distribution in the case of rolling-sliding contact S = 1.9. (b) Temperature
distribution in the case of rolling-sliding contact S = 1.9.



Processes 2020, 8, 922 19 of 21

Processes 2020, 8, x FOR PEER REVIEW 19 of 21 

 

  
(a) (b) 

Figure 5. (a) Pressure distribution in the case of rolling-sliding contact S = 1.9. (b) Temperature 
distribution in the case of rolling-sliding contact S = 1.9. 

  
(a) (b) 

Figure 6. (a) Pressure distribution in the case of pure-sliding contact S = 2. (b) Temperature 
distribution in the case of pure-sliding contact S = 2. 

5. Discussion 

The weak integral form of the Reynolds and energy equation have defined and used as a basis 
of the finite element method. For approximating the pressure and temperature field, Legendre 
polynomials have been applied as shape functions. Solving the TEHD problems with a p-FEM based 
procedure allowed us to replace the smooth mesh with a coarse one. On the p-FEM procedure of thermal 
part of the TEHD problem necessary improvements have been made. This developed method and its 
application possibility is introduced in this paper. The developed method works in case of Newtonian 

Figure 6. (a) Pressure distribution in the case of pure-sliding contact S = 2. (b) Temperature distribution
in the case of pure-sliding contact S = 2.

5. Discussion

The weak integral form of the Reynolds and energy equation have defined and used as a basis of the
finite element method. For approximating the pressure and temperature field, Legendre polynomials
have been applied as shape functions. Solving the TEHD problems with a p-FEM based procedure
allowed us to replace the smooth mesh with a coarse one. On the p-FEM procedure of thermal part
of the TEHD problem necessary improvements have been made. This developed method and its
application possibility is introduced in this paper. The developed method works in case of Newtonian
and non-Newtonian fluid and for both stationery and time dependent case. The thermodynamic model
of the fluid–film contact has got non-constant temperature condition inside the film.

As for additional development, it is shown that boundary condition can be redefined as all inlets
and outlets can be adiabatic boundaries, therefore, they can be treated uniformly. For the contact
surfaces, a substructure model has been defined using analytical solution of the moving heat source
where the input temperature data obtained from p-FEM calculation. Instead of an iterative way
between the solid and fluid problem, in this paper we present an efficient solution when the thermal
model for lubricant and surfaces have been solved as a coupled analysis in one step. In order to handle
the cavitation problem a kind of penalty method has been applied on volume fraction parameter that is
useful for the p-version finite element method based solution of thermal problem since the continuity
equation is valid not only in the contact but in the cavitation zone as well.

The temperature distribution of the fluid film was modelled using higher order FEM approximation.
The temperature modelling procedure was coupled to film thickness and pressure calculation.
The developed calculation procedure has got a good efficiency for solving TEHL problems.
This developed p-FEM procedure can reduce the model size compared to the conventional h-FEM
methods and it is also possible to use this process in case of rough surfaces or dynamic load.
The calculation performed shows that our p-FEM numerical procedure is valid in case of TEHL
computation and the solution is obtained in a stable way.
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