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Abstract: Mercury is a toxic element that harms organisms and disturbs biogeochemical cycles.
Mercury bioremediation is based on the reduction of Hg (II) to Hg (0) by mercury-resistant bacteria.
Cupriavidus metallidurans MSR33 possesses a broad-spectrum mercury resistance. This study aims
to establish the effects of mercury on growth, oxygen uptake, and mercury removal parameters by
C. metallidurans MSR33 in aqueous solution during aerobic and anaerobic mercury bioremediation.
A new culture medium (GBC) was designed. The effects of mercury (II) (20 ppm) on growth parameters,
oxygen uptake, and mercury removal were evaluated in GBC medium in a bioreactor (3 L) under
aerobiosis. The anaerobic kinetics of mercury removal was evaluated by nitrogen replacement during
mercury bioremediation in a bioreactor. Strain MSR33 reached a growth rate of µ = 0.43 h−1 in the
bioreactor. Mercury inhibited oxygen uptake and bacterial growth; however, this inhibition was
reversed after 5 h. Strain MSR33 was able to reduce Hg (II) under aerobic and anaerobic conditions,
reaching, at 24 h, a metal removal of 97% and 71%, respectively. Therefore, oxygen was crucial for
efficient mercury removal by this bacterium. Strain MSR33 was capable of tolerating the toxic effects
of mercury (II) during aerobic bioremediation and recovered its metabolic activity.
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1. Introduction

Mercury is a highly toxic metal for cells and is distributed in the water, soil, and air, due to
human activities including mining and natural cycles [1–4]. Mercury presents in the Earth’s crust at
concentrations between 20 and 150 ppb [4]. Until 2010, it was estimated that a cumulative total of 1540
(1060−2800) Gg of mercury had been released by human activities, 73% of which were released after
1850 [5]. The main sources of mercury pollution are mining (e.g., gold, copper), the chloralkali industry,
sludge deposited in landfills, paints, disinfectants, pharmaceuticals, and seed-coat dressing, which
mobilizes mercury into the water, soil, and atmosphere [3–5]. Mercury (II) is a highly toxic specie
due to its high affinity to sulfhydryl and thioester groups of proteins, inactivating proteins of living
organisms [2,6–9]. Due to its high toxicity, several technologies have been developed for the remediation
of mercury. Physicochemical processes are efficient, but expensive at the industrial scale and not
applicable in large polluted areas [10,11]. Bioremediation is an eco-friendly and low-cost strategy for the
clean-up of polluted environments but is limited to a range of pollutant concentrations that are tolerated
by microorganisms [12–18]. Bioremediation is based on the inoculation of microorganisms, especially
bacteria and fungi, to mineralize or transform toxic compounds or elements into less toxic forms [12–18].
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Mercury bioremediation by metal-resistant bacteria is mainly based on the reduction of Hg (II) to Hg (0)
by proteins codified by the mer genes and the reducing power NADPH (Figure 1). Elemental mercury,
Hg (0), is volatile due to its high vapor pressure and insoluble in water. Mercury removal strategies
are based on the volatility and water insolubility of this heavy metal [19]. Diverse bacteria, including
C. metallidurans strains CH34 and MSR33, Pseudomonas putida strains PpY101/pSR134, Spi3, Elb2 and
KT2442, P. stutzeri strains Ibu8 and OX, P. aeruginosa Bro12, Aeromonas hydrophila, and Sphingomonas sp.
SA2, reduce mercury under aerobic conditions [3,10,11,20–24]. Studies of mercury reduction under
anaerobic conditions are scarce. P. stutzeri OX, Geobacter bemidjiensis Bem, and Geobacter sulfurreducens
PCA reduce mercury under anaerobiosis [20,25,26].
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Figure 1. Mercury (II) and organomercurial compounds resistance mechanism of C. metallidurans
MSR33. Mercury (II) and organomercurials compounds resistance is codified by mer genes in the
chromosome and the plasmids pMOL30, pMOL28, and pTP6 of strain MSR33. Hg (II) is reduced to Hg
(0) by mercuric reductase MerA using reducing power NADPH. MerB catalyzes the protonolysis of the
carbon–mercury bond in organomercurials. MerP and MerT are proteins involved in the transport of
mercury (II) inside the cell. MerG is a periplasmic protein involved in the importing of phenylmercury.
Figure adapted from Rojas et al. [10].

C. metallidurans strains are highly resistant to heavy metals and are able to metabolize toxic organic
pollutants such as toluene under aerobic and anaerobic conditions; therefore, specific strains have been
applied in bioremediation [27–30]. C. metallidurans strain CH34 is a facultative anaerobe and heavy
metal multi-resistant bacterium associated to the gold biogeochemical cycle [7,27,28]. Strain MSR33 is
a transconjugant strain of wild type C. metallidurans CH34 that possesses increased resistance to heavy
metals and organomercurial compounds [10,29]. Strain MSR33 exhibits 2.4-fold higher resistance to Hg
(II), >16-fold higher resistance to methyl-Hg, and higher resistance to Cd (II), Co (II), and Ni (II) than
strain CH34 [10,28,29]. Under aerobic conditions, strain MSR33 possesses a high resistance to mercury
II (24 ppm), methyl-Hg (>17 ppm), and is capable of reducing Hg (II) and organomercurial compounds
to Hg (0). C. metallidurans strain MSR33 has been used for the bioremediation of mercury-polluted
aqueous solutions, achieving complete mercury removal in 2 h [10]. Oxygen uptake is a key parameter
in bioprocesses such as bioremediation, where oxygen is the final electron acceptor in aerobic respiration.
Aerial oxygen is incorporated into the process of mercury bioremediation for the displacement of
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gaseous mercury to the oxidizing trap [10,21,23,26]. The effects of mercury on oxygen uptake during
the mercury bioremediation process have not been elucidated.

This study aims to establish the effects of mercury on growth, oxygen uptake, and mercury
removal parameters by C. metallidurans MSR33 in aqueous solution in a bioreactor during aerobic and
anaerobic mercury bioremediation. The strain MSR33 showed the ability to reduce mercury (II) under
aerobic and anaerobic conditions. However, the presence of oxygen was crucial for efficient mercury
removal. C. metallidurans MSR33 is capable of tolerating the toxic effects of mercury during mercury
bioremediation and recovered its metabolic activity.

2. Materials and Methods

2.1. Chemicals

Succinate, HgCl2, H2SO4, NH4Cl, NaH2PO4 × 2H2O, KCl, FeSO4, HNO3, HCl, and NaOH were
purchased from Merck (Darmstadt, Germany).

2.2. Culture Medium

A new culture medium for MSR33 strain was designed according to the nutritional requirements
of a model microorganism [31]. The nutrient concentrations required in the culture medium were
calculated. Theoretical yield (Yx/s) for each nutrient was determined. The concentration in excess
(100%) of nutrients for 2 g L−1 of cellular biomass, except for the carbon and energy sources, was
established to cover the theoretical values required by the cell. The components of GBC (Guillermo
Bravo Cortés) medium are succinate (4 g L−1) as carbon and energy source, NH4Cl (1 g L−1) as nitrogen
source, NaHPO4 × 2H2O (0.21 g L−1) as phosphorus and sodium sources, FeSO4 (0.2 g L−1) as iron and
sulfur sources, and KCl (0.27 g L−1) as potassium source. The culture medium was adjusted to pH 7
with the addition of HCl (37%) and NaOH (10 M).

2.3. Biomass Determination

The biomass of strain MSR33 was assessed by measuring turbidity at 600 nm and using a curve of
turbidity versus dry biomass concentration. For the determination of the cell dry weight, 25 mL of
culture broth of strain MSR33 was collected and centrifuged in a Hettich model Rotina 380R centrifuge
(Westfalia, Germany) at 3500× g for 10 min, removing the supernatant, and washing the cells three times
with Milli-Q water. Cells were placed in a previously tared aluminum foil and dried in a Memmert
oven (Schwabach, Germany) at 60 ◦C for 48 h. The initial and final mass difference was used to
calculate the value of dry biomass weight. A correlation curve between turbidity and biomass dry
weight was established.

2.4. Succinate Quantification

The succinate degradation was assessed by measuring succinate in GBC broth during the
fermentation. The samples (300 µL) were centrifuged at 24,000× g for 10 min. The supernatant was
passed through a 0.22 µm syringe filter, and the filtered solution samples (200 µL) were deposited in
glass flasks for high performance liquid chromatography (HPLC) analysis. The succinate concentrations
were analyzed according to a described protocol [32]. The samples (2 µL) were analyzed in an Agilent
model 1260 Infinity Quaternary LC HPLC (Santa Clara, California, USA) equipped with a UV/IR
detector using a BioRad Aminex HPX-97H column. The mobile phase was composed of H2SO4 (5 mM)
with a flow rate of 0.6 mL min−1 at 45 ◦C.
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2.5. Determination of Dissolved Oxygen Concentration

The dissolved oxygen concentration was determined using an oxygen optic sensor PreSens model
Fibox 3 (Regensburg, Germany). The calibration of the equipment was carried out according to
the manufacturer’s specifications. The determination of oxygen uptake rate by strain MSR33 was
performed using the dynamic method of Humprey [33]. This method consists of the interruption of air
supply during the exponential growth phase of strain MSR33, to reach 10% dissolved oxygen and its
later supply to the fermentation. The slope obtained from the fall of oxygen concentration corresponds
to the oxygen uptake rate by strain MSR33.

2.6. Mercury Determination

For the determination of Hg in aqueous samples, the AOAC 977.15 methodology was used with
modifications [34]. The mercury quantification was carried out by cold vapor atomic absorption
spectrometry using an atomic absorption spectrometer Agilent model 240AA series AA1110M032 with
a hydride generation module (VGA 77) (Santa Clara, California, USA).

2.7. Kinetics of C. metallidurans MSR33 Growth

To increase the cellular biomass of strain MSR33, the growth kinetics were measured at different
succinate concentrations (4, 8, and 12 g L−1), increasing the GBC medium concentrations 2 and 3
times. Batch experiments were performed in a stirred-tank bioreactor Applikon Biotechnology model
Ez-control (Delft, The Netherlands) of 3 L total volume, equipped with a Rushton type turbine and pH
and temperature controllers. MSR33 cells were grown in GBC medium (1 L fermentation volume) with
agitation (500 rpm), aeration (air flow of 2 vvm) at pH 7 and 30 ◦C. Previously, MSR33 cells grown in
Luria–Bertani medium until the late exponential phase were harvested and inoculated at 10% v v−1 in
the fermentation volume. The specific growth rate (µ), cellular yield (Yx/s), cellular productivity (Qx),
and oxygen uptake rate (Na) of strain MSR33 were assessed.

2.8. Effects of Mercury on Growth and Oxygen Uptake Rate of C. metallidurans Strain MSR33

The effects of mercury on growth and oxygen uptake rate of strain MSR33 were studied after the
addition of mercury (II) (20 ppm) into the bioreactor during the exponential growth phase on succinate
(8 g L−1) as sole carbon and energy source. Reduced mercury, Hg (0), generated by strain MSR33
was removed by air or nitrogen gas stripping and sparged into a solution of HNO3 (1 M), where Hg
(0) was oxidized to Hg (II) [10]. The acidic solution was maintained in the trap for the capture of
gaseous mercury.

2.9. Effects of Oxygen Availability on Mercury Reduction

The mercury reduction was assessed in the bioreactor under aerobic and anaerobic conditions.
To establish the anaerobic conditions, air supply was replaced by nitrogen gas after strain MSR33
reached a cell mass of 1 g L−1, providing deoxygenation and the displacement of volatile mercury
into the oxidizing trap [10,35]. A molecular nitrogen flow of 2 vvm was used. The kinetic evaluation
of mercury removal was carried out during the exponential growth phase of strain MSR33 (biomass
~1.3 g cells L−1), by measuring the remaining total mercury concentration in the GBC culture broth.

3. Results

3.1. Culture Medium Design, Kinetics, and Operational Characterization of C. metallidurans MSR33 Growth

A new culture medium was designed for higher growth of C. metallidurans strain MSR33 (Figure 2).
This culture medium was named GBC medium and is composed of succinate, ammonium chloride,
phosphate (low concentration), and trace salts. The amount of carbon used for the culture medium
was calculated from a carbon mass balance, expecting a theoretical biomass value of 2 g cells L−1
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for 4 g L−1 succinate. However, the results show a lower biomass value (1.7 g cells L−1) than the
theoretical biomass.
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Figure 2. Growth and succinate degradation of C. metallidurans MSR33 in GBC medium. (a) Growth
of strain MSR33 on succinate 4 g L−1. (b) Effect of increased succinate concentration on the growth
kinetics of C. metallidurans MSR33. The kinetics was obtained from a batch reactor with aeration
(2 vvm), pH 7, 30 ◦C and agitation (500 rpm). The assays were performed in triplicate. Bars indicate the
standard deviation.

The kinetic and operational parameters of C. metallidurans MSR33 growth in the GBC medium
were studied. The results show the dependence on succinate concentration of the growth of strain
MSR33 in GBC medium (Figure 2a), validating the use of succinate as the sole carbon and energy
source. The kinetics parameters obtained were the specific growth rate (µ) of 0.43 h−1, a doubling time
(TD) of 1.61 h, a yield of biomass from the carbon and energy source (Yx/s) of 0.41 g cells g succinate−1,
an oxygen uptake rate of 120 ppm oxygen h−1, a specific oxygen uptake rate of 60 mg O2 h−1 g cell−1,
and a cellular productivity (Qx) of 0.24 g cells L−1 h−1.

To evaluate the kinetic behavior and the final biomass concentration in fermentation with a higher
cell density, the carbon, and energy source of the GBC medium (succinate) was used two and three
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times concentrated (Figure 2b). When the succinate concentration of the medium GBC was doubled,
the strain MSR33 exhibited a similar kinetic pattern and the biomass increased almost two-fold.
When three times concentrated succinate was used, the biomass increased almost three-fold, but a delay
at the beginning of the exponential phase was observed. Therefore, for mercury bioremediation assays,
the GBC medium with the carbon source 2-fold concentrated (succinate 8 g L−1) was selected.

3.2. Effect of Mercury (II) on Bioremediation in Liquid Medium by C. metallidurans Strain MSR33

In the first approach, the effect of the addition of mercury to the culture broth on the growth of
strain MSR33 was evaluated during 10 h (Figure 3). The addition of mercury (II) (20 ppm) during the
exponential phase caused the inhibition of MSR33 growth and the interruption of its oxygen uptake.
In contrast, in the absence of mercury (II), the oxygen is consumed during the complete period of
cell growth.

In the second set of assays, the effects of mercury (II) (20 ppm) on growth kinetics and oxygen
uptake were studied over a period of 26 h (Figure 4). The effects of mercury (II) on cellular growth
and respiration were reversible. After a mercury (II) (20 ppm) pulse at the exponential phase, MSR33
cell growth was completely inhibited. However, 5 h after the addition of mercury (II), strain MSR33
reversed the inhibitory effects caused by mercury (II), re-starting the oxygen uptake and cell growth.

3.3. Effect of Oxygen Availability on Mercury (II) Reduction

To determine the effect of oxygen availability on the reduction of mercury (II) (20 ppm) by MSR33
cells, the reduction of mercury (II) under aerobic and anaerobic conditions was compared (Figure 5).
Strain MSR33 was able to reduce Hg (II) under aerobic and anaerobic conditions, reaching a mercury
removal after 24 h of 96.8% and 71.4%, respectively. The results indicate that the removal of mercury
(II) by strain MSR33 after 24 h was higher under aerobic conditions than under anaerobiosis.
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Figure 3. Effects of the addition of mercury (II) on the kinetics of cell growth and oxygen uptake by
C. metallidurans MSR33. In these assays, Hg (II) (20 ppm) was added during the exponential phase at
6 h of growth onset by C. metallidurans MSR33. The assays were performed in duplicate. Bars indicate
the standard deviation.
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solution under aerobic and anaerobic conditions. Hg (II) removal was evaluated during the exponential
growth phase (1.3 g cells L−1), using gas flows (2 vvm) of air and nitrogen gas for aerobic and anaerobic
conditions, respectively. The assays were performed in duplicate. Bars indicate the standard deviation.

4. Discussion

This study determined the kinetic parameters of C. metallidurans MSR33 growth in a bioreactor
(3 L) and the effect of mercury on mercury bioremediation by this strain. The new culture medium
GBC for strain MSR33 growth was formulated in this study. Due to the complexing effect of
phosphate on mercury, GBC medium was formulated with a low phosphate concentration. The low
phosphate Tris-buffered mineral salts (LPTMS) medium has been used previously for C. metallidurans
growth [10,28,29]. The LPTMS medium requires high concentrations of Tris salts buffer, which is not
required for bioreactor cultures with automatic pH control. Succinate concentration was adjusted to
energy and growth requirements of strain MSR33. The biomass difference between the theoretical
(2 g cells L−1) and the experimental values (1.7 g cells L−1) may be attributed to factors such as
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carbon losses produced by the release of metabolites into the culture and higher maintenance energy
requirements (Figure 2a).

The specific growth rate (µ) for C. metallidurans strain MSR33 obtained in this study is higher
(8 times) than the µ reported previously [10]. Rojas et al. characterized the MSR33 growth in a 200 mL
flask, whereas, in the present study, the strain was grown in a bioreactor of 3 L under controlled
conditions of pH, agitation, and oxygen supply [10]. In this study, inhibition of MSR33 growth at
high concentrations of succinate was observed (Figure 2b), suggesting an inhibition by the substrate.
After 7 h of the growth kinetics, this inhibition was reversed. High succinate concentration has been
reported to inhibit the succinate dehydrogenase [36], which may explain the initial inhibitory behavior
observed with 12 g L−1 succinate. Strain MSR33 grown on succinate showed a lower specific oxygen
uptake rate (60 mg O2 h−1 g cell−1) than E. coli NF790 grown on succinate (832 mg O2 h−1 g cell−1) but
within the oxygen uptake range reported by E. coli K12 (29–739 mg O2 h−1 g cell−1) and Rhodococcus
erythropolis IGTS8 (6.4–137 mg O2 h−1 g cell−1) [37,38].

In this study, mercury II (20 ppm) inhibited the growth and oxygen uptake of strain MSR33
(Figures 3 and 4). Rojas et al. [10] observed that the addition of Hg II (8 ppm) during the exponential
growth phase did not affect MSR33 cell growth. However, Hg II (8 ppm) stopped the growth of wild type
strain C. metallidurans CH34. The minimum inhibitory concentration (MIC) of Hg (II) described under
aerobic conditions for strains CH34 and MSR33 is 10 and 24 ppm, respectively [10,29]. The growth
inhibition of strain MSR33 could be associated to the high mercury concentration (20 ppm) used in
this study.

At the cellular level, the disruption of the oxygen uptake by mercury addition may be related
to its effects on the respiratory chain. Mercury has been reported to alter membranes, reducing
membrane transport and potential, affecting the respiratory chain, and producing oxidative stress [6,39].
Specifically, mercury affects sulfhydryl (cysteine) and thioester (methionine) residues of proteins and
replaces other metals such as iron in metalloproteins, damaging the respiratory chain functioning at
membranes in bacteria and eukaryotes [2,7–9,40]. Rojas et al. reported that Hg (II) (8 ppm) affects the
membranes of C. metallidurans strain CH34, showing a fuzzy outer membrane [10]. C. metallidurans
strains CH34 and MSR33 possess outer membrane and periplasmic sulfur-rich proteins such as CopA,
CopB, CopC, CopK, and CopJ containing a significant number of methionine and cysteine amino acids,
which has been proposed to be oxidized by heavy metals and participate in the reduction of gold (III)
ions into Au (0) [7]. Hg (II) increases lipid peroxidation by the increase in H2O2 due to Fenton reactions
in Shewanella oneidensis MR-1 under aerobic conditions, whereas lower lipoperoxidation was observed
under anaerobiosis [41]. Mercury decreases the activity of photosystems cytochromes and quinones at
the membrane in Rhodobacter sphaeroides [42]. Hg (II) decreases oxygen uptake and inhibits the electron
transport chain and the oxidative phosphorylation in the mitochondria of fish liver cells [43].

Another factor that may contribute to the disruption of oxygen uptake and inhibition of growth
by Hg (II) is the redirection of the NADPH cellular pool, from the synthesis of biomolecules and cell
growth to the reduction of mercury and oxidative stress response. The reduction of Hg (II) to Hg (0) by
strain MSR33 occurs in the cytosol where the mercury reductase (MerA) reduces Hg (II) into Hg (0)
using 2 NADPH molecules [10,44]. The main damage caused by mercury is on the membranes but not
in the cytoplasm [41]. The import of mercury (II) and its subsequent reduction are the key processes
for detoxification. The exposure to Hg (II) induces the generation of reactive oxygen species (ROS) in
bacteria and eukaryotes, which could decrease the NADPH levels in strain MSR33 even more [6,39,41,43].
Under oxidative stress, bacterial growth is arrested, whereas NADPH plays an important role for
detoxifying ROS by the regeneration of reduced glutathione and thioredoxin, with a concomitant
decrease in the NADPH pool [45,46]. A fast rerouting of the Embden–Meyerhof–Parnas pathway into
the pentose phosphate pathway was observed in E. coli supplemented with glucose under oxidative
stress, increasing the reduction rate of NADP+ to NADPH [47]. In our study, succinate was used
as the sole carbon and energy source for strain MSR33 growth, suggesting a rerouting pathway
for NADPH recycling. The pentose phosphate pathway, isocitrate dehydrogenase, malic enzyme,
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and transhydrogenases reactions are probably involved in NADPH pool regeneration in strain MSR33
under these aerobic conditions. On the other hand, higher expression of the mer genes under aerobic
conditions was observed in Pseudomonas stutzeri OX than under anaerobiosis [20]. We postulate that
under aerobiosis, mercury (II) in strain MSR33 causes membrane and protein damage that affects
the respiratory chain and the oxidative phosphorylation, induces the broad-spectrum mer genes,
and promotes the redirection of the NADPH reducing power to the mercury-detoxifying and oxidative
stress response mechanisms (Figure 6).
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Figure 6. Proposed aerobic mercury detoxifying mechanisms in C. metallidurans MSR33. Mercury in
presence of oxygen generate reactive oxygen species (ROS) through the electron transport chain and
Fenton reactions. ROS activate oxidative stress response mechanisms that induce the rerouting of
the metabolism, increasing the NADPH pool (blue letters) through the pentose phosphate pathway,
malic enzyme, isocitrate dehydrogenase and transhydrogenase reactions (light blue squares). Mercury
under aerobic conditions induces mercury detoxifying mechanisms through the expression of the mer
genes. The mercuric reductase MerA reduces Hg (II) into Hg (0) using 2 NADPH. The NADPH pool
is consumed during mercury reduction and oxidative stress response mechanisms. Abbreviations:
SUC, succinate; SUCD, succinate dehydrogenase; FUM, fumarate; MAL, malate; OAA, oxaloacetate;
CIT, citrate; ICIT, isocitrate; KG, α-ketoglutarate; SucCoA, succinylCoA; AcCoA, acetylCoA;
PYR, pyruvate; PEP, phosphoenolpyruvate; G6P, glucose-6-phosphate; 6PGL, 6-phosphogluconolactone;
6PG, 6-phosphogluconate; Ru5P, Ribulose-5-phosphate; GAP, glyceraldehyde-3-phosphate.

In this study, the capability of strain MSR33 to re-establish the cell growth and the oxygen uptake
after an initial inhibition by mercury (II) was observed, increasing the cellular biomass for mercury
bioremediation. The response of strain MSR33 is based on the proteins encoded by the mer genes
in the chromosome and pMOL28, pMOL30, and pTP6 plasmids that are associated with mercury
resistance [10,29]. Strain MSR33 is capable of reducing Hg (II) and organomercurial compounds into
a less toxic form (Hg 0), which enables detoxifying the environment surrounding the bacterium [26,44].
A high rate of mercury removal was observed after 1 h (Figure 5), indicating high mercury reduction
by MSR33 MerA protein. The fast detoxifying response may be based on the mercury resistance
genes’ redundancy in strain MSR33, which allows the bacterium to restore cell growth and oxygen
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uptake after the early inhibitory effects of mercury [10]. Due to the absence of oxygen uptake during
exposure to mercury in a liquid medium, the kinetics of mercury removal were determined by strain
MSR33 under aerobic conditions through the displacement of gases with an injection of air, and under
anaerobic conditions by the injection of gaseous nitrogen (Figure 5). The results indicate that oxygen is
required for an efficient removal of mercury, even though mercury inhibits oxygen uptake. Although,
during aerobic mercury bioremediation, strain MSR33 stops consuming oxygen during initial mercury
exposure, mercury probably induces the mercury reductase activity and the bacterium reroutes its
metabolism towards the regeneration of the NADPH pool for the reduction of mercury (II) and to
counteract ROS.

In this study, almost complete removal of mercury (II) (20 ppm) by C. metallidurans MSR33 was
observed under aerobic conditions after 24 h. Rojas et al. [10] observed that strain MSR33 in the
presence of thioglycolate reached a complete removal of mercury (II) (20 and 30 ppm) after 2 h in
flasks of 250 mL (50 mL aqueous solution) with high aeration (6 vvm). In this study, the mercury
removal after 24 h by strain MSR33 under aerobic conditions (97%) is higher than the 79% mercury
(3.2 ppm) removal after 6 h by Sphingobium sp. SA2 and 88% of mercury (5 ppm) removal after 7 h
by Pseudomonas stutzeri OX but similar to 92 to 98% mercury (40 ppm) removal after 24 h by P. putida
PpY101/pSR134 [20,22,48].

Interestingly, the facultative anaerobe strain MSR33 was able to remove 71% Hg (II) (20 ppm)
after 24 h under anaerobic conditions. The facultative anaerobe Pseudomonas stutzeri OX removes
84% mercury II (5 ppm) after 20 h under anaerobic conditions [20]. Anaerobic mercury reduction
associated with methylation and demethylation by anaerobic obligate bacteria has been reported [49,50].
G. bemidjiensis Bem and G. sulfurreducens PCA reduce mercury at low concentrations (1 ppb) under
anaerobic conditions [25,26]. Anaerobiosis favors the formation of inorganic mercury sulfide, decreases
ROS levels, and significantly reduces the NADPH pool regeneration [45,51]. P. stutzeri OX exhibited
higher tolerance to Hg (II) under anaerobiosis than under aerobic conditions; anaerobiosis affects
Hg (II) transport into the cell and, therefore, also the expression of the mer genes [20]. It has been
reported that the synthesis of MerA and MerB proteins in C. metallidurans MSR33 is strongly induced
by mercury [10]. Therefore, a lower mercury reduction under anaerobic conditions by strain MSR33
may be explained by (i) a decreased Hg (II) transport into the cell compared to aerobic conditions,
which leads to a lower expression of mer genes, and (ii) a lower NADPH pool, which negatively
affects the reduction of mercury by MerA in the cytoplasm. However, the higher mercury removal
rates during the first hours of mercury exposure under anaerobic conditions could be associated with
microaerobic conditions that may be generated inside the reactor by oxygen remnants at the beginning
of the anaerobic phase. In this study, mercury (II) removal was performed at concentrations close to
the MIC [10]. Mercury concentrations higher than the MIC could irreversibly affect the growth and
detoxifying activity of strain MSR33 under aerobic conditions. However, under anaerobic conditions,
C. metallidurans strain MSR33 may tolerate higher mercury concentration than P. stutzeri OX [20].

Mercury inhibits the metabolic activity of C. metallidurans MSR33. However, strain MSR33 is
capable of tolerating mercury during mercury bioremediation and recovered its metabolic activity.
Notably, strain MSR33 is able to remove mercury in solution under anaerobic conditions. Under
anaerobic conditions, toluene degradation by C. metallidurans CH34 using nitrate as a terminal electron
acceptor in bioelectrochemical systems has been reported [30]. The results of our present study confirm
the bioremediation capability of C. metallidurans strain MSR33 under anaerobic conditions. In this study,
nitrate was not included in the composition of the culture medium. Interestingly, facultative anaerobic
bacteria including mercury-reducing strains may use fumarate as the electron acceptor, where fumarate
reductase catalyzes this final step in anaerobic respiration [46,49,52]. The gene encoding this enzyme
was reported in the C. metallidurans genome [53], therefore, we propose that fumarate could be the
electron acceptor under these anaerobic conditions. Further studies on anaerobic mercury reduction
are required to understand the molecular and metabolic mechanisms involved in mercury removal by
strain MSR33 under anaerobiosis.
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The results of this study indicate that C. metallidurans MSR33 is an attractive biocatalyst for
mercury bioremediation of polluted water such as mine groundwater and industrial wastewater under
aerobic and anaerobic conditions.

5. Conclusions

The defined GBC culture medium was designed in this study for improved growth of strain
MSR33, which is limited by succinate as the only carbon and energy source. The MSR33 growth rate in
the GBC medium increased up to eight times compared to growth rate values reported by previous
studies of this strain.

Mercury inhibited the growth and respiratory rate of strain MSR33 in liquid medium under
aerobic conditions. However, the growth and respiration inhibitions were reversed after 5 h. Notably,
strain MSR33 was able to remove mercury in a liquid medium under anaerobic conditions but higher
removal of mercury was observed under aerobic conditions than under anaerobiosis.

This study suggests that in spite of the fact that mercury (II) harms C. metallidurans MSR33
metabolic activity, this strain is able to remove mercury from contaminated water and to recover its
metabolic activity after 5 h. Therefore, C. metallidurans MSR33 may be useful for mercury bioremediation
in polluted water under aerobic and anaerobic conditions.
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